1
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
2
|
EGR-1/ASPP1 inter-regulatory loop promotes apoptosis by inhibiting cyto-protective autophagy. Cell Death Dis 2017; 8:e2869. [PMID: 28594407 PMCID: PMC5520923 DOI: 10.1038/cddis.2017.268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 01/07/2023]
Abstract
The decrease of ASPP1 (Apoptosis-Stimulating Protein of p53 1), a known p53 activator, has been linked to carcinogenesis and the cytotoxic resistance in various cancers, yet the underlying mechanisms of ASPP1 expression and its complex functions are not yet clear. Here, we report that ASPP1 forms an inter-regulatory loop with Early Growth Response 1 (EGR-1), and promotes apoptosis via inhibiting cyto-protective autophagy, independent of the well-documented p53-dependent mechanisms. We show that ASPP1 mRNA and protein were remarkably elevated by ectopic EGR-1 expression or endogenous EGR-1 activation, in cells with different tissue origins and p53 status. Conversely, RNAi-mediated EGR-1 knockdown suppressed ASPP1. The further mechanism studies revealed that ASPP1 promoter, mapped to -283/+88, which contained three conserved EGR-1 binding sites, was required for both binding and transactivity of EGR-1. In addition, we demonstrate that ASPP1 promoted EGR-1 in a positive feedback loop by preventing proteasome-mediated EGR-1 degradation or promoting EGR-1 nuclear import in response to anticancer natural compound Quercetin. Furthermore, albeit activating p53 in the nucleus is the well-studied function of ASPP1, we found that ASPP1 was predominately localized in the cytoplasm. Interestingly, the cytoplasmic ASPP1 retained its pro-apoptosis capability. Mechanistically, ASPP1 suppressed Atg5-Atg12 and also bound with Atg5-Atg12 to prevent its further complex formation with Atg16, resulting in the inhibition of cyto-protective autophagy. In conclusion, our results provide new insights into EGR-1/ASPP1 regulatory loop in sensitizing Quercetin-induced apoptosis. EGR-1/ASPP1, therefore, may be potentially used as therapeutic targets to improve cancer's response to pro-apoptosis treatments.
Collapse
|
3
|
Li N, Richard S. Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res 2016; 44:8726-8741. [PMID: 27365047 PMCID: PMC5062974 DOI: 10.1093/nar/gkw582] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/18/2016] [Indexed: 02/07/2023] Open
Abstract
Sam68 is a known sequence-specific RNA binding protein that regulates alternative splicing events during the cell cycle and apoptosis. Sam68 has also been shown to influence transcription, but the molecular mechanism remains undefined. Herein we identify Sam68 as a transcriptional coactivator of the p53 tumor suppressor in response to DNA damage. Using CRISPR/Cas9 generated isogenic HCT116 Sam68−/− cell lines wild type or deficient for p53, we show that Sam68 is required for the efficient transactivation of p53 target genes. Consistently, Sam68 depletion caused defects in DNA damage-induced cell cycle arrest and apoptosis mediated by p53. Mechanistically, we demonstrate that Sam68 physically interacted with p53 in an RNA-dependent manner, and that this interaction was essential for the coactivator function of Sam68. Furthermore, we show that both Sam68 and p53 were recruited to promoters of p53-responsive genes, suggesting interdependence. Finally, Sam68 acted in concert with the p53 long noncoding RNA (lncRNA) target PR-lncRNA-1 for p53 recruitment, implicating a positive-feedback mechanism in which lncRNAs induced by the Sam68/p53 complex can enhance p53 transcriptional activity. These findings define a hitherto novel mechanism of action for Sam68 in governing p53 transcriptional activation, and represent the first report of Sam68 in the regulation of tumor suppressor activities.
