1
|
Sun Z, Dong J, Song L, Li F, Wu X, Qiu Z, Wu D. Network Pharmacology Validation of Therapeutic Mechanisms of Tanshinone IIA in Colorectal Cancer. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211004271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Curative therapies with fewer adverse effects are required for cancer treatment. Medicinal plants represent a promising source of novel therapeutic candidates. We employed network pharmacology to predict potential molecular mechanisms of salvia root-derived tanshinone IIA (Tan IIA) in the treatment of colorectal cancer (CRC), followed by empirical validation. The Traditional Chinese Medicine System Pharmacology (TCMSP), DrugBank, and GeneCards databases were queried to identify overlapping Tan IIA (therapeutic)- and CRC (disease)-relevant protein targets. Cytoscape and STRING were used to generate component-target and protein-protein interaction (PPI) networks, respectively, and topology analysis identified highly connected nodes within the latter. Target proteins were subjected to gene ontology (GO)-based biological process annotation using DAVID, and to biological pathway enrichment analysis using the Kyoto encyclopedia and genome (KEGG) database. Enriched biological processes included cell cycling and proliferation, and enriched KEGG pathways included neuroactive ligand-receptor interaction, PI3K-Akt, and cancer. Network pharmacology results predicted that Tan IIA impacts multiple targets and pathways, but that its therapeutic effect is predominantly attributable to cell cycle regulation, inhibition of cell proliferation, and induction of apoptosis. Investigation of the in vitro impact of Tan IIA on proliferation, viability, and cell cycling of 2 hoursuman CRC cell lines (SW480 and SW620), using the CCK-8 method and flow cytometry, demonstrated that Tan IIA significantly inhibits cell proliferation via inducing cell cycle arrest in the G2/M phase. Network pharmacology-predicted hypotheses were thus empirically validated, providing a basis for in-depth study of the therapeutic mechanisms of Tan IIA in the context of CRC.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Pharmacy, Changchun University of Chinese Medicine, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Jinxiang Dong
- School of Pharmacy, Changchun University of Chinese Medicine, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Lijie Song
- Jilin Academy of Traditional Chinese Medicine, Changchun, China
| | - Fuqiang Li
- Jilin Academy of Traditional Chinese Medicine, Changchun, China
| | - Xue Wu
- Jilin University First Hospital, Changchun, China
| | - Zhidong Qiu
- School of Pharmacy, Changchun University of Chinese Medicine, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Donglu Wu
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Ambele MA, Pepper MS, van Heerden MB, van Heerden WFP. Molecular profile of tongue cancer in an 18-year-old female patient with no recognizable risk factor. Laryngoscope Investig Otolaryngol 2019; 4:310-313. [PMID: 31236464 PMCID: PMC6580056 DOI: 10.1002/lio2.266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/28/2019] [Accepted: 04/09/2019] [Indexed: 12/27/2022] Open
Abstract
Background The occurrence of oral tongue squamous cell carcinoma (TSCC) in nonsmoking young adults, especially females, has increased. Yet, there is no clear evidence to support the existence of any single determinant. This case reports the presence of TSCC in an 18-year-old female with no recognizable risk factor for oral cancer development. Methods Histological examination and p16 immunohistochemistry were performed. Formalin-fixed paraffin-embedded sections were prepared from resected tissue and DNA was extracted for molecular OncoScan analysis. Results Histological and immunochemical analysis showed a p16-negative poorly differentiated keratinizing squamous cell carcinoma. OncoScan analysis of this tumor revealed a high confidence TP53:p.R213*:c.637C>T somatic mutation as well as copy number alterations of chromosomal regions including gains of 1p, 3q, 5p, 7p, 8p, 8q, 11q, 15q, 17q, and 20p, and losses on 1p, 3p, 18q, and 22q. Conclusion The TP53:p.R213*:c.637C>T mutation detected is indicative of a genetic predisposition to cancer and it is the first to be reported in TSCC in a nonsmoking young adult. Level of Evidence Case report.
