1
|
Horton CA, Alexandari AM, Hayes MGB, Marklund E, Schaepe JM, Aditham AK, Shah N, Suzuki PH, Shrikumar A, Afek A, Greenleaf WJ, Gordân R, Zeitlinger J, Kundaje A, Fordyce PM. Short tandem repeats bind transcription factors to tune eukaryotic gene expression. Science 2023; 381:eadd1250. [PMID: 37733848 DOI: 10.1126/science.add1250] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
Short tandem repeats (STRs) are enriched in eukaryotic cis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)-DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.
Collapse
Affiliation(s)
- Connor A Horton
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Amr M Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Michael G B Hayes
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Emil Marklund
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Julia M Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Avanti Shrikumar
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Ariel Afek
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- The University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94110, USA
| |
Collapse
|
2
|
DNA methylation in satellite repeats disorders. Essays Biochem 2020; 63:757-771. [PMID: 31387943 DOI: 10.1042/ebc20190028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.
Collapse
|
3
|
Chen C, Ge C, Liu Z, Li L, Zhao F, Tian H, Chen T, Li H, Yao M, Li J. ATF3 inhibits the tumorigenesis and progression of hepatocellular carcinoma cells via upregulation of CYR61 expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:263. [PMID: 30376856 PMCID: PMC6208028 DOI: 10.1186/s13046-018-0919-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/27/2018] [Indexed: 01/27/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant cancers with a high incidence and high mortality in East Asia. Identifying biomarkers and clarifying the regulatory mechanisms of HCC are of great importance. Herein, we report the role and mechanism of activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element-binding protein family of transcription factors in HCC. Methods ATF3 overexpression vector and shRNAs were transfected into HCC cancer cells to upregulate or downregulate ATF3 expression. In vitro and in vivo assays were performed to investigate the functional role of ATF3 in hepatocellular carcinoma. RNA-Seq was performed to screen the differentially expressed genes downstream of ATF3. The dual-luciferase reporter assay, chromatin immunoprecipitation (Ch-IP) analysis and functional rescue experiments were used to confirm the target gene regulated by ATF3. Tissue microarrays (TMAs) comprising 236 human primary HCC tissues were obtained and immunohistochemical staining were carried out to analyze the clinical significance of ATF3. Results The results indicate that ATF3 significantly inhibited the proliferation and mobility of HCC cells both in vitro and in vivo. Cysteine-rich angiogenic inducer 61 (CYR61) is a key target for transcriptional regulation by ATF3. Both ATF3 and CYR61 were consistently downregulated in human HCC tissues, and their expression levels were significantly and positively correlated with each other. Conclusions Our findings indicate that ATF3 functions as a tumor suppressor in HCC through targeting and regulating CYR61. Electronic supplementary material The online version of this article (10.1186/s13046-018-0919-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cong Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Zheng Liu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangyu Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | | | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, 25/Ln 2200 Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Dumbovic G, Forcales SV, Perucho M. Emerging roles of macrosatellite repeats in genome organization and disease development. Epigenetics 2017; 12:515-526. [PMID: 28426282 PMCID: PMC5687341 DOI: 10.1080/15592294.2017.1318235] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 11/24/2022] Open
Abstract
Abundant repetitive DNA sequences are an enigmatic part of the human genome. Despite increasing evidence on the functionality of DNA repeats, their biologic role is still elusive and under frequent debate. Macrosatellites are the largest of the tandem DNA repeats, located on one or multiple chromosomes. The contribution of macrosatellites to genome regulation and human health was demonstrated for the D4Z4 macrosatellite repeat array on chromosome 4q35. Reduced copy number of D4Z4 repeats is associated with local euchromatinization and the onset of facioscapulohumeral muscular dystrophy. Although the role other macrosatellite families may play remains rather obscure, their diverse functionalities within the genome are being gradually revealed. In this review, we will outline structural and functional features of coding and noncoding macrosatellite repeats, and highlight recent findings that bring these sequences into the spotlight of genome organization and disease development.
