1
|
Gao X, Liu J, Sun R, Zhang J, Cao X, Zhang Y, Zhao M. Alliance between titans: combination strategies of CAR-T cell therapy and oncolytic virus for the treatment of hematological malignancies. Ann Hematol 2024; 103:2569-2589. [PMID: 37853078 DOI: 10.1007/s00277-023-05488-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
There have been several clinical studies using chimeric antigen receptor (CAR)-T cell therapy for different hematological malignancies. It has transformed the therapy landscape for hematologic malignancies dramatically. Nonetheless, in acute myeloid leukemia (AML) and T cell malignancies, it still has a dismal prognosis. Even in the most promising locations, recurrence with CAR-T treatment remains a big concern. Oncolytic viruses (OVs) can directly lyse tumor cells or cause immune responses, and they can be manipulated to create therapeutic proteins, increasing anticancer efficacy. Oncolytic viruses have been proven in a rising number of studies to be beneficial in hematological malignancies. There are limitations that cannot be avoided by using either treatment alone, and the combination of CAR-T cell therapy and oncolytic virus therapy may complement the disadvantages of individual application, enhance the advantages of their respective treatment methods and improve the treatment effect. The alternatives for combining two therapies in hematological malignancies are discussed in this article.
Collapse
Affiliation(s)
- Xuejin Gao
- Emergency, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Jile Liu
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Rui Sun
- Nankai University School of Medicine, Tianjin, 300192, China
| | - Jingkun Zhang
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
2
|
Sousa-Pimenta M, Martins Â, Machado V. Oncolytic viruses in hematological malignancies: hijacking disease biology and fostering new promises for immune and cell-based therapies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 379:189-219. [PMID: 37541724 DOI: 10.1016/bs.ircmb.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
The increased tropism for malignant cells of some viruses has been highlighted in recent studies, prompting their use as a strategy to modify the transcriptional profile of those cells, while sparing the healthy ones. Likewise, they have been recognized as players modulating microenvironmental immunity, namely through an increase in antigen-presenting, natural-killer, and T CD8+ cytotoxic cells by a cross-priming mechanism elicited by tumor-associated antigens. The immunomodulatory role of the oncolytic virus seems relevant in hematological malignancies, which may relapse as a result of a proliferative burst elicited by an external stimulus in progenitor or neoplastic stem cells. By reprogramming the host cells and the surrounding environment, the potential of virotherapy ranges from the promise to eradicate the minimal measurable disease (in acute leukemia, for example), to the ex vivo purging of malignant progenitor cells in the setting of autologous bone marrow transplantation. In this review, we analyze the recent advances in virotherapy in hematological malignancies, either when administered alone or together with chemotherapeutic agents or other immunomodulators.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Departamento de Biomedicina, Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto, Universidade do Porto, Porto, Portugal.
| | - Ângelo Martins
- Serviço de Onco-Hematologia, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Vera Machado
- Grupo de Oncologia Molecular e Patologia Viral, Centro de investigação do IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Instituto português de Oncologia do Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), LAB2, Rua Dr António Bernardino de Almeida, Porto, Portugal
| |
Collapse
|
3
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
4
|
Yang C, Hua N, Xie S, Wu Y, Zhu L, Wang S, Tong X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed Pharmacother 2021; 139:111573. [PMID: 33894623 DOI: 10.1016/j.biopha.2021.111573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
The incidence of hematological malignancies such as multiple myeloma, leukemia, and lymphoma has increased over time. Although bone marrow transplantation, immunotherapy and chemotherapy have led to significant improvements in efficacy, poor prognosis in elderly patients, recurrence and high mortality among hematological malignancies remain major challenges, and innovative therapeutic strategies should be explored. Besides directly lyse tumor cells, oncolytic viruses can activate immune responses or be engineered to express therapeutic factors to increase antitumor efficacy, and have gradually been recognized as an appealing approach for fighting cancers. An increasing number of studies have applied oncolytic viruses in hematological malignancies and made progress. In particular, strategies combining immunotherapy and oncolytic virotherapy are emerging. Various phase I clinical trials of oncolytic reovirus with lenalidomide or programmed death 1(PD-1) immune checkpoint inhibitors in multiple myeloma are ongoing. Moreover, preclinical studies of combinations with chimeric antigen receptor T (CAR-T) cells are underway. Thus, oncolytic virotherapy is expected to be a promising approach to cure hematological malignancies. This review summarizes progress in oncolytic virus research in hematological malignancies. After briefly reviewing the development and oncolytic mechanism of oncolytic viruses, we focus on delivery methods of oncolytic viruses, especially systemic delivery that is suitable for hematological tumors. We then discuss the main types of oncolytic viruses applied for hematological malignancies and related clinical trials. In addition, we present several ways to improve the antitumor efficacy of oncolytic viruses. Finally, we discuss current challenges and provide suggestions for future studies.