Collapse
Affiliation(s)
- Melvin A Ambele
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria South Africa.,Department of Oral Pathology and Oral Biology School of Dentistry, Faculty of Health Sciences, University of Pretoria Pretoria South Africa
| | - Michael S Pepper
- Department of Immunology, and SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences Institute for Cellular and Molecular Medicine, University of Pretoria Pretoria South Africa
| | - Marlene B van Heerden
- Department of Oral Pathology and Oral Biology School of Dentistry, Faculty of Health Sciences, University of Pretoria Pretoria South Africa
| | - Willie F P van Heerden
- Department of Oral Pathology and Oral Biology School of Dentistry, Faculty of Health Sciences, University of Pretoria Pretoria South Africa
| |
Collapse
|
3
|
Zebisch A, Wölfler A, Fried I, Wolf O, Lind K, Bodner C, Haller M, Drasche A, Pirkebner D, Matallanas D, Rath O, Blyth K, Delwel R, Taskesen E, Quehenberger F, Kolch W, Troppmair J, Sill H. Frequent loss of RAF kinase inhibitor protein expression in acute myeloid leukemia. Leukemia 2012; 26:1842-1849. [PMID: 22388727 DOI: 10.1038/leu.2012.61] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 02/08/2023]
Abstract
RAF kinase inhibitor protein (RKIP) is a negative regulator of the RAS-mitogen-activated protein kinase/extracellular signal-regulated kinase signaling cascade. We investigated its role in acute myeloid leukemia (AML), an aggressive malignancy arising from hematopoietic stem and progenitor cells (HSPCs). Western blot analysis revealed loss of RKIP expression in 19/103 (18%) primary AML samples and 4/17 (24%) AML cell lines but not in 10 CD34+ HSPC specimens. In in-vitro experiments with myeloid cell lines, RKIP overexpression inhibited cellular proliferation and colony formation in soft agar. Analysis of two cohorts with 103 and 285 AML patients, respectively, established a correlation of decreased RKIP expression with monocytic phenotypes. RKIP loss was associated with RAS mutations and in transformation assays, RKIP decreased the oncogenic potential of mutant RAS. Loss of RKIP further related to a significantly longer relapse-free survival and overall survival in uni- and multivariate analyses. Our data show that RKIP is frequently lost in AML and correlates with monocytic phenotypes and mutations in RAS. RKIP inhibits proliferation and transformation of myeloid cells and decreases transformation induced by mutant RAS. Finally, loss of RKIP seems to be a favorable prognostic parameter in patients with AML.
Collapse
MESH Headings
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Gene Expression Regulation, Leukemic
- Genes, ras
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Monocytes/cytology
- Monocytes/metabolism
- Mutation
- Myeloid Cells/metabolism
- Phosphatidylethanolamine Binding Protein/deficiency
- Phosphatidylethanolamine Binding Protein/genetics
- Phosphatidylethanolamine Binding Protein/metabolism
- Prognosis
Collapse
Affiliation(s)
- A Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ferrándiz N, Caraballo JM, García-Gutierrez L, Devgan V, Rodriguez-Paredes M, Lafita MC, Bretones G, Quintanilla A, Muñoz-Alonso MJ, Blanco R, Reyes JC, Agell N, Delgado MD, Dotto GP, León J. p21 as a transcriptional co-repressor of S-phase and mitotic control genes. PLoS One 2012; 7:e37759. [PMID: 22662213 PMCID: PMC3360621 DOI: 10.1371/journal.pone.0037759] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/23/2012] [Indexed: 12/27/2022] Open
Abstract
It has been previously described that p21 functions not only as a CDK inhibitor but also as a transcriptional co-repressor in some systems. To investigate the roles of p21 in transcriptional control, we studied the gene expression changes in two human cell systems. Using a human leukemia cell line (K562) with inducible p21 expression and human primary keratinocytes with adenoviral-mediated p21 expression, we carried out microarray-based gene expression profiling. We found that p21 rapidly and strongly repressed the mRNA levels of a number of genes involved in cell cycle and mitosis. One of the most strongly down-regulated genes was CCNE2 (cyclin E2 gene). Mutational analysis in K562 cells showed that the N-terminal region of p21 is required for repression of gene expression of CCNE2 and other genes. Chromatin immunoprecipitation assays indicated that p21 was bound to human CCNE2 and other p21-repressed genes gene in the vicinity of the transcription start site. Moreover, p21 repressed human CCNE2 promoter-luciferase constructs in K562 cells. Bioinformatic analysis revealed that the CDE motif is present in most of the promoters of the p21-regulated genes. Altogether, the results suggest that p21 exerts a repressive effect on a relevant number of genes controlling S phase and mitosis. Thus, p21 activity as inhibitor of cell cycle progression would be mediated not only by the inhibition of CDKs but also by the transcriptional down-regulation of key genes.
