1
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
2
|
Palmer N, Kaldis P. Less-well known functions of cyclin/CDK complexes. Semin Cell Dev Biol 2020; 107:54-62. [PMID: 32386818 DOI: 10.1016/j.semcdb.2020.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases (CDKs) are activated by cyclins, which play important roles in dictating the actions of CDK/cyclin complexes. Cyclin binding influences the substrate specificity of these complexes in addition to their susceptibility to inhibition or degradation. CDK/cyclin complexes are best known to promote cell cycle progression in the mitotic cell cycle but are also crucial for important cellular processes not strictly associated with cellular division. This chapter primarily explores the understudied topic of CDK/cyclin complex functionality during the DNA damage response. We detail how CDK/cyclin complexes perform dual roles both as targets of DNA damage checkpoint signaling as well as effectors of DNA repair. Additionally, we discuss the potential CDK-independent roles of cyclins in these processes and the impact of such roles in human diseases such as cancer. Our goal is to place the spotlight on these important functions of cyclins either acting as independent entities or within CDK/cyclin complexes which have attracted less attention in the past. We consider that this will be important for a more complete understanding of the intricate functions of cell cycle proteins in the DNA damage response.
Collapse
Affiliation(s)
- Nathan Palmer
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A⁎STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore; National University of Singapore (NUS), Department of Biochemistry, Singapore, 117597, Republic of Singapore; Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Box 50332, SE-202 13, Malmö, Sweden.
| |
Collapse
|
3
|
Washino S, Rider LC, Romero L, Jillson LK, Affandi T, Ohm AM, Lam ET, Reyland ME, Costello JC, Cramer SD. Loss of MAP3K7 Sensitizes Prostate Cancer Cells to CDK1/2 Inhibition and DNA Damage by Disrupting Homologous Recombination. Mol Cancer Res 2019; 17:1985-1998. [PMID: 31300540 DOI: 10.1158/1541-7786.mcr-18-1335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
The combined loss of CHD1 and MAP3K7 promotes aggressive prostate cancer by unknown mechanisms. Because both of these genes are lost genetically in prostate cancer, they cannot be directly targeted. We applied an established computational systems pharmacology approach (TRAP) to identify altered signaling pathways and associated druggable targets. We compared gene expression profiles of prostate cancer with coloss of CHD1 and MAP3K7 with prostate cancer diploid for these genes using The Cancer Genome Atlas patient samples. This analysis prioritized druggable target genes that included CDK1 and CDK2. We validated that inhibitors of these druggable target genes, including the CDK1/CDK2 inhibitor dinaciclib, had antiproliferative and cytotoxic effects selectively on mouse prostate cells with knockdown of Chd1 and Map3k7. Dinaciclib had stronger effects on prostate cells with suppression of Map3k7 independent of Chd1 and also compared with cells without loss of Map3k7. Dinaciclib treatment reduced expression of homologous recombination (HR) repair genes such as ATM, ATR, BRCA2, and RAD51, blocked BRCA1 phosphorylation, reduced RAD51 foci formation, and increased γH2AX foci selectively in prostate cells with suppression of Map3k7, thus inhibiting HR repair of chromosomal double-strand breaks. Dinaciclib-induced HR disruption was also observed in human prostate cells with knockdown of MAP3K7. Cotreatment of dinaciclib with DNA-damaging agents or PARP inhibitor resulted in a stronger cytotoxic effect on prostate cells with suppression of MAP3K7 compared with those without loss of MAP3K7, or to each single agent. IMPLICATIONS: These findings demonstrate that loss of MAP3K7 is a main contributing factor to drug response through disruption of HR in prostate cancer.