Collapse
Affiliation(s)
- Chen Yang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; Department of Clinical Medicine, Qingdao University, Qingdao, PR China
| | - Nanni Hua
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Shufang Xie
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, PR China
| | - Yi Wu
- Phase I clinical research center, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Lifeng Zhu
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China
| | - Shibing Wang
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| | - Xiangmin Tong
- Molecular diagnosis laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, PR China; The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital ,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, PR China.
| |
Collapse
|
5
|
Fan L, Zhou L. AG490 protects cerebral ischemia/reperfusion injury via inhibiting the JAK2/3 signaling pathway. Brain Behav 2021; 11:e01911. [PMID: 33098244 PMCID: PMC7821583 DOI: 10.1002/brb3.1911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury is a severe problem in patients with brain ischemia. Brain injury caused by the immune response is important in the pathogenesis of cerebral ischemia/reperfusion injury and immune pathways. It is important to investigate potential targets for the treatment of cerebral ischemia/reperfusion injury. METHODS In this experiment, we evaluated the effect of an exogenous JAK antagonist AG490 in the cerebral ischemia/reperfusion injury model, which was established by middle cerebral artery occlusion (MCAO). Histology study, TUNEL staining, Western blot, and RT-PCR were employed to examine the effects of AG490 in cerebral ischemia/reperfusion injury. RESULTS In the brain tissue of MCAO mice, JAK2 was highly expressed. AG490 is an inhibitor of JAK2, which reduced the phosphorylation level of JAK2. AG490 downregulated the phosphorylated activation of JAK3 and their downstream STAT3. The antiapoptotic activity of AG490 on cerebral ischemia/reperfusion injury mice was consistent with in vitro data. It reduced the phosphorylation of JAK2/JAK3/STAT3 and the apoptosis rate in cultured neurons upon apoptosis induction. Besides, we also observed the neuroprotective effects of AG490 on cerebral ischemia/reperfusion injury. Administration of AG490 could further enhance the expression of neurotrophins including BNDF, NT3, and the neurotrophin receptor TrkB. CONCLUSION Therefore, AG490 is pluripotent for cerebral ischemia/reperfusion injury through both antiapoptosis and neuroprotective activities. The antiapoptosis effect is dependent on its regulation of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Lichao Fan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lichun Zhou
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Xiao X, Liang J, Huang C, Li K, Xing F, Zhu W, Lin Z, Xu W, Wu G, Zhang J, Lin X, Tan Y, Cai J, Hu J, Chen X, Huang Y, Qin Z, Qiu P, Su X, Chen L, Lin Y, Zhang H, Yan G. DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Nat Commun 2018; 9:4342. [PMID: 30337542 PMCID: PMC6194050 DOI: 10.1038/s41467-018-06771-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Oncolytic virotherapy is a promising therapeutic strategy that uses replication-competent viruses to selectively destroy malignancies. However, the therapeutic effect of certain oncolytic viruses (OVs) varies among cancer patients. Thus, it is necessary to overcome resistance to OVs through rationally designed combination strategies. Here, through an anticancer drug screening, we show that DNA-dependent protein kinase (DNA-PK) inhibition sensitizes cancer cells to OV M1 and improves therapeutic effects in refractory cancer models in vivo and in patient tumour samples. Infection of M1 virus triggers the transcription of interferons (IFNs) and the activation of the antiviral response, which can be abolished by pretreatment of DNA-PK inhibitor (DNA-PKI), resulting in selectively enhanced replication of OV M1 within malignancies. Furthermore, DNA-PK inhibition promotes the DNA damage response induced by M1 virus, leading to increased tumour cell apoptosis. Together, our study identifies the combination of DNA-PKI and OV M1 as a potential treatment for cancers.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chunlong Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Fan Xing
- School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqing Lin
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Guangen Wu
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Jifu Zhang
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Yaqian Tan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Youwei Huang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zixi Qin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lijun Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia. J Virol 2015; 89:11786-800. [PMID: 26378177 PMCID: PMC4645320 DOI: 10.1128/jvi.01356-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25(+) T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4(+) cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4(+) T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4(+) malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. IMPORTANCE Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In this study, we developed a recombinant strain of vesicular stomatitis virus (VSV) that specifically targets transformed CD4(+) T cells through replacement of the G protein of VSV with a hybrid fusion protein, combining domains from gp160 of HIV-1 and VSV-G. This modification eliminated the normally broad tropism of VSV and restricted infection to primarily the transformed CD4(+) cell population. This effect greatly reduced neurotoxic risk associated with VSV infection while still allowing VSV to effectively target ATL cells.