Collapse
Affiliation(s)
- Gabrijela Dumbovic
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Sonia-V. Forcales
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Manuel Perucho
- Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, Barcelona, Spain
- Sanford-Burnham-Prebys Medical Discovery Institute (SBP), La Jolla, CA, USA
| |
Collapse
|
5
|
Jia Q, Dong Q, Qin L. CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 2016; 7:1203-1214. [PMID: 26497214 PMCID: PMC4811454 DOI: 10.18632/oncotarget.6209] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/09/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) results from an underlying chronic liver inflammatory disease, such as chronic hepatitis B or C virus infections, and the general prognosis of patients with HCC still remains extremely dismal because of the high frequency of HCC metastases. Throughout the process of tumor metastasis, tumor cells constantly communicate with the surrounding microenvironment and improve their malignant phenotype. Therefore, there is a strong rationale for targeting the tumor microenvironment as primary treatment of HCC therapies. Recently, CCN family proteins have emerged as localized multitasking signal integrators in the inflammatory microenvironment. In this review, we summarize the current knowledge of CCN family proteins in inflammation and the tumor. We also propose that the CCN family proteins may play a central role in signaling the tumor microenvironment and regulating the metastasis of HCC.
Collapse
Affiliation(s)
- Qingan Jia
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lunxiu Qin
- Cancer Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University; Cancer Metastasis Institute, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Iobagiu C, Lambert C, Raica M, Lima S, Khaddage A, Peoc'h M, Genin C. Loss of heterozygosity in tumor tissue in hormonal receptor genes is associated with poor prognostic criteria in breast cancer. Cancer Genet 2015; 208:135-42. [DOI: 10.1016/j.cancergen.2015.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 11/26/2022]
|
7
|
Liang JJ, Xue W, Lou LZ, Liu C, Wang ZF, Li QG, Huang SH. Correlation of restenosis after rabbit carotid endarterectomy and inflammatory cytokines. ASIAN PAC J TROP MED 2014; 7:231-6. [PMID: 24507646 DOI: 10.1016/s1995-7645(14)60027-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVE To establish rabbit model of restenosis after carotid endarterectomy surgery, and to study tissue inflammatory cytokines (TNF-α, IL-6) involved in restenosis. METHODS A total of 32 rabbits were randomly divided into two groups: model group and control group. The right common carotid artery in rabbits was damaged by carotid endar terectomy in model group. The tissues were harvested at different time points respectively, the pathological changes of the vascular wall after operation were observed at different time points. The changes of expression of tissue vascular wall inflammatory cytokines (TNF-α, IL-6) at different time points after the surgery was observed by RT-PCR, and the changes of serum inflammatory cytokines (TNF-α, IL -6) were detected by ELISA. RESULTS The new intima appeared after 7 days of the injury and reached the peak on 28 d which is uneven and significantly thicker than the control group (P<0.01). The tissue inflammatory cytokines (TNF-α, IL-6) were significantly increased after the rabbit common carotid artery injury, which was significant difference compared with normal control group (P<0.05). CONCLUSIONS The tissue inflammatory factors significantly increase after the rabbit carotid artery injury, which suggests the mutual concurrent effects of inflammatory cytokines can result in the proliferation of vascular restenosis.
Collapse
Affiliation(s)
- Jun-Jun Liang
- Department of Cardiovascular Thoracic Surgery, Anqiu People's Hospital, Anqiu 262100, China
| | - Wei Xue
- Department of Cardiovascular Thoracic Surgery, Anqiu People's Hospital, Anqiu 262100, China
| | - Li-Zhi Lou
- Department of Cardiovascular Thoracic Surgery, Anqiu People's Hospital, Anqiu 262100, China
| | - Cheng Liu
- Department of Cardiovascular Thoracic Surgery, Anqiu People's Hospital, Anqiu 262100, China
| | - Zhao-Fen Wang
- Department of Medical Service, Anqiu People's Hospital, Anqiu 262100, China
| | - Qing-Guo Li
- Tianjin Cerebral Hospital, Tianjin 300060, China
| | - Shao-Hua Huang
- Department of Neurosurgery, Anqiu People's Hospital, Anqiu 262100, China.
| |
Collapse
|
8
|
Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res 2014; 24:1147-56. [PMID: 24714811 PMCID: PMC4079970 DOI: 10.1101/gr.169243.113] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gene expression is determined by genomic elements called enhancers, which contain short motifs bound by different transcription factors (TFs). However, how enhancer sequences and TF motifs relate to enhancer activity is unknown, and general sequence requirements for enhancers or comprehensive sets of important enhancer sequence elements have remained elusive. Here, we computationally dissect thousands of functional enhancer sequences from three different Drosophila cell lines. We find that the enhancers display distinct cis-regulatory sequence signatures, which are predictive of the enhancers’ cell type-specific or broad activities. These signatures contain transcription factor motifs and a novel class of enhancer sequence elements, dinucleotide repeat motifs (DRMs). DRMs are highly enriched in enhancers, particularly in enhancers that are broadly active across different cell types. We experimentally validate the importance of the identified TF motifs and DRMs for enhancer function and show that they can be sufficient to create an active enhancer de novo from a nonfunctional sequence. The function of DRMs as a novel class of general enhancer features that are also enriched in human regulatory regions might explain their implication in several diseases and provides important insights into gene regulation.