Collapse
Affiliation(s)
- Satoshi Washino
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Leah C Rider
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lina Romero
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lauren K Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Trisiani Affandi
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Angela M Ohm
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Elaine T Lam
- Department of Internal Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mary E Reyland
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Scott D Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
4
|
PAXX Participates in Base Excision Repair via Interacting with Pol β and Contributes to TMZ Resistance in Glioma Cells. J Mol Neurosci 2018; 66:214-221. [PMID: 30238427 PMCID: PMC6182633 DOI: 10.1007/s12031-018-1157-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/06/2018] [Indexed: 12/29/2022]
Abstract
Non-homologous end joining (NHEJ) is one of the major DNA repair pathway in mammalian cell that can ligate a variety of DNA ends. However, how does all NHEJ factors communicate and organize together to achieve the final repair is still not clear. PAralog of XRCC4 and XLF (PAXX) was a new factor identified recently that play an important role in NHEJ. PAXX contributes to efficient NHEJ by interacting with Ku, which is a NHEJ key factor, and PAXX deficiency cause sensitivity to DNA double-strand break repair (DSBR). We observed that PAXX-deficient cells showed slight increase of homologous recombination (HR, which is another major DSBR repair pathways in mammalian cells). More importantly, we found that PAXX contributes to base excision repair pathway via interaction of polymerase beta (pol β). Temozolomide (TMZ) is one of the standard chemotherapies widely applied in glioblastoma. However, TMZ resistance and lack of potent chemotherapy agents can substitute TMZ. We observed that PAXX deficiency cause more sensitivity to TMZ-resistant glioma cells. In conclusion, the PAXX contributes to a variety of DNA repair pathways and TMZ resistance. Therefore, inhibition of PAXX may provide a promising way to overcome TMZ resistance and improve TMZ therapeutic effects in glioma treatment.
Collapse
|
5
|
Kang YJ, Yan CT. Regulation of DNA repair in the absence of classical non-homologous end joining. DNA Repair (Amst) 2018; 68:34-40. [DOI: 10.1016/j.dnarep.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 06/01/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022]
|
6
|
Paudyal SC, You Z. Sharpening the ends for repair: mechanisms and regulation of DNA resection. Acta Biochim Biophys Sin (Shanghai) 2016; 48:647-57. [PMID: 27174871 DOI: 10.1093/abbs/gmw043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
DNA end resection is a key process in the cellular response to DNA double-strand break damage that is essential for genome maintenance and cell survival. Resection involves selective processing of 5' ends of broken DNA to generate ssDNA overhangs, which in turn control both DNA repair and checkpoint signaling. DNA resection is the first step in homologous recombination-mediated repair and a prerequisite for the activation of the ataxia telangiectasia mutated and Rad3-related (ATR)-dependent checkpoint that coordinates repair with cell cycle progression and other cellular processes. Resection occurs in a cell cycle-dependent manner and is regulated by multiple factors to ensure an optimal amount of ssDNA required for proper repair and genome stability. Here, we review the latest findings on the molecular mechanisms and regulation of the DNA end resection process and their implications for cancer formation and treatment.
Collapse
Affiliation(s)
- Sharad C Paudyal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
7
|
Sinha S, Villarreal D, Shim EY, Lee SE. Risky business: Microhomology-mediated end joining. Mutat Res 2016; 788:17-24. [PMID: 26790771 DOI: 10.1016/j.mrfmmm.2015.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/03/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
Abstract
Prevalence of microhomology (MH) at the breakpoint junctions in somatic and germ-line chromosomal rearrangements and in the programmed immune receptor rearrangements from cells deficient in classical end joining reveals an enigmatic process called MH-mediated end joining (MMEJ). MMEJ repairs DNA double strand breaks (DSBs) by annealing flanking MH and deleting genetic information at the repair junctions from yeast to humans. Being genetically distinct from canonical DNA DSB pathways, MMEJ is involved with the fusions of eroded/uncapped telomeres as well as with the assembly of chromosome fragments in chromothripsis. In this review article, we will discuss an up-to-date model representing the MMEJ process and the mechanism by which cells regulate MMEJ to limit repair-associated mutagenesis. We will also describe the possible therapeutic gains resulting from the inhibition of MMEJ in recombination deficient cancers. Lastly, we will embark on two contentious issues associated with MMEJ such as the significance of MH at the repair junction to be the hallmark of MMEJ and the relationship of MMEJ to other mechanistically related DSB repair pathways.