Collapse
Affiliation(s)
- Naomi Li
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| | - Stéphane Richard
- Terry Fox Molecular Oncology Group and the Bloomfield Center for Research on Aging, Sir Mortimer B Davis Jewish General Hospital, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada Department of Medicine and Oncology, McGill University, Montréal, Québec H3A 1A1, Canada
| |
Collapse
|
4
|
Stockley J, Markert E, Zhou Y, Robson CN, Elliott DJ, Lindberg J, Leung HY, Rajan P. The RNA-binding protein Sam68 regulates expression and transcription function of the androgen receptor splice variant AR-V7. Sci Rep 2015; 5:13426. [PMID: 26310125 PMCID: PMC4550848 DOI: 10.1038/srep13426] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/27/2015] [Indexed: 12/02/2022] Open
Abstract
Castration-resistant (CR) prostate cancer (PCa) partly arises due to persistence of androgen receptor (AR) transcriptional activity in the absence of cognate ligand. An emerging mechanism underlying the CRPCa phenotype and predicting response to therapy is the expression of the constitutively-active AR-V7 splice variant generated by AR cryptic exon 3b inclusion. Here, we explore the role of the RNA-binding protein (RBP) Sam68 (encoded by KHDRBS1), which is over-expressed in clinical PCa, on AR-V7 expression and transcription function. Using a minigene reporter, we show that Sam68 controls expression of exon 3b resulting in an increase in endogenous AR-V7 mRNA and protein expression in RNA-binding-dependent manner. We identify a novel protein-protein interaction between Sam68 and AR-V7 mediated by a common domain shared with full-length AR, and observe these proteins in the cell nucleoplasm. Using a luciferase reporter, we demonstrate that Sam68 co-activates ligand-independent AR-V7 transcriptional activity in an RNA-binding-independent manner, and controls expression of the endogenous AR-V7-specific gene target UBE2C. Our data suggest that Sam68 has separable effects on the regulation of AR-V7 expression and transcriptional activity, through its RNA-binding capacity. Sam68 and other RBPs may control expression of AR-V7 and other splice variants as well as their downstream functions in CRPCa.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Alternative Splicing/genetics
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Exons/genetics
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Male
- Models, Biological
- Prostatic Neoplasms/genetics
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptors, Androgen/chemistry
- Receptors, Androgen/genetics
- Transcription, Genetic
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
Collapse
Affiliation(s)
| | - Elke Markert
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Yan Zhou
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Craig N. Robson
- Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, UK
| | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Johan Lindberg
- Department of Molecular Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hing Y. Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Prabhakar Rajan
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Molecular mechanisms underlying the interaction of protein phosphatase-1c with ASPP proteins. Biochem J 2013; 449:649-59. [PMID: 23088536 DOI: 10.1042/bj20120506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, β and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.
Collapse
|
6
|
Downregulation of ASPP1 in gestational trophoblastic disease: correlation with hypermethylation, apoptotic activity and clinical outcome. Mod Pathol 2011; 24:522-32. [PMID: 21102414 DOI: 10.1038/modpathol.2010.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational trophoblastic disease encompasses a spectrum of trophoblastic lesions including true neoplasms such as choriocarcinomas and the potentially malignant hydatidiform moles, which may develop persistent disease requiring chemotherapy. ASPP1, a member of apoptosis-stimulating proteins of p53 (ASPPs), is a proapoptotic protein that can stimulate apoptosis through its interaction with p53. We evaluated the promoter methylation and expression profiles of ASPP1 in different trophoblastic tissues and its in vitro functional effect on two choriocarcinoma cell lines, namely JEG-3 and JAR. Significant downregulation of ASPP1 mRNA and protein levels was demonstrated in hydatidiform moles and choriocarcinomas, when compared with normal placentas by quantitative-PCR and immunohistochemistry. The ASPP1 mRNA level was significantly correlated with its hypermethylation status, evaluated with methylation-specific PCR, in placenta and gestational trophoblastic disease samples (P=0.024). Moreover, lower ASPP1 immunoreactivity was shown in hydatidiform moles that progressed to persistent gestational trophoblastic neoplasms than in those that regressed (P=0.045). A significant correlation was also found between expression of ASPP1 and proliferative indices (assessed by Ki67 and MCM7), apoptotic activity (M30 CytoDeath antibody), p53 and caspase-8 immunoreactivities. An in vitro study showed that ectopic expression of ASPP1 could trigger apoptosis through intrinsic and extrinsic pathways as indicated by an increase in cleaved caspase-9 and Fas ligand protein expression. The latter suggests a hitherto unreported novel link between ASPP1 and the extrinsic pathway of apoptosis. Our findings suggest that downregulation of ASPP1 by hypermethylation may be involved in the pathogenesis and progress of gestational trophoblastic disease, probably through its effect on apoptosis.