Collapse
|
9
|
Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One 2013; 8:e54710. [PMID: 23405090 PMCID: PMC3566118 DOI: 10.1371/journal.pone.0054710] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats are genomic elements that are prone to changes in repeat number and are thus often polymorphic. These sequences are found at a high density at the start of human genes, in the gene’s promoter. Increasing empirical evidence suggests that length variation in these tandem repeats can affect gene regulation. One class of tandem repeats, known as microsatellites, rapidly alter in repeat number. Some of the genetic variation induced by microsatellites is known to result in phenotypic variation. Recently, our group developed a novel method for measuring the evolutionary conservation of microsatellites, and with it we discovered that human microsatellites near transcription start sites are often highly conserved. In this study, we examined the properties of microsatellites found in promoters. We found a high density of microsatellites at the start of genes. We showed that microsatellites are statistically associated with promoters using a wavelet analysis, which allowed us to test for associations on multiple scales and to control for other promoter related elements. Because promoter microsatellites tend to be G/C rich, we hypothesized that G/C rich regulatory elements may drive the association between microsatellites and promoters. Our results indicate that CpG islands, G-quadruplexes (G4) and untranslated regulatory regions have highly significant associations with microsatellites, but controlling for these elements in the analysis does not remove the association between microsatellites and promoters. Due to their intrinsic lability and their overlap with predicted functional elements, these results suggest that many promoter microsatellites have the potential to affect human phenotypes by generating mutations in regulatory elements, which may ultimately result in disease. We discuss the potential functions of human promoter microsatellites in this context.
Collapse
Affiliation(s)
- Sterling Sawaya
- Centre for Reproduction and Genomics, Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
10
|
Snail promotes Cyr61 secretion to prime collective cell migration and form invasive tumor nests in squamous cell carcinoma. Cancer Lett 2013. [DOI: 10.1016/j.canlet.2012.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
CCN1 promotes tumorigenicity through Rac1/Akt/NF-κB signaling pathway in pancreatic cancer. Tumour Biol 2012; 33:1745-58. [PMID: 22752926 DOI: 10.1007/s13277-012-0434-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/30/2012] [Indexed: 01/22/2023] Open
Abstract
Aberrant CCN1 expression has been reported to play an important role in the tumor development. However, the pattern and the role of CCN1 in pancreatic cancer remain largely unknown. Therefore, we further deciphered the role CCN1 played in pancreatic cancer. We first evaluated the CCN1 expression in human pancreatic cancer tissues and pancreatic cancer cells. Then we forced expression and silenced CCN1 expression in pancreatic cancer cell lines MIA PaCa2 and PANC-1 respectively, using lentivirus vectors. We characterized the stable cells in vitro and in vivo using a nude mouse xenograft model. In this study, we found that CCN1 expression was significantly higher in cancer specimens which positively correlated with the expression level of phosphorylated Akt and p65. and poorer outcome. Moreover, our results demonstrated that CCN1 positively regulated pancreatic cell growth in vitro and in vivo and helped cancer cells resist to tumor necrosis factor alpha-induced apoptosis. Furthermore, we disclosed that activation of CCN1/ras-related c3 botulinum toxin substrate 1 (Rac1)/V-akt murine thymoma viral oncogene homolog (Akt)/nuclear factor-kappa B pathway inhibited apoptosis in pancreatic cancer cells. CCN1 is upregulated in pancreatic cancer and promotes the survival of pancreatic cancer cells. Taken together, these results indicate that CCN1 may be a potential target for pancreatic cancer therapy.