Collapse
|
8
|
M Parrula MC, Fernandez SA, Landes K, Huey D, Lairmore M, Niewiesk S. Success of measles virotherapy in ATL depends on type I interferon secretion and responsiveness. Virus Res 2014; 189:206-13. [PMID: 24911240 DOI: 10.1016/j.virusres.2014.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 12/26/2022]
Abstract
Adult T cell leukemia/lymphoma (ATL) is a highly aggressive CD4+/CD25+ T-cell malignancy caused by human T cell lymphotropic virus type 1 (HTLV-1). Previous studies in the MET-1 cell/NOD/SCID mouse model of ATL demonstrated that MET-1 cells are very susceptible to measles virus (MV) oncolytic therapy. To further evaluate the potential of MV therapy in ATL, the susceptibility of several HTLV-1 transformed CD4+ T cell lines (MT-1, MT-2, MT-4 and C8166-45) as well as HTLV-1 negative CD4+ T cell lines (Jurkat and CCRF-CEM) to infection with MV was tested in vitro. All cell lines were permissive to MV infection and subsequent cell death, except MT-1 and CCRF-CEM cells which were susceptible and permissive to MV infection, but resistant to cell death. The resistance to MV-mediated cell death was associated with IFNβ produced by MT-1 and CCRF-CEM cells. Inhibition of IFNβ rendered MT-1 and CCRF-CEM cells susceptible to MV-mediated cell death. Cells susceptible to MV-induced cell death did not produce nor were responsive to IFNβ. Upon infection with Newcastle Disease Virus (NDV), MT-1 and CCRF-CEM but not the susceptible cell lines up-regulated pSTAT-2. In vivo, treatment of tumors induced by MT-1 cell lines which produce IFNβ demonstrated only small increases in mean survival time, while only two treatments prolonged mean survival time in mice with MET-1 tumors deficient in type I interferon production. These results indicate that type I interferon production is closely linked with the inability of tumor cells to respond to type I interferon. Screening of tumor cells for type I interferon could be a useful strategy to select candidate patients for MV virotherapy.
Collapse
Affiliation(s)
- M Cecilia M Parrula
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Soledad A Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Arthur James Cancer Hospital and Research Institute, The Ohio State University, Columbus, OH, United States
| | - Kristina Landes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Devra Huey
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Michael Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States; Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Arthur James Cancer Hospital and Research Institute, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States; Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States; Comprehensive Cancer Center, The Arthur James Cancer Hospital and Research Institute, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
9
|
Combined cytolytic effects of a vaccinia virus encoding a single chain trimer of MHC-I with a Tax-epitope and Tax-specific CTLs on HTLV-I-infected cells in a rat model. BIOMED RESEARCH INTERNATIONAL 2014; 2014:902478. [PMID: 24791004 PMCID: PMC3985193 DOI: 10.1155/2014/902478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/20/2014] [Indexed: 02/01/2023]
Abstract
Adult T cell leukemia (ATL) is a malignant lymphoproliferative disease caused by human T cell leukemia virus type I (HTLV-I). To develop an effective therapy against the disease, we have examined the oncolytic ability of an attenuated vaccinia virus (VV), LC16m8Δ (m8Δ), and an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) line, 4O1/C8, against an HTLV-I-infected rat T cell line, FPM1. Our results demonstrated that m8Δ was able to replicate in and lyse tumorigenic FPM1 cells but was incompetent to injure 4O1/C8 cells, suggesting the preferential cytolytic activity toward tumor cells. To further enhance the cytolysis of HTLV-I-infected cells, we modified m8Δ and obtained m8Δ/RT1AlSCTax180L, which can express a single chain trimer (SCT) of rat major histocompatibility complex class I with a Tax-epitope. Combined treatment with m8Δ/RT1AlSCTax180L and 4O1/C8 increased the cytolysis of FPM1V.EFGFP/8R cells, a CTL-resistant subclone of FPM1, compared with that using 4O1/C8 and m8Δ presenting an unrelated peptide, suggesting that the activation of 4O1/C8 by m8Δ/RT1AlSCTax180L further enhanced the killing of the tumorigenic HTLV-I-infected cells. Our results indicate that combined therapy of oncolytic VVs with SCTs and HTLV-I-specific CTLs may be effective for eradication of HTLV-I-infected cells, which evade from CTL lysis and potentially develop ATL.