Collapse
Affiliation(s)
- Supriya Sinha
- Department of Molecular Medicine, Institute of Biotechnology, United States
| | - Diana Villarreal
- Children's Hospital of San Antonio, Baylor College of Medicine, San Antonio, TX 78207, United States
| | - Eun Yong Shim
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX 78229, United States
| | - Sang Eun Lee
- Department of Molecular Medicine, Institute of Biotechnology, United States; Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, TX 78229, United States.
| |
Collapse
|
8
|
Wu J, Starr S. Low-fidelity compensatory backup alternative DNA repair pathways may unify current carcinogenesis theories. Future Oncol 2015; 10:1239-53. [PMID: 24947263 DOI: 10.2217/fon.13.272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The somatic mutation carcinogenesis theory has dominated for decades. The alternative theory, tissue organization field theory, argues that the development of cancer is determined by the surrounding microenvironment. However, neither theory can explain all features of cancer. As cancers share the features of uncontrolled proliferation and genomic instability, they are likely to have the same pathogenesis. It has been found that various DNA repair pathways within a cell crosstalk with one another, forming a DNA repair network. When one DNA repair pathways is defective, the others may work as compensatory backups. The latter pathways are explored for synthetic lethal anticancer therapy. In this article, we extend the concept of compensatory alternative DNA repair to unify the theories. We propose that the microenvironmental stress can activate low-fidelity compensatory alternative DNA repair, causing mutations. If the mutation occurs to a DNA repair gene, this secondarily mutated gene can lead to even more mutated genes, including those related to other DNA repair pathways, eventually destabilizing the genome. Therefore, the low-fidelity compensatory alternative DNA repair may mediate microenvironment-dependent carcinogenesis. The proposal seems consistent with the view of evolution: the environmental stress causes mutations to adapt to the changing environment.
Collapse
Affiliation(s)
- Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, 966 Middle Huaihai Road, Shanghai 200031, China
| | | |
Collapse
|
9
|
Niu Y, Zhang X, Zheng Y, Zhang R. XRCC1 deficiency increased the DNA damage induced by γ-ray in HepG2 cell: Involvement of DSB repair and cell cycle arrest. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:311-319. [PMID: 23708312 DOI: 10.1016/j.etap.2013.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
γ-ray irradiation can induce DNA damages which include base damages, single-strand breaks and double-strand breaks in various type cells. The DNA repair protein XRCC1, as a part of the BER pathway, forms complexes with DNA polymerase beta, DNA ligase III and poly-ADP-ribose polymerase (PARP) in the repair of DNA single strand breaks and also affects the repair of double strand breaks. However, it is still not known well whether XRCC1 contributes to affect the irradiation sensitivity and DNA damage in HepG2 cell and the potential mechanism. Hence, the purpose of this study was to explore whether abrogation of XRCC1 gene expression by shRNA could reduce DNA repair and thus sensitize HepG2 cells to γ-ray. Cell viability was measured by Trypan blue staining and cloning efficiency assay. The DNA damage was detected by Comet assay. Apoptosis and cell cycle were detected by flow cytometry. The DNA-PKcs and gadd153 mRNA expression were determined by Real-time PCR. Our results showed that abrogation of XRCC 1 could sensitize HepG2 cells to γ-ray. This enhanced sensitivity could be attributed to the increased DNA damage and increased cell cycle arrest, which might be related with the increasing of DNA-PKcs and gadd153 mRNA expression. Therefore, our results suggested that the γ-ray irradiation sensitivity could be increased by targeting inhibition of XRCC1 in HepG2 cell.
Collapse
Affiliation(s)
- Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China; Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China
| | - Xing Zhang
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Yuxin Zheng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, 29 Nanwei Road, Xuanwu District, Beijing 100050, People's Republic of China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Abstract
In response to DNA breaks, the 'DNA damage response' provokes a cell cycle arrest to facilitate DNA repair. Recent findings have indicated that cells can respond to DNA damage throughout the cell cycle, except during mitosis. Specifically, various mitotic kinases, including Cdk1, Aurora A and Plk1, were shown to inactivate key DNA damage checkpoint proteins when cells enter mitosis. Aberrant activation of mitotic kinases during interphase could therefore modulate cellular responses to DNA damage. In this study, our aim was to determine how aberrant activation of Cdk1 affects the cellular responses to DNA damage. We used Wee1 inhibition, using MK-1775, to force Cdk1 activation, which did not cause cytotoxicity in non-transformed cells. Instead, it accelerated mitotic entry and caused radio sensitization in p53-defective cancer cells, but not in p53-proficient cancer cells. Interestingly, we showed that Wee1 inhibition leads to elevation of Cdk1 activity in interphase cells. When we subsequently analyzed DNA damage responses in cells with forced Cdk1 activation, we observed a marked reduction of 53BP1 at sites of DNA damage along with an increase in γ-H2AX staining after irradiation, indicative of defective DNA repair. Indeed, when DNA repair was analyzed using in vivo endonuclease-induced homologous recombination (HR) assays, compromised DNA repair after Wee1 inhibition was confirmed. This defect in HR was accompanied by increased phosphorylation of BRCA2 at the Cdk1 phosphorylation site S3291. Taken together, our results indicate that Wee1 inhibition leads to forced Cdk1 activation in interphase cells, which interferes with normal DNA damage responses.