Collapse
|
12
|
Li ZQ, Ding W, Sun SJ, Li J, Pan J, Zhao C, Wu WR, Si WK. Cyr61/CCN1 is regulated by Wnt/β-catenin signaling and plays an important role in the progression of hepatocellular carcinoma. PLoS One 2012; 7:e35754. [PMID: 22540002 PMCID: PMC3335098 DOI: 10.1371/journal.pone.0035754] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/26/2012] [Indexed: 12/20/2022] Open
Abstract
Abnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear β-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis. In this study, we investigated the relationship between Cyr61 and β-catenin in HCC. We found that while Cyr61 protein was not expressed at a detectable level in the liver tissue of healthy individuals, its expression level was elevated in the HCC and HCC adjacent tissues and was markedly increased in cancer-adjacent hepatic cirrhosis tissue. Over-expression of Cyr61 was positively correlated with increased levels of β-catenin in human HCC samples. Activation of β-catenin signaling elevated the mRNA level of Cyr61 in HepG2 cells, while inhibition of β-catenin signaling reduced both mRNA and protein levels of Cyr61. We identified two TCF4-binding elements in the promoter region of human Cyr61 gene and demonstrated that β-catenin/TCF4 complex specifically bound to the Cyr61 promoter in vivo and directly regulated its promoter activity. Furthermore, we found that over-expression of Cyr61 in HepG2 cells promoted the progression of HCC xenografts in SCID mice. These findings indicate that Cyr61 is a direct target of β-catenin signaling in HCC and may play an important role in the progression of HCC.
Collapse
Affiliation(s)
- Zhi-Qiang Li
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Wei Ding
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
- Department of Clinical Laboratory, KunMing General Hospital of PLA, KunMing, China
| | - Shi-Jun Sun
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Li
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Jing Pan
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Chen Zhao
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Wei-Ru Wu
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
| | - Wei-Ke Si
- Department of Clinical Hematology, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
13
|
Walker RM, Hill AE, Newman AC, Hamilton G, Torrance HS, Anderson SM, Ogawa F, Derizioti P, Nicod J, Vernes SC, Fisher SE, Thomson PA, Porteous DJ, Evans KL. The DISC1 promoter: characterization and regulation by FOXP2. Hum Mol Genet 2012; 21:2862-72. [PMID: 22434823 DOI: 10.1093/hmg/dds111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein levels, suggesting altered DISC1 expression as a pathogenic mechanism in psychiatric illness. Altered DISC1 expression in the post-mortem brains of individuals with psychiatric illness and the frequent implication of non-coding regions of the gene by association analysis further support this assertion. Here, we provide the first characterization of the DISC1 promoter region. Using dual luciferase assays, we demonstrate that a region -300 to -177 bp relative to the transcription start site (TSS) contributes positively to DISC1 promoter activity, while a region -982 to -301 bp relative to the TSS confers a repressive effect. We further demonstrate inhibition of DISC1 promoter activity and protein expression by forkhead-box P2 (FOXP2), a transcription factor implicated in speech and language function. This inhibition is diminished by two distinct FOXP2 point mutations, R553H and R328X, which were previously found in families affected by developmental verbal dyspraxia. Our work identifies an intriguing mechanistic link between neurodevelopmental disorders that have traditionally been viewed as diagnostically distinct but which do share varying degrees of phenotypic overlap.
Collapse
Affiliation(s)
- Rosie M Walker
- Medical Genetics Section, Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Promoter microsatellites as modulators of human gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:41-54. [PMID: 23560304 DOI: 10.1007/978-1-4614-5434-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsatellites in and around genes have been shown to modulate levels of gene expression in multiple organisms, ranging from bacteria to humans. Here we will discuss promoter microsatellites known to modulate gene expression, with a few key examples related to the human brain. Many of the microsatellites we discuss are highly conserved in mammals, indicating that selection may favor their retention as "tuning knobs" of gene expression. We will also discuss the mechanisms by which microsatellites in promoters can alter gene expression as they expand and contract, with particular attention to secondary structures like Z-DNA and H-DNA. We suggest that promoter microsatellites, especially those that are highly conserved, may be an important source of human phenotypic variation.