Collapse
|
10
|
SUMOylation affects the interferon blocking activity of the influenza A nonstructural protein NS1 without affecting its stability or cellular localization. J Virol 2013; 87:5602-20. [PMID: 23468495 DOI: 10.1128/jvi.02063-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our pioneering studies on the interplay between the small ubiquitin-like modifier (SUMO) and influenza A virus identified the nonstructural protein NS1 as the first known SUMO target of influenza virus and one of the most abundantly SUMOylated influenza virus proteins. Here, we further characterize the role of SUMOylation for the A/Puerto Rico/8/1934 (PR8) NS1 protein, demonstrating that NS1 is SUMOylated not only by SUMO1 but also by SUMO2/3 and mapping the main SUMOylation sites in NS1 to residues K219 and K70. Furthermore, by using SUMOylatable and non-SUMOylatable forms of NS1 and an NS1-specific artificial SUMO ligase (ASL) that increases NS1 SUMOylation ~4-fold, we demonstrate that SUMOylation does not affect the stability or cellular localization of PR8 NS1. However, NS1's ability to be SUMOylated appears to affect virus multiplication, as indicated by the delayed growth of a virus expressing the non-SUMOylatable form of NS1 in the interferon (IFN)-competent MDCK cell line. Remarkably, while a non-SUMOylatable form of NS1 exhibited a substantially diminished ability to neutralize IFN production, increasing NS1 SUMOylation beyond its normal levels also exerted a negative effect on its IFN-blocking function. This observation indicates the existence of an optimal level of NS1 SUMOylation that allows NS1 to achieve maximal activity and suggests that the limited amount of SUMOylation normally observed for most SUMO targets may correspond to an optimal level that maximizes the contribution of SUMOylation to protein function. Finally, protein cross-linking data suggest that SUMOylation may affect NS1 function by regulating the abundance of NS1 dimers and trimers in the cell.
Collapse
|
11
|
Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites. J Virol 2013; 87:3217-28. [PMID: 23283963 DOI: 10.1128/jvi.02984-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is potent and a highly promising agent for the treatment of cancer. However, translation of VSV oncolytic virotherapy into the clinic is being hindered by its inherent neurotoxicity. It has been demonstrated that selected picornaviral internal ribosome entry site (IRES) elements possess restricted activity in neuronal tissues. We therefore sought to determine whether the picornavirus IRES could be engineered into VSV to attenuate its neuropathogenicity. We have used IRES elements from human rhinovirus type 2 (HRV2) and foot-and-mouth disease virus (FMDV) to control the translation of the matrix gene (M), which plays a major role in VSV virulence. In vitro studies revealed slowed growth kinetics of IRES-controlled VSVs in most of the cell lines tested. However, in vivo studies explicitly demonstrated that IRES elements of HRV2 and FMDV severely attenuated the neurovirulence of VSV without perturbing its oncolytic potency.
Collapse
|
12
|
Beljanski V, Hiscott J. The use of oncolytic viruses to overcome lung cancer drug resistance. Curr Opin Virol 2012; 2:629-35. [PMID: 22910124 DOI: 10.1016/j.coviro.2012.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
Intrinsic and acquired drug resistance remains a fundamental obstacle to successful applications of anticancer therapies for lung cancer. Combining conventional therapies with immunotherapeutic approaches is a promising strategy to circumvent lung cancer drug resistance. Genetically modified oncolytic viruses (OVs) kill tumor cells via completely unique mechanisms compared to small molecule chemotherapeutics typically used in lung cancer treatment and can also be used to deliver specific toxic, therapeutic or immunomodulatory genes to tumor cells. Recent pre-clinical and clinical studies with oncolytic vaccine approaches have revealed promising combination strategies that enhance oncolysis of tumor cells and circumvent tumor resistance mechanisms. As clinical trials with oncolytic vaccines progress, and as the knowledge acquired from these studies builds a foundation demonstrating OVs safety and efficacy, novel combination approaches could soon have a major impact on the clinical management of patients diagnosed with lung cancer.