Collapse
|
11
|
Johnson N, Shapiro GI. Cyclin-dependent kinases (cdks) and the DNA damage response: rationale for cdk inhibitor-chemotherapy combinations as an anticancer strategy for solid tumors. Expert Opin Ther Targets 2010; 14:1199-212. [PMID: 20932174 PMCID: PMC3957489 DOI: 10.1517/14728222.2010.525221] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
IMPORTANCE OF THE FIELD The eukaryotic cell division cycle is a tightly regulated series of events coordinated by the periodic activation of multiple cyclin-dependent kinases (cdks). Small-molecule cdk-inhibitory compounds have demonstrated preclinical synergism with DNA-damaging agents in solid tumor models. An improved understanding of how cdks regulate the DNA damage response now provides an opportunity for optimization of combinations of cdk inhibitors and DNA damaging chemotherapy agents that can be translated to clinical settings. AREAS COVERED IN THIS REVIEW Here, we discuss novel work uncovering multiple roles for cdks in the DNA-damage-response network. First, they activate DNA damage checkpoint and repair pathways. Later their activity is turned off, resulting in cell cycle arrest, allowing time for DNA repair to occur. Recent clinical data on cdk inhibitor-DNA-damaging agent combinations are also discussed. WHAT THE READER WILL GAIN Readers will learn about novel areas of cdk biology, the complexity of DNA damage signaling networks and clinical implications. TAKE HOME MESSAGE New data demonstrate that cdks are 'master' regulators of DNA damage checkpoint and repair pathways. Cdk inhibition may therefore provide a means of potentiating the clinical activity of DNA-damaging chemotherapeutic agents for the treatment of cancer.
Collapse
Affiliation(s)
- Neil Johnson
- Dana-Farber Cancer Institute, Department of Medical Oncology, Dana 810A, 44 Binney Street, Boston, MA 02215, USA
- Brigham and Women's Hospital and Harvard Medical School, Department of Medicine, Boston, MA 02215, USA
| | - Geoffrey I Shapiro
- Dana-Farber Cancer Institute, Department of Medical Oncology, Dana 810A, 44 Binney Street, Boston, MA 02215, USA
- Brigham and Women's Hospital and Harvard Medical School, Department of Medicine, Boston, MA 02215, USA
| |
Collapse
|
12
|
Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F, Haag F, Borgmann K, Willers H, Dahm-Daphi J. Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 2008; 36:4088-98. [PMID: 18539610 PMCID: PMC2475611 DOI: 10.1093/nar/gkn347] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In mammalian cells, DNA double-strand breaks (DSBs) are repaired by three pathways, nonhomologous end-joining (NHEJ), gene conversion (GC) and single-strand annealing (SSA). These pathways are distinct with regard to repair efficiency and mutagenic potential and must be tightly controlled to preserve viability and genomic stability. Here, we employed chromosomal reporter constructs to characterize the hierarchy of NHEJ, GC and SSA at a single I-SceI-induced DSB in Chinese hamster ovary cells. We discovered that the use of GC and SSA was increased by 6- to 8-fold upon loss of Ku80 function, suggesting that NHEJ is dominant over the other two pathways. However, NHEJ efficiency was not altered if GC was impaired by Rad51 knockdown. Interestingly, when SSA was made available as an alternative mode for DSB repair, loss of Rad51 function led to an increase in SSA activity at the expense of NHEJ, implying that Rad51 may indirectly promote NHEJ by limiting SSA. We conclude that a repair hierarchy exists to limit the access of the most mutagenic mechanism, SSA, to the break site. Furthermore, the cellular choice of repair pathways is reversible and can be influenced at the level of effector proteins such as Ku80 or Rad51.