Collapse
|
7
|
Fardilha M, Esteves SLC, Korrodi-Gregório L, Vintém AP, Domingues SC, Rebelo S, Morrice N, Cohen PTW, da Cruz e Silva OAB, da Cruz e Silva EF. Identification of the human testis protein phosphatase 1 interactome. Biochem Pharmacol 2011; 82:1403-15. [PMID: 21382349 DOI: 10.1016/j.bcp.2011.02.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 12/21/2022]
Abstract
Protein phosphorylation is a critical regulatory mechanism in cellular signalling. To this end, PP1 is a major eukaryotic serine/threonine-specific phosphatase whose cellular functions, in turn, depend on complexes it forms with PP1 interacting proteins-PIPs. The importance of the testis/sperm-enriched variant, PP1γ2, in sperm motility and spermatogenesis has previously been shown. Given the key role of PIPs, it is imperative to identify the physiologically relevant PIPs in testis and sperm. Hence, we performed Yeast Two-Hybrid screens of a human testis cDNA library using as baits the different PP1 isoforms and also a proteomic approach aimed at identifying PP1γ2 binding proteins. To the best of our knowledge this is the largest data set of the human testis PP1 interactome. We report the identification of 77 proteins in human testis and 7 proteins in human sperm that bind PP1. The data obtained increased the known PP1 interactome by reporting 72 novel interactions. Confirmation of the interaction of PP1 with 5 different proteins was also further validated by co-immunoprecipitation or protein overlays. The data here presented provides important insights towards the function of these proteins and opens new possibilities for future research. In fact, such diversity in PP1 regulators makes them excellent targets for pharmacological intervention.
Collapse
Affiliation(s)
- Margarida Fardilha
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Aylon Y, Ofir-Rosenfeld Y, Yabuta N, Lapi E, Nojima H, Lu X, Oren M. The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1. Genes Dev 2011; 24:2420-9. [PMID: 21041410 DOI: 10.1101/gad.1954410] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis is an important mechanism to eliminate potentially tumorigenic cells. The tumor suppressor p53 plays a pivotal role in this process. Many tumors harbor mutant p53, but others evade its tumor-suppressive effects by altering the expression of proteins that regulate the p53 pathway. ASPP1 (apoptosis-stimulating protein of p53-1) is a key mediator of the nuclear p53 apoptotic response. Under basal conditions, ASPP1 is cytoplasmic. We report that, in response to oncogenic stress, the tumor suppressor Lats2 (large tumor suppressor 2) phosphorylates ASPP1 and drives its translocation into the nucleus. Together, Lats2 and ASPP1 shunt p53 to proapoptotic promoters and promote the death of polyploid cells. These effects are overridden by the Yap1 (Yes-associated protein 1) oncoprotein, which disrupts Lats2-ASPP1 binding and antagonizes the tumor-suppressing function of the Lats2/ASPP1/p53 axis.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
9
|
Vigneron AM, Ludwig RL, Vousden KH. Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP. Genes Dev 2011; 24:2430-9. [PMID: 21041411 DOI: 10.1101/gad.1954310] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ASPP (apoptosis-stimulating protein of p53) family of proteins can function in the nucleus to modulate the transcriptional activity of p53, with ASPP1 and ASPP2 contributing to the expression of apoptotic target genes. In this study, we describe a new function for cytoplasmic ASPP1 in controlling YAP (Yes-associated protein)/TAZ. ASPP1 can inhibit the interaction of YAP with LATS1 (large tumor suppressor 1), a kinase that phosphorylates YAP/TAZ and promotes cytoplasmic sequestration and protein degradation. This function of ASPP1 therefore enhances nuclear accumulation of YAP/TAZ and YAP/TAZ-dependent transcriptional regulation. The consequence of YAP/TAZ activation by ASPP1 is to inhibit apoptosis, in part through the down-regulation of Bim expression, leading to resistance to anoikis and enhanced cell migration. These results reveal a potential oncogenic role for cytoplasmic ASPP1, in contrast to the tumor-suppressive activity described previously for nuclear ASPP1.