Collapse
|
15
|
Espinoza I, Liu H, Busby R, Lupu R. CCN1, a candidate target for zoledronic acid treatment in breast cancer. Mol Cancer Ther 2011; 10:732-41. [PMID: 21393426 DOI: 10.1158/1535-7163.mct-10-0836] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CCN1, also known as CYR61, is a survival and proangiogenic factor overexpressed in about 30% of invasive breast carcinomas, and particularly in triple-negative breast carcinomas (TNBC). CCN1 expression in breast cancer promotes tumorigenicity, metastasis, antihormone, and chemoresistance. TNBCs often develop bone metastasis, thus the vast majority of patients receive bisphosphonate treatment as a companion to chemotherapy. Zoledronic acid (ZOL), a bisphosphonate currently in use, inhibits bone resorption, prevents development of new osteolytic lesions induced by tumor metastasis, and has a direct antitumor activity in breast cancer cells and tumors. We have shown that ZOL inhibits anchorage independent growth as well as branching and morphogenesis in CCN1 overexpressing cells. However, the mechanism is not yet well understood. In this study, we investigate the effect of ZOL in breast cancer cells with high and undetectable CCN1 expression levels. We show that CCN1-expressing cells are more sensitive to ZOL, that ZOL induces downregulation of the CCN1 promoter activity and CCN1 protein expression in a dose-dependent manner, and that ZOL is associated with a decrease in phosphorylated Akt and translocation of FOXO3a, a negative regulator of CCN1 expression, to the nucleus. Deletion of the FOXO3a binding site in the CCN1 promoter prevents ZOL inhibition of the CCN1 promoter activity showing that FOXO3a transcriptional activation is necessary for ZOL to induce CCN1 inhibition. This study provides evidence that ZOL targets the proangiogenic factor (CCN1) through FOXO3a and reveals a new mechanism of ZOL action in breast cancer cells.
Collapse
Affiliation(s)
- Ingrid Espinoza
- Department of Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
16
|
Morris EE, Amria MY, Kistner-Griffin E, Svenson JL, Kamen DL, Gilkeson GS, Nowling TK. A GA microsatellite in the Fli1 promoter modulates gene expression and is associated with systemic lupus erythematosus patients without nephritis. Arthritis Res Ther 2010; 12:R212. [PMID: 21087477 PMCID: PMC3046520 DOI: 10.1186/ar3189] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 10/07/2010] [Accepted: 11/18/2010] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The transcription factor Fli1 is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Recently, a GA(n) polymorphic microsatellite was characterized in the mouse Fli1 promoter that modulates promoter activity and is truncated in two lupus mouse models compared to non-autoimmune prone mice. In this work, we characterize a homologous GA(n) microsatellite in the human Fli1 promoter. The purpose of this study is to determine the effect of the microsatellite length on Fli1 promoter activity in vitro and to determine if the length of the GA(n) microsatellite is associated with SLE and/or specific disease characteristics. METHODS Constructs with variable lengths of the GA(n) microsatellite in the Fli1 promoter were generated and analyzed in promoter/reporter (P/R) assays in a human T cell line. Using three SLE patient cohorts and matched controls, microsatellite length was measured and association with the presence of disease and the occurrence of specific disease manifestations was assessed. RESULTS P/R assays demonstrated that the presence of a shorter microsatellite resulted in higher Fli1 promoter activity. A significant association was observed in the lupus cohort SLE in Gullah Health (SLEIGH) between the GA(26) base pair allele and absence of nephritis. CONCLUSIONS This study demonstrates that a GA(n) microsatellite in the human Fli1 promoter is highly polymorphic. The length of the microsatellite is inversely correlated to Fli1 promoter activity in a human T cell line. Although no association between microsatellite length and lupus was observed, an association between a specific microsatellite length and patients without nephritis in the SLEIGH cohort was observed.
Collapse
Affiliation(s)
- Erin E Morris
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 96 Jonathon Lucas St, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 2010; 12:676-85. [PMID: 20526329 PMCID: PMC2919364 DOI: 10.1038/ncb2070] [Citation(s) in RCA: 749] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 04/30/2010] [Indexed: 02/06/2023]
Abstract
Cellular senescence is a recognised mechanism of tumor suppression; however, its contribution to other pathologies is not well understood. We show that the matricellular protein CCN1/CYR61, which is dynamically expressed at sites of wound repair, can induce fibroblast senescence through its cell adhesion receptors, integrin α6β1 and heparan sulfate proteoglycans. CCN1 induces DNA damage response and p53 activation, and activates the RAC1-NOX1 complex to induce reactive oxygen species (ROS) generation and ROS-dependent activation of the p16INK4a/pRb pathway, leading to senescence and concomitant expression of antifibrotic genes. Senescent fibroblasts accumulate in granulation tissues of healing cutaneous wounds and express antifibrotic genes in wild type mice. These processes are obliterated in knockin mice that express a senescence-defective CCN1 mutant, resulting in exacerbated fibrosis. Topical application of CCN1 protein to wounds reverses these defects. Thus, fibroblast senescence is a CCN1-dependent wound healing response in cutaneous injury, functioning to curb fibrosis during tissue repair.