Collapse
Affiliation(s)
- Wael Y Mansour
- Laboratory of Radiobiology & Experimental Radiation Oncology, Department of Radiotherapy and Radiation Oncology, University Medical School Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Klovstad M, Abdu U, Schüpbach T. Drosophila brca2 is required for mitotic and meiotic DNA repair and efficient activation of the meiotic recombination checkpoint. PLoS Genet 2008; 4:e31. [PMID: 18266476 PMCID: PMC2233675 DOI: 10.1371/journal.pgen.0040031] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 12/21/2007] [Indexed: 11/19/2022] Open
Abstract
Heterozygous mutations in the tumor suppressor BRCA2 confer a high risk of breast and other cancers in humans. BRCA2 maintains genome stability in part through the regulation of Rad51-dependent homologous recombination. Much about its precise function in the DNA damage responses is, however, not yet known. We have made null mutations in the Drosophila homolog of BRCA2 and measured the levels of homologous recombination, non-homologous end-joining, and single-strand annealing in the pre-meiotic germline of Drosophila males. We show that repair by homologous recombination is dramatically decreased in Drosophila brca2 mutants. Instead, large flanking deletions are formed, and repair by the non-conservative single-strand annealing pathway predominates. We further show that during meiosis, Drosophila Brca2 has a dual role in the repair of meiotic double-stranded breaks and the efficient activation of the meiotic recombination checkpoint. The eggshell patterning defects that result from activation of the meiotic recombination checkpoint in other meiotic DNA repair mutants can be strongly suppressed by mutations in brca2. In addition, Brca2 co-immunoprecipitates with the checkpoint protein Rad9, suggesting a direct role for Brca2 in the transduction of the meiotic recombination checkpoint signal.
Collapse
Affiliation(s)
- Martha Klovstad
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | | | | |
Collapse
|
14
|
Parlanti E, Locatelli G, Maga G, Dogliotti E. Human base excision repair complex is physically associated to DNA replication and cell cycle regulatory proteins. Nucleic Acids Res 2007; 35:1569-77. [PMID: 17289756 PMCID: PMC1865045 DOI: 10.1093/nar/gkl1159] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that a replication associated repair pathway operates on base damage and single strand breaks (SSB) at replication forks. In this study, we present the isolation from the nuclei of human cycling cells of a multiprotein complex containing most of the essential components of base excision repair (BER)/SSBR, including APE1, UNG2, XRCC1 and POLβ, DNA PK, replicative POLα, δ and ɛ, DNA ligase 1 and cell cycle regulatory protein cyclin A. Co-immunoprecipitation revealed that in this complex DNA repair proteins are physically associated to cyclin A and to DNA replication proteins including MCM7. This complex is endowed with DNA polymerase and protein kinase activity and is able to perform BER of uracil and AP sites. This finding suggests that a preassembled DNA repair machinery is constitutively active in cycling cells and is ready to be recruited at base damage and breaks occurring at replication forks.
Collapse
Affiliation(s)
- Eleonora Parlanti
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giada Locatelli
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
- *To whom correspondence should be addressed. (+39) 0382546354(+39) 0382422286
| | - Eugenia Dogliotti
- Department of Environment and Primary Prevention, Section of Molecular Epidemiology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy and DNA Enzymology and Molecular Virology, Istituto di Genetica Molecolare, IGM-CNR, National Research Council, Via Abbiategrasso 207, 27100 Pavia, Italy
| |
Collapse
|
15
|
Enders GH, Maude SL. Traffic safety for the cell: influence of cyclin-dependent kinase activity on genomic stability. Gene 2006; 371:1-6. [PMID: 16458456 DOI: 10.1016/j.gene.2005.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 11/10/2005] [Accepted: 11/12/2005] [Indexed: 01/20/2023]
Abstract
Genomic instability has long been considered a key factor in tumorigenesis. Recent evidence suggests that DNA damage may be widespread in early pre-neoplastic states, with deregulation of cyclin-dependent kinase (Cdk) activity a driving force. Increased Cdk activity may critically reduce licensing of origins of DNA replication, drive re-replication, or mediate overexpression of checkpoint proteins, inducing deleterious cell cycle delay. Conversely, inhibition of Cdk activity may compromise replication efficiency, expression of checkpoint proteins, or activation of DNA repair proteins. These vital functions point to the impact of Cdk activity on the stability of the genome. Insight into these pathways may improve our understanding of tumorigenesis and lead to more rational cancer therapies.
Collapse
Affiliation(s)
- Greg H Enders
- Department of Medicine, Gastroenterology Division, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104-6140, USA.
| | | |
Collapse
|