Collapse
Affiliation(s)
- Arnaud M Vigneron
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, United Kingdom
| | | | | |
Collapse
|
10
|
Expression and functions of the star proteins Sam68 and T-STAR in mammalian spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:67-81. [PMID: 21189686 DOI: 10.1007/978-1-4419-7005-3_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Spermatogenesis is one of the few major developmental pathways which are still ongoing in the adult. In this chapter we review the properties of Sam68 and T-STAR, which are the STAR proteins functionally implicated in mammalian spermatogenesis. Sam68 is a ubiquitously expressed member of the STAR family, but has an essential role in spermatogenesis. Sam68 null mice are male infertile and at least in part this is due to a failure in important translational controls that operate during and after meiosis. The homologous T-STAR protein has a much more restricted anatomic expression pattern than Sam68, with highest levels seen in the testis and the developing brain. The focus of this chapter is the functional role of Sam68 and T-STAR proteins in male germ cell development. Since these proteins are known to have many cellular functions we extrapolate from other cell types and tissues to speculate on each of their likely functions within male germ cells, including control of alternative pre-mRNA splicing patterns in male germ cells.
Collapse
|
11
|
Boldrup L, Coates PJ, Gu X, Nylander K. ΔNp63 isoforms differentially regulate gene expression in squamous cell carcinoma: identification ofCox-2as a novel p63 target. J Pathol 2009; 218:428-36. [DOI: 10.1002/path.2560] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Ueda N, Shiraha H, Fujikawa T, Takaoka N, Nakanishi Y, Suzuki M, Matsuo N, Tanaka S, Nishina SI, Uemura M, Takaki A, Shiratori Y, Yamamoto K. Exon 2 deletion splice variant of gamma-glutamyl carboxylase causes des-gamma-carboxy prothrombin production in hepatocellular carcinoma cell lines. Mol Oncol 2008; 2:241-9. [PMID: 19383345 DOI: 10.1016/j.molonc.2008.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/11/2008] [Accepted: 06/15/2008] [Indexed: 01/02/2023] Open
Abstract
Using GGCX gene-specific real-time PCR, exon 2 deletion splice variant of vitamin K-dependent gamma-glutamyl carboxylase (GGCX) mRNA was identified in HCC cell lines. Expressions of wild type and exon 2 deletion variant of GGCX were analyzed with relevance to DCP production in HCC cell lines. Hep3B, HepG2, HuH1, HuH7, and PLC/PRF/5 produced DCP, while SK-Hep-1, HLE, HLF, and JHH1 produced no detectable level of DCP. DCP-producing cells expressed exon 2 deletion variant of GGCX mRNA and protein, while DCP-negative cells expressed no detectable level of exon 2 deletion variant of GGCX. These results suggest that exon 2 deletion splice variant of GGCX causes dysfunction of GGCX enzyme activity resulting in DCP production in HCC cell lines.
Collapse
Affiliation(s)
- Naoki Ueda
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Boldrup L, Coates PJ, Gu X, Nylander K. DeltaNp63 isoforms regulate CD44 and keratins 4, 6, 14 and 19 in squamous cell carcinoma of head and neck. J Pathol 2008; 213:384-91. [PMID: 17935121 DOI: 10.1002/path.2237] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human p63 gene codes for multiple protein isoforms and is commonly over-expressed in squamous cell carcinoma of head and neck (SCCHN). This expression is predominantly of the DeltaN- and beta-isoforms, the former lacking the p53-related transactivation domain. p63 can activate or repress transcription of p53 and p73 target genes, but also has unique transcriptional targets and, unlike other p53 family members, is required for normal development and differentiation of squamous epithelia. We have identified novel targets of p63, using microarray analysis of SCCHN cells that stably over-express individual DeltaNp63 isoforms. All three isoforms induced expression of the cancer stem cell marker, CD44, with the DeltaNp63beta isoform showing strongest induction. Using chromatin immunoprecipitation, we were unable to show direct binding of p63 to the CD44 promoter, but found that p63 specifically increased expression of CD44 lacking variant exon 2. Each of the DeltaNp63 isoforms up-regulated expression of keratins 6A and 14 and down-regulated expression of keratins 4 and 19, in keeping with their expression patterns in SCCHN. The data strengthen the idea that p63 has key roles in regulating normal and abnormal differentiation processes through both induction and repression of genes with opposite functions. The identification of up-regulation and differential splicing of CD44 following p63 over-expression indicates roles in the regulation of adhesion, metastasis and the cancer stem cell phenotype.