Collapse
Affiliation(s)
- Vladimir Beljanski
- Vaccine and Gene Therapy Institute of Florida, 9801 Discovery Way, Port Saint Lucie, FL 34987, United States
| | | |
Collapse
|
13
|
Heiber JF, Xu XX, Barber GN. Potential of vesicular stomatitis virus as an oncolytic therapy for recurrent and drug-resistant ovarian cancer. CHINESE JOURNAL OF CANCER 2011; 30:805-14. [PMID: 22059911 PMCID: PMC4013328 DOI: 10.5732/cjc.011.10205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the last decade, we have gained significant understanding of the mechanism by which vesicular stomatitis virus (VSV) specifically kills cancer cells. Dysregulation of translation and defective innate immunity are both thought to contribute to VSV oncolysis. Safety and efficacy are important objectives to consider in evaluating VSV as a therapy for malignant disease. Ongoing efforts may enable VSV virotherapy to be considered in the near future to treat drug-resistant ovarian cancer when other options have been exhausted. In this article, we review the development of VSV as a potential therapeutic approach for recurrent or drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Joshua F Heiber
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
14
|
Samuel S, Tumilasci VF, Oliere S, Nguyên TLA, Shamy A, Bell J, Hiscott J. VSV oncolysis in combination with the BCL-2 inhibitor obatoclax overcomes apoptosis resistance in chronic lymphocytic leukemia. Mol Ther 2010; 18:2094-103. [PMID: 20842105 DOI: 10.1038/mt.2010.188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), overexpression of antiapoptotic B-cell leukemia/lymphoma 2 (BCL-2) family members contributes to leukemogenesis by interfering with apoptosis; BCL-2 expression also impairs vesicular stomatitis virus (VSV)-mediated oncolysis of primary CLL cells. In the effort to reverse resistance to VSV-mediated oncolysis, we combined VSV with obatoclax (GX15-070)-a small-molecule BCL-2 inhibitor currently in phase 2 clinical trials-and examined the molecular mechanisms governing the in vitro and in vivo antitumor efficiency of combining the two agents. In combination with VSV, obatoclax synergistically induced cell death in primary CLL samples and reduced tumor growth in severe combined immunodeficient (SCID) mice-bearing A20 lymphoma tumors. Mechanistically, the combination stimulated the mitochondrial apoptotic pathway, as reflected by caspase-3 and -9 cleavage, cytochrome c release and BAX translocation. Combination treatment triggered the release of BAX from BCL-2 and myeloid cell leukemia-1 (MCL-1) from BAK, whereas VSV infection induced NOXA expression and increased the formation of a novel BAX-NOXA heterodimer. Finally, NOXA was identified as an important inducer of VSV-obatoclax driven apoptosis via knockdown and overexpression of NOXA. These studies offer insight into the synergy between small-molecule BCL-2 inhibitors such as obatoclax and VSV as a combination strategy to overcome apoptosis resistance in CLL.
Collapse
Affiliation(s)
- Sara Samuel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Susceptibility of breast cancer cells to an oncolytic matrix (M) protein mutant of vesicular stomatitis virus. Cancer Gene Ther 2010; 17:883-92. [PMID: 20725101 DOI: 10.1038/cgt.2010.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix (M) protein mutants of vesicular stomatitis virus (VSV), such as rM51R-M virus, are attractive candidates as oncolytic viruses for tumor therapies because of their capacity to selectively target cancer cells. The effectiveness of rM51R-M virus as an antitumor agent for the treatment of breast cancer was assessed by determining the ability of rM51R-M virus to infect and kill breast cancer cells in vitro and in vivo. Several human- and mouse-derived breast cancer cell lines were susceptible to infection and killing by rM51R-M virus. Importantly, non-tumorigenic cell lines from normal mammary tissues were also sensitive to VSV infection suggesting that oncogenic transformation does not alter the susceptibility of breast cancer cells to oncolytic VSV. In contrast to results obtained in vitro, rM51R-M virus was only partially effective at inducing regression of primary breast tumors in vivo. Furthermore, we were unable to induce complete regression of the primary and metastatic tumors when tumor-bearing mice were treated with a vector expressing interleukin (IL)-12 or a combination of rM51R-M virus and IL-12. Our results indicate that although breast cancer cells may be susceptible to VSV in vitro, more aggressive treatment combinations are required to effectively treat both local and metastatic breast cancers in vivo.