Collapse
|
18
|
Ghosh S, Ghosh A, Maiti GP, Mukherjee N, Dutta S, Roy A, Roychoudhury S, Panda CK. LIMD1 is more frequently altered than RB1 in head and neck squamous cell carcinoma: clinical and prognostic implications. Mol Cancer 2010; 9:58. [PMID: 20226061 PMCID: PMC2848626 DOI: 10.1186/1476-4598-9-58] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 03/12/2010] [Indexed: 12/04/2022] Open
Abstract
Introduction To understand the role of two interacting proteins LIMD1 and pRB in development of head and neck squamous cell carcinoma (HNSCC), alterations of these genes were analyzed in 25 dysplastic head and neck lesions, 58 primary HNSCC samples and two HNSCC cell lines. Methods Deletions of LIMD1 and RB1 were analyzed along with mutation and promoter methylation analysis of LIMD1. The genotyping of LIMD1 linked microsatellite marker, hmlimD1, was done to find out any risk allele. The mRNA expression of LIMD1 and RB1 were analyzed by Q-PCR. Immunohistochemical analysis of RB1 was performed. Alterations of these genes were correlated with different clinicopathological parameters. Results High frequency [94% (78/83)] of LIMD1 alterations was observed in the samples studied. Compare to frequent deletion and methylation, mutation of LIMD1 was increased during tumor progression (P = 0.007). Six novel mutations in exon1 and one novel intron4/exon5 splice-junction mutation were detected in LIMD1 along with a susceptible hmlimD1 (CA)20 allele. Some of these mutations [42% (14/33)] produced non-functional proteins. RB1 deletion was infrequent (27%). Highly reduced mRNA expression of LIMD1 (25.1 ± 19.04) was seen than RB1 (3.8 ± 8.09), concordant to their molecular alterations. The pRB expression supported this data. Tumors with LIMD1 alterations in tobacco addicted patients without HPV infection showed poor prognosis. Co-alterations of these genes led the worse patients' outcome. Conclusions Our study suggests LIMD1 inactivation as primary event than inactivation of RB1 in HNSCC development.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, SP Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liguori MJ, Blomme EAG, Waring JF. Trovafloxacin-induced gene expression changes in liver-derived in vitro systems: comparison of primary human hepatocytes to HepG2 cells. Drug Metab Dispos 2008; 36:223-33. [PMID: 17967932 DOI: 10.1124/dmd.107.017608] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Primary human hepatocytes (PHH) are a main instrument in drug metabolism research and in the prediction of drug-induced phase I/II enzyme induction in humans. The HepG2 liver-derived cell line is commonly used as a surrogate for human hepatocytes, but its use in absorption, distribution, metabolism, and excretion and toxicity studies can be limited because of lowered basal levels of metabolizing enzymes. Despite the widespread use of HepG2 cells, a comparison of their transcriptomes with those of PHH has not been well characterized. In this study, microarray analysis was conducted to ascertain the differences and similarities in mRNA expression between HepG2 cells and human hepatocytes before and after exposure to a panel of fluoroquinolone compounds. Comparison of the naive HepG2 cell and PHH transcriptomes revealed a substantial number of basal gene expression differences. When HepG2 cells were dosed with a series of fluoroquinolones, trovafloxacin (TVX), which has been associated with human idiosyncratic hepatotoxicity, induced substantially more gene expression changes than the other quinolones, similar to previous observations with PHH. Although TVX-treatment resulted in many gene expression differences between HepG2 cells and PHH, there were also a number of TVX-induced commonalities, including genes involved in RNA processing and mitochondrial function. Taken together, these results provide insight for interpretation of results from drug metabolism and toxicity studies conducted with HepG2 cells in lieu of PHH and could provide further insight into the mechanistic evaluation of TVX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Michael J Liguori
- Department of Cellular, Molecular, and Exploratory Toxicology, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | |
Collapse
|
20
|
Nowling TK, Fulton JD, Chike-Harris K, Gilkeson GS. Ets factors and a newly identified polymorphism regulate Fli1 promoter activity in lymphocytes. Mol Immunol 2008; 45:1-12. [PMID: 17606295 PMCID: PMC2045641 DOI: 10.1016/j.molimm.2007.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 05/09/2007] [Accepted: 05/11/2007] [Indexed: 11/26/2022]
Abstract
Fli1 is an Ets family member that is essential for embryonic development. Increasing evidence suggests modulating Fli1 gene expression impacts lymphocyte development/function and is an important mediator in the autoimmune disease lupus. Fli1 is over-expressed in splenic lymphocytes in lupus prone mouse strains and in PBMCs of lupus patients. Presently, it is unknown how Fli1 gene expression is controlled in lymphocytes or how it becomes over-expressed in lupus. Therefore, we examined Fli1 regulation in a murine B cell line and T cell line and identified several cis-regulatory elements within a 230 bp region that contribute to Fli1 promoter activity. Ets factors Elf1, Tel and Fli1 bind in vitro to this region and increase endogenous Fli1 expression when over-expressed in a T cell line. In addition, we determined that a microsatellite located adjacent to the region containing these cis-regulatory elements is polymorphic in three lupus prone mouse strains and that the length of the microsatellite is inversely correlated with promoter activity in a T cell line. These results suggest that several Ets factors, including Fli1 itself, are involved in the transcriptional regulation of Fli1 in lymphocytes. Furthermore, the presence of a polymorphic microsatellite in the Fli1 promoter may contribute to increased Fli1 expression in T cells during lupus disease progression.