Collapse
Affiliation(s)
- Nuria Ferrándiz
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Juan M. Caraballo
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Lucía García-Gutierrez
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Vikram Devgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachussetts, United States of America
| | - Manuel Rodriguez-Paredes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC, Américo Vespucio s/n, Sevilla, Spain
| | - M. Carmen Lafita
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Gabriel Bretones
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Andrea Quintanilla
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - M. Jose Muñoz-Alonso
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC, Madrid, Spain
| | - Rosa Blanco
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - Jose C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), CSIC, Américo Vespucio s/n, Sevilla, Spain
| | - Neus Agell
- Departament de Biologia Cellular, Immunologia i Neurociències, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - M. Dolores Delgado
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
| | - G. Paolo Dotto
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachussetts, United States of America
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Javier León
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria–CSIC–SODERCAN, Santander, Spain
- * E-mail:
| |
Collapse
|
5
|
Chan JM, Ho SH, Tai IT. Secreted protein acidic and rich in cysteine-induced cellular senescence in colorectal cancers in response to irinotecan is mediated by P53. Carcinogenesis 2010; 31:812-9. [DOI: 10.1093/carcin/bgq034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
6
|
Panguluri SK, Kakar SS. Effect of PTTG on endogenous gene expression in HEK 293 cells. BMC Genomics 2009; 10:577. [PMID: 19958546 PMCID: PMC2793268 DOI: 10.1186/1471-2164-10-577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022] Open
Abstract
Background Pituitary tumor transforming gene (PTTG), also known as securin, is highly expressed in various tumors including pituitary, thyroid, colon, ovary, testis, lung, and breast. An overexpression of PTTG enhances cell proliferation, induces cellular transformation in vitro, and promotes tumor development in nude mice. PTTG also inhibits separation of sister chromatids leading to aneuploidy and genetic instability. A great amount of work has been undertaken to understand the biology of PTTG and its expression in various tumors. However, mechanisms by which PTTG mediates its tumorigenic function are not fully understood. To utilize this gene for cancer therapy, identification of the downstream signaling genes regulated by PTTG in mediation of its tumorigenic function is necessary. For this purpose, we expressed PTTG in human embryonic kidney (HEK293) cells that do not express PTTG and analyzed the downstream genes using microarray analysis. Results A total of 22,277 genes printed on an Affymetrix HG-U133A 2.0 GeneChip™ array were screened with labeled cRNA prepared from HEK293 cells infected with adenovirus vector expressing PTTG cDNA (AdPTTG cDNA) and compared with labeled cRNA prepared from HEK293 cells infected with control adenovirus (control Ad) or adenovirus vector expressing GFP (AdGFP). Out of 22,277 genes, 71 genes were down-regulated and 35 genes were up-regulated with an FDR corrected p-value of ≤ 0.05 and a fold change of ≥2. Most of the altered genes identified are involved in the cell cycle and cell apoptosis; a few are involved in mRNA processing and nitrogen metabolism. Most of the up-regulated genes belong to the histone protein family. Conclusion PTTG is a well-studied oncogene for its role in tumorigenesis. In addition to its importance in regulation of the cell cycle, this gene has also been recently shown to play a role in the induction of cell apoptosis. The microarray analysis in the present study demonstrated that PTTG may induce apoptosis by down-regulation of oncogenes such as v-Jun and v-maf and up-regulation of the histone family of genes.