Collapse
|
16
|
Miller JM, Bidula SM, Jensen TM, Reiss CS. Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo. ACTA ACUST UNITED AC 2010; 2010:63-72. [PMID: 20556219 DOI: 10.2147/ijicmr.s9528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viruses are potentially attractive agents for development as novel oncolytic agents. Reverse genetic approaches allow for the attenuation of candidate viruses and can enhance their ability to exploit inherent cellular and molecular properties of tumors, including deficiencies in interferon (IFN) signaling. Vesicular stomatitis virus (VSV) is a promising oncolytic agent for exactly these reasons. VSV infection of immunocompetent mice is usually rapidly cleared due to the virus' sensitivity to type I IFN responses. However, in tumors that are unable to activate the IFN response, VSV is able to replicate without inhibition, resulting in cell destruction. Unfortunately, when VSV is introduced into mice intranasally or systemically via therapeutic doses into tumor-bearing rodents, hosts may develop fatal encephalitis. We have previously found that a recombinant VSV expressing the pro-inflammatory cytokine interleukin-23 (IL-23) is significantly attenuated in the central nervous system (CNS). As a result of this, we hypothesized that attenuation in the CNS is partially a result of enhanced NO response as a result of IL-23 signaling. Infection of the CNS with this virus (designated VSV23) is characterized by decreased viral replication, morbidity, and mortality. We have now extended those studies which reveal that VSV23 maintains oncolytic capacity in vitro in multiple cell lines including NB41A3 neuroblastomas, L929 adipose-derived cells, immortalized BHK-21 cells, and the murine mammary derived JC cells. Additionally, in vivo VSV23 infection results in JC tumor destruction and induces enhanced memory responses against tumor cells.
Collapse
Affiliation(s)
- James M Miller
- Department of Biology, New York University, New York, NY, USA
| | | | | | | |
Collapse
|
17
|
Yasmeen A, Zhang L, Al Moustafa AE. Does the vesicular stomatitis virus really have a selective oncolytic effect in human cancer? Int J Cancer 2010; 126:2509-10. [PMID: 19795451 DOI: 10.1002/ijc.24922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Miller J, Bidula SM, Jensen TM, Reiss CS. Cytokine-modified VSV is attenuated for neural pathology, but is both highly immunogenic and oncolytic. INTERNATIONAL JOURNAL OF INTERFERON, CYTOKINE AND MEDIATOR RESEARCH 2009; 1:15-32. [PMID: 20607123 PMCID: PMC2895263 DOI: 10.2147/ijicmr.s6776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vesicular stomatitis virus (VSV), an enveloped, nonsegmented, negative-stranded RNA virus, is being tested by several laboratories as an antitumor agent. Unfortunately, viral infection of the central nervous system (CNS) has been observed by many groups following administration to tumor-bearing animals. In rodents, VSV encephalitis is characterized by weight-loss, paralysis, and high mortality. In order to provide protection from VSV infection of the CNS after therapeutic administration, we have attenuated VSV by the introduction of the gene encoding the proinflammatory cytokine interleukin (IL)-23, and designated the new virus VSV23. We hypothesize that while VSV23 is replicating within tumors, resulting in tumor destruction, the expression of IL-23 will enhance host antitumor and antiviral immune responses. In the event that the virus escapes from the tumor, the host's immune system will be activated and the virus will be rapidly cleared from healthy tissue. Experimental VSV23 infection of the CNS is characterized by decreased viral replication, morbidity, and mortality. VSV23 is capable of stimulating the enhanced production of nitric oxide in the CNS, which is critical for elimination of VSV from infected neurons. Intraperitoneal administration of VSV23 stimulates both nonspecific natural killer cell, virus-specific cytolytic T lymphocyte and memory virus-specific proliferative T cell responses against wild-type VSV in splenocytes. Furthermore, VSV23 is able to replicate in, and induce apoptosis of tumor cells in vitro. These data indicate that VSV23 is immunogenic, attenuated and suitable for testing as an efficacious and safe oncolytic agent.