Collapse
Affiliation(s)
- Tamara K Nowling
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, 96 Jonathan Lucas Street, Ste 912 CSB, Charleston, SC 29425, USA.
| | | | | | | |
Collapse
|
21
|
Pedrosa E, Ye K, Nolan KA, Morrell L, Okun JM, Persky AD, Saito T, Lachman HM. Positive association of schizophrenia to JARID2 gene. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:45-51. [PMID: 16967465 DOI: 10.1002/ajmg.b.30386] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dysbindin (DTNBP1) is a positional candidate gene for 6p22.3-linked schizophrenia (SZ). However, so far, no disease-causing alleles have been identified. DTNBP1 is immediately adjacent to JARID2, a member of the ARID (AT-rich interaction domain) family of transcription modulators. We have previously suggested that proteins which bind to AT-rich domains could play a role in SZ pathogenesis. Consequently, we explored the possibility that JARID2 itself could be a candidate gene for 6p22.3-linked SZ. We used a case control design to analyze single nucleotide polymorphisms (SNPs) and insertion/deletion variants affecting AT-rich domains in both the DTNBP1 and JARID2 genes. Three of the DTNBP1 SNPs analyzed had previously been shown to be associated with SZ. We did not detect any significant difference in allele, genotype or haplotype distribution for any of these DTNBP1 markers. However, we did detect a significant difference in allele distribution for a tetranucleotide repeat polymorphism in the JARID2 gene that affects an AT-rich domain. A significant increase in short alleles (less than 11 repeats) was found in patients with SZ (chi(2) = 7.02; P = 0.008). No other JARID2 marker displayed statistically significant allele and genotype distributions. Our findings suggest that JARID2 should be viewed as a candidate gene for 6p22.3-linked SZ.
Collapse
Affiliation(s)
- Erika Pedrosa
- Department of Psychiatry, Division of Basic Research, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wang Z, Sew PH, Ambrose H, Ryan S, Chong SS, Lee EJD, Lee CGL. Nucleotide sequence analyses of the MRP1 gene in four populations suggest negative selection on its coding region. BMC Genomics 2006; 7:111. [PMID: 16684361 PMCID: PMC1488846 DOI: 10.1186/1471-2164-7-111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/10/2006] [Indexed: 01/02/2023] Open
Abstract
Background The MRP1 gene encodes the 190 kDa multidrug resistance-associated protein 1 (MRP1/ABCC1) and effluxes diverse drugs and xenobiotics. Sequence variations within this gene might account for differences in drug response in different individuals. To facilitate association studies of this gene with diseases and/or drug response, exons and flanking introns of MRP1 were screened for polymorphisms in 142 DNA samples from four different populations. Results Seventy-one polymorphisms, including 60 biallelic single nucleotide polymorphisms (SNPs), ten insertions/deletions (indel) and one short tandem repeat (STR) were identified. Thirty-four of these polymorphisms have not been previously reported. Interestingly, the STR polymorphism at the 5' untranslated region (5'UTR) occurs at high but different frequencies in the different populations. Frequencies of common polymorphisms in our populations were comparable to those of similar populations in HAPMAP or Perlegen. Nucleotide diversity indices indicated that the coding region of MRP1 may have undergone negative selection or recent population expansion. SNPs E10/1299 G>T (R433S) and E16/2012 G>T (G671V) which occur at low frequency in only one or two of four populations examined were predicted to be functionally deleterious and hence are likely to be under negative selection. Conclusion Through in silico approaches, we identified two rare SNPs that are potentially negatively selected. These SNPs may be useful for studies associating this gene with rare events including adverse drug reactions.