Collapse
Affiliation(s)
- Siva K Panguluri
- Department of Physiology and Biophysics, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
7
|
Herrick J, Bensimon A. Global regulation of genome duplication in eukaryotes: an overview from the epifluorescence microscope. Chromosoma 2008; 117:243-60. [PMID: 18197411 DOI: 10.1007/s00412-007-0145-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 01/15/2023]
Abstract
In eukaryotes, DNA replication is initiated along each chromosome at multiple sites called replication origins. Locally, each replication origin is "licensed" or specified at the end of the M and the beginning of the G1 phases of the cell cycle. During the S phase when DNA synthesis takes place, origins are activated in stages corresponding to early and late-replicating domains. The staged and progressive activation of replication origins reflects the need to maintain a strict balance between the number of active replication forks and the rate at which DNA synthesis proceeds. This suggests that origin densities (frequency of initiation) and replication fork movement (rates of elongation) must be coregulated to guarantee the efficient and complete duplication of each subchromosomal domain. Emerging evidence supports this proposal and suggests that the ATM/ATR intra-S phase checkpoint plays an important role in the coregulation of initiation frequencies and rates of elongation. In this paper, we review recent results concerning the mechanisms governing the global regulation of DNA replication and discuss the roles these mechanisms play in maintaining genome stability during both a normal and perturbed S phase.
Collapse
Affiliation(s)
- John Herrick
- Genomic Vision, 29, rue Faubourg St. Jacques, Paris 75014, France.
| | | |
Collapse
|
8
|
|
9
|
Abstract
The cyclin-dependent kinase inhibitor p21WAF1/CIP1 is a major player in cell cycle control and it is mainly regulated at the transcriptional level. Whereas induction of p21 predominantly leads to cell cycle arrest, repression of p21 may have a variety of outcomes depending on the context. In this review, we concentrate on transcriptional repression of p21 by cellular and viral factors, and delve in detail into its possible biological implications and its role in cancer. It seems that the major mode of p21 transcriptional repression by negative regulators is the interference with positive transcription factors without direct binding to the p21 promoter. Specifically, the negative factors may either inhibit binding of positive regulators to the promoter or hinder their transcriptional activity. The ability of p21 to inhibit proliferation may contribute to its tumor suppressor function. Because of this, it is not surprising that a number of oncogenes repress p21 to promote cell growth and tumorigenesis. However, p21 is also an inhibitor of apoptosis and p21 repression may also have an anticancer effect. For example, c-Myc and chemical p21 inhibitors, which repress p21, sensitize tumor cells to apoptosis by anticancer drugs. Further identification of factors that repress p21 is likely to contribute to the better understanding of its role in cancer.
Collapse
Affiliation(s)
- Andrei L Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
10
|
MacLaren A, Black EJ, Clark W, Gillespie DAF. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation. Mol Cell Biol 2004; 24:9006-18. [PMID: 15456874 PMCID: PMC517871 DOI: 10.1128/mcb.24.20.9006-9018.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mouse embryo fibroblasts deficient for the c-Jun proto-oncogene (c-Jun-/- MEF) undergo p53-dependent premature senescence in conventional culture. This phenotype becomes evident only after several cell divisions, suggesting that senescence may result from exposure to unknown environmental factors. Here, we show that c-Jun-/- MEF can proliferate successfully in low oxygen (3% O2), indicating that premature senescence under conventional culture conditions is a consequence of hyperoxic stress. c-Jun-/- MEF exhibit higher basal levels of DNA damage compared to normal fibroblasts in high but not low oxygen, implying that senescence results from chronic accumulation of spontaneous DNA damage. This accumulation may be attributable, at least in part, to inefficient repair, since DNA damage induced by gamma ionizing radiation and H2O2 persists for longer in c-Jun-/- MEF than in wild-type MEF. Unexpectedly, p53 expression, phosphorylation, and transcriptional activity are largely unaffected by oxygen exposure, indicating that the accumulation of spontaneous DNA damage does not result in chronic activation of p53 as judged by conventional criteria. Finally, we find that c-Jun associates with nuclear foci containing gammaH2AX and ATM following irradiation, suggesting a potential role for c-Jun in DNA repair processes per se.
Collapse
Affiliation(s)
- Ann MacLaren
- Beatson Institute for Cancer Research, Bearsden, UK.
| | | | | | | |
Collapse
|