Collapse
Affiliation(s)
- James Miller
- Department of Biology, New York University, New York, NY, USA
| | - Sarah M Bidula
- Department of Biology, New York University, New York, NY, USA
| | - Troels M Jensen
- Department of Biology, New York University, New York, NY, USA
| | - Carol Shoshkes Reiss
- Department of Biology, New York University, New York, NY, USA
- Center for Neural Science, NYU Cancer Institute and Microbiology Department, School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
19
|
Capo-chichi CD, Yeasky TM, Heiber JF, Wang Y, Barber GN, Xu XX. Explicit targeting of transformed cells by VSV in ovarian epithelial tumor-bearing Wv mouse models. Gynecol Oncol 2009; 116:269-75. [PMID: 19932656 DOI: 10.1016/j.ygyno.2009.10.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/27/2009] [Accepted: 10/30/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Current treatment options for epithelial ovarian cancer are limited and therapeutic development for recurrent and drug-resistant ovarian cancer is an urgent agenda. We investigated the potential use of genetically engineered Vesicular Stomatitis Virus (VSV) to treat ovarian cancer patients who fail to respond to available therapies. Specifically, we examined the toxicity to hosts and specificity of targeting ovarian tumors using a Wv ovarian tumor model. METHODS We first tested recombinant VSV for oncolytic activity in a panel of human ovarian epithelial cancer, immortalized, and primary ovarian surface epithelial cells in culture. Then, we tested VSV oncolytic therapy using the immune competent Wv mice that develop tubular adenomas, benign tumor lesions derived from ovarian surface epithelial cells. RESULTS The expression of GFP encoded by the recombinant VSV genome was detected in about 5% of primary ovarian surface epithelial cells (3 lines) up to 30 days without significantly altering the growth pattern of the cells, suggesting the lack of toxicity to the normal ovarian surface epithelial cells. However, VSV-GFP was detected in the majority (around 90%) of cells that are either "immortalized" by SV40 antigen expression or cancer lines. Some variation in killing time courses was observed, but all the transformed cell lines were killed within 3 days. We found that regardless of the inoculation route (intra bursal, IP, or IV), VSV specifically infected and replicated in the in situ ovarian tumors in the Wv mice without significant activity in any other organs and tissues, and showed no detectable toxicity. The epithelial tumor lesions were greatly reduced in VSV-targeted ovarian tumors in the Wv mice. CONCLUSIONS VSV oncolytic activity depends on a cell autonomous property distinguishing primary and transformed cells. The efficient oncolytic activity of VSV for the "immortalized" non-tumorigenic ovarian surface epithelial cells suggests that the selective specificity extends from pre-neoplastic to overt cancer cells. The results demonstrated the explicit targeting of ovarian epithelial tumors by VSV in immune competent, ovarian tumor-bearing mouse models, and further support the utility of VSV as an effective and safe anti-cancer agent.
Collapse
Affiliation(s)
- Callinice D Capo-chichi
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
20
|
Toll-like receptor signaling controls reactivation of KSHV from latency. Proc Natl Acad Sci U S A 2009; 106:11725-30. [PMID: 19564611 DOI: 10.1073/pnas.0905316106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease. Like other herpesviruses, KSHV establishes life-long latency in the human host with intermittent periods of reactivation. Physiological triggers of herpesviral reactivation are poorly defined. Toll-like receptors (TLRs) recognize pathogens and are vital for the host innate immune response. We screened multiple TLR agonists for their ability to initiate KSHV replication in latently infected PEL. Agonists specific for TLR7/8 reactivated latent KSHV and induced viral lytic gene transcription and replication. Furthermore, vesicular stomatitis virus (VSV), a bonafide physiological activator of TLR7/8, also reactivated KSHV from latency. This demonstrates that secondary pathogen infection of latently infected cells can reactivate KSHV. Human herpesviruses establish life-long latency in the host, and it is plausible that a latently infected cell will encounter multiple pathogens during its lifetime and that these encounters lead to episodic reactivation. Our findings have broad implications for physiological triggers of latent viral infections, such as herpesviral reactivation and persistence in the host.
Collapse
|
21
|
Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci U S A 2008; 105:14981-6. [PMID: 18815361 DOI: 10.1073/pnas.0803988105] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intratumoral innate immunity can play a significant role in blocking the effective therapeutic spread of a number of oncolytic viruses (OVs). Histone deacetylase inhibitors (HDIs) are known to influence epigenetic modifications of chromatin and can blunt the cellular antiviral response. We reasoned that pretreatment of tumors with HDIs could enhance the replication and spread of OVs within malignancies. Here, we show that HDIs markedly enhance the spread of vesicular stomatitis virus (VSV) in a variety of cancer cells in vitro, in primary tumor tissue explants and in multiple animal models. This increased oncolytic activity correlated with a dampening of cellular IFN responses and augmentation of virus-induced apoptosis. These results illustrate the general utility of HDIs as chemical switches to regulate cellular innate antiviral responses and to provide controlled growth of therapeutic viruses within malignancies. HDIs could have a profoundly positive impact on the clinical implementation of OV therapeutics.