Collapse
Affiliation(s)
- Zihua Wang
- Department of Biochemistry, National University of Singapore, Singapore
- Graduate Programme in Bioengineering, National University of Singapore, Singapore
| | - Pui-Hoon Sew
- Division of Medical Sciences, National Cancer Center, Singapore
| | | | | | - Samuel S Chong
- Departments of Pediatrics & Obstetrics/Gynecology, Singapore
- Departments of Pediatrics and Gynecology & Obstetrics, and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edmund JD Lee
- Department of Pharmacology, National University of Singapore, Singapore
| | - Caroline GL Lee
- Department of Biochemistry, National University of Singapore, Singapore
- Division of Medical Sciences, National Cancer Center, Singapore
| |
Collapse
|
23
|
Bartholin L, Wessner LL, Chirgwin JM, Guise TA. The human Cyr61 gene is a transcriptional target of transforming growth factor beta in cancer cells. Cancer Lett 2006; 246:230-6. [PMID: 16616811 DOI: 10.1016/j.canlet.2006.02.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/26/2006] [Accepted: 02/27/2006] [Indexed: 01/06/2023]
Abstract
Cyr61 is a multifunctional protein that can stimulate angiogenesis and tumor growth. Its expression by many cancers and breast cancers increases with tumor grade. Cyr61 is closely related to connective tissue growth factor, CTGF. Both proteins regulate skeletal development, suggesting that they could contribute to breast cancer metastases to bone, a process regulated by TGFbeta. We show that Cyr61 transcription is activated by TGFbeta and that the human Cyr61 promoter contains consensus sequences that bind Smad proteins. TGFbeta in the tumor microenvironment may stimulate cancer metastases to sites such as bone by increasing Cyr61 expression and secretion.
Collapse
Affiliation(s)
- Laurent Bartholin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Aurbach Medical Research Building, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
24
|
Iobagiu C, Lambert C, Normand M, Genin C. Microsatellite profile in hormonal receptor genes associated with breast cancer. Breast Cancer Res Treat 2005; 95:153-9. [PMID: 16317584 DOI: 10.1007/s10549-005-9060-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
Given that breast cancer is depending on multiple hormonal influences, the nuclear receptors, estrogen receptor alpha, estrogen receptor beta and androgen receptor, are candidates for cancer susceptibility markers. We conducted an association study in a case-control population (139 cases and 145 controls) by genotyping three potentially functional microsatellites (TA)n, (CA)n and (CAG)n in the ERa, ERb and AR genes respectively. For (CAG)n polymorphism, a significant difference was observed using a cut-off 15 repeats CAG between genotypes short-short/short-long/long-long in cases and control subjects (p = 0.009) and also between the distribution of short/long allele in the two groups of individuals (p = 0.001). Genotypes comprising one or two short (CAG)n sequences had higher risk of breast cancer compared to genotypes with two long allele (odds ratio = 1,93; confidence interval = 1.05-3.55; p = 0.03). No significant difference was observed in allele frequency or in short/long allele percentage for (CA)n or (TA)n polymorphism (cut-off 22 CA and 19 TA repeats), neither in genotype frequencies (short-short, short-long or long-long). When the three microsatellite genotype were taken in analysis, the profile short CA-long TA-short CAG could clearly discriminate between cases and controls (p = 0.006). Also, this combined genotype profile has greater predictive values for breast cancer than (CAG)n genotype alone (predictive positive value 57,1% versus 53,7% and predictive negative value 53% versus 23% respectively). Our results sustain a polygenic model of breast cancer with gene-gene interactions; combined effects of three low-risk polymorphisms conferred significant genetic predisposition. Genotyping hormonal receptor genes ERa, ERb and AR could be a useful genetic marker for defining disease risk.
Collapse
Affiliation(s)
- C Iobagiu
- Immunology Laboratory, University Hospital of St Etienne, St. Etienne Cedex 2, France.
| | | | | | | |
Collapse
|