Collapse
|
22
|
Targeting the apoptotic pathway with BCL-2 inhibitors sensitizes primary chronic lymphocytic leukemia cells to vesicular stomatitis virus-induced oncolysis. J Virol 2008; 82:8487-99. [PMID: 18579592 DOI: 10.1128/jvi.00851-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by clonal accumulation of CD5(+) CD19(+) B lymphocytes that are arrested in the G(0)/G(1) phase of the cell cycle and fail to undergo apoptosis because of overexpression of the antiapoptotic B-cell CLL/lymphoma 2 (BCL-2) protein. Oncolytic viruses, such as vesicular stomatitis virus (VSV), have emerged as potential anticancer agents that selectively target and kill malignant cells via the intrinsic mitochondrial pathway. Although primary CLL cells are largely resistant to VSV oncolysis, we postulated that targeting the apoptotic pathway via inhibition of BCL-2 may sensitize CLL cells to VSV oncolysis. In the present study, we examined the capacity of EM20-25--a small-molecule antagonist of the BCL-2 protein--to overcome CLL resistance to VSV oncolysis. We demonstrate a synergistic effect of the two agents in primary ex vivo CLL cells (combination index of 0.5; P < 0.0001). In a direct comparison of peripheral blood mononuclear cells from healthy volunteers with primary CLL, the two agents combined showed a therapeutic index of 19-fold; furthermore, the combination of VSV and EM20-25 increased apoptotic cell death in Karpas-422 and Granta-519 B-lymphoma cell lines (P < 0.005) via the intrinsic mitochondrial pathway. Mechanistically, EM20-25 blocked the ability of the BCL-2 protein to dimerize with proapoptotic BAX protein, thus sensitizing CLL to VSV oncolytic stress. Together, these data indicate that the use of BCL-2 inhibitors may improve VSV oncolysis in treatment-resistant hematological malignancies, such as CLL, with characterized defects in the apoptotic response.
Collapse
|
23
|
Vesicular stomatitis virus oncolysis of T lymphocytes requires cell cycle entry and translation initiation. J Virol 2008; 82:5735-49. [PMID: 18417567 DOI: 10.1128/jvi.02601-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a candidate oncolytic virus that replicates and induces cell death in cancer cells while sparing normal cells. Although defects in the interferon antiviral response facilitate VSV oncolysis, other host factors, including translational and growth regulatory mechanisms, also appear to influence oncolytic virus activity. We previously demonstrated that VSV infection induces apoptosis in proliferating CD4(+) T lymphocytes from adult T-cell leukemia samples but not in resting T lymphocytes or primary chronic lymphocytic leukemia cells that remain arrested in G(0). Activation of primary CD4(+) T lymphocytes with anti-CD3/CD28 is sufficient to induce VSV replication and cell death in a manner dependent on activation of the MEK1/2, c-Jun NH(2)-terminal kinase, or phosphatidylinositol 3-kinase pathway but not p38. VSV replication is specifically impaired by the cell cycle inhibitor olomoucine or rapamycin, which induces early G(1) arrest, but not by aphidicolin or Taxol, which blocks at the G(1)1S or G(2)1M phase, respectively; this result suggests a requirement for cell cycle entry for efficient VSV replication. The relationship between increased protein translation following G(0)/G(1) transition and VSV permissiveness is highlighted by the absence of mTOR and/or eIF4E phosphorylation whenever VSV replication is impaired. Furthermore, VSV protein production in activated T cells is diminished by small interfering RNA-mediated eIF4E knockdown. These results demonstrate that VSV replication in primary T lymphocytes relies on cell cycle transition from the G(0) phase to the G(1) phase, which is characterized by a sharp increase in ribogenesis and protein synthesis.
Collapse
|
24
|
Hiscott J, Nguyen TLA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844-67. [PMID: 17072332 PMCID: PMC7100320 DOI: 10.1038/sj.onc.1209941] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viral and microbial constituents contain specific motifs or pathogen-associated molecular patterns (PAMPs) that are recognized by cell surface- and endosome-associated Toll-like receptors (TLRs). In addition, intracellular viral double-stranded RNA is detected by two recently characterized DExD/H box RNA helicases, RIG-I and Mda-5. Both TLR-dependent and -independent pathways engage the IkappaB kinase (IKK) complex and related kinases TBK-1 and IKKvarepsilon. Activation of the nuclear factor kappaB (NF-kappaB) and interferon regulatory factor (IRF) transcription factor pathways are essential immediate early steps of immune activation; as a result, both pathways represent prime candidates for viral interference. Many viruses have developed strategies to manipulate NF-kappaB signaling through the use of multifunctional viral proteins that target the host innate immune response pathways. This review discusses three rapidly evolving areas of research on viral pathogenesis: the recognition and signaling in response to virus infection through TLR-dependent and -independent mechanisms, the involvement of NF-kappaB in the host innate immune response and the multitude of strategies used by different viruses to short circuit the NF-kappaB pathway.
Collapse
Affiliation(s)
- J Hiscott
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|