Collapse
Affiliation(s)
- L Boldrup
- Department of Medical Biosciences/Pathology, Building 6M, 2nd Floor, Umeå University, SE-901 85 Umeå, Sweden.
| | | | | | | |
Collapse
|
14
|
Blaustein M, Pelisch F, Srebrow A. Signals, pathways and splicing regulation. Int J Biochem Cell Biol 2007; 39:2031-48. [PMID: 17507279 DOI: 10.1016/j.biocel.2007.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 01/09/2023]
Abstract
Alternative splicing of messenger RNA precursors is an extraordinary source of protein diversity and the regulation of this process is crucial for diverse cellular functions in both physiological and pathological situations. For many years, several signaling pathways have been implicated in alternative splicing regulation. Recent work has begun to unravel the molecular mechanisms by which extracellular stimuli activate signaling cascades that modulate the activity of the splicing machinery and therefore the splicing pattern of many different target messenger RNA precursors. These experiments are revealing unexpected aspects of the mechanism that control splicing and the consequences of the regulated splicing events. We summarize here the current knowledge about signal-induced alternative splicing regulation of Slo, NR1, CD44, CD45 and fibronectin genes, and also discuss the importance of some of these events in determination of cellular fate. Furthermore, we highlight the relevance of signal-induced changes in phosphorylation state and subcellular distribution of splicing factors as a way of regulating the splicing process. Lastly, we explore new and unexpected findings about regulated splicing in anucleated cells.
Collapse
Affiliation(s)
- Matias Blaustein
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Argentina
| | | | | |
Collapse
|
15
|
Bell HS, Dufes C, O’Prey J, Crighton D, Bergamaschi D, Lu X, Schätzlein AG, Vousden KH, Ryan KM. A p53-derived apoptotic peptide derepresses p73 to cause tumor regression in vivo. J Clin Invest 2007; 117:1008-18. [PMID: 17347683 PMCID: PMC1810568 DOI: 10.1172/jci28920] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 01/09/2007] [Indexed: 01/09/2023] Open
Abstract
The tumor suppressor p53 is a potent inducer of tumor cell death, and strategies exist to exploit p53 for therapeutic gain. However, because about half of human cancers contain mutant p53, application of these strategies is restricted. p53 family members, in particular p73, are in many ways functional paralogs of p53, but are rarely mutated in cancer. Methods for specific activation of p73, however, remain to be elucidated. We describe here a minimal p53-derived apoptotic peptide that induced death in multiple cell types regardless of p53 status. While unable to activate gene expression directly, this peptide retained the capacity to bind iASPP - a common negative regulator of p53 family members. Concordantly, in p53-null cells, this peptide derepressed p73, causing p73-mediated gene activation and death. Moreover, systemic nanoparticle delivery of a transgene expressing this peptide caused tumor regression in vivo via p73. This study therefore heralds what we believe to be the first strategy to directly and selectively activate p73 therapeutically and may lead to the development of broadly applicable agents for the treatment of malignant disease.
Collapse
Affiliation(s)
- Helen S. Bell
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Christine Dufes
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Jim O’Prey
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Diane Crighton
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Daniele Bergamaschi
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Xin Lu
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Andreas G. Schätzlein
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Karen H. Vousden
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Kevin M. Ryan
- Tumour Cell Death Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom.
Centre for Oncology and Applied Pharmacology, University of Glasgow, Glasgow, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Tumour Suppression Laboratory, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| |
Collapse
|
16
|
Abstract
The apoptosis stimulating proteins of p53 (ASPP) family consists of three members, ASPP1, ASPP2 and iASPP. They bind to proteins that are key players in controlling apoptosis (p53, Bcl-2 and RelA/p65) and cell growth (APCL, PP1). So far, the best-known function of the ASPP family members is their ability to regulate the apoptotic function of p53 and its family members, p63 and p73. Biochemical and genetic evidence has shown that ASPP1 and ASPP2 activate, whereas iASPP inhibits, the apoptotic but not the cell-cycle arrest function of p53. The p53 tumour suppressor gene, one of the most frequently mutated genes in human cancer, is capable of suppressing tumour growth through its ability to induce apoptosis or cell-cycle arrest. Thus, the ASPP family of proteins helps to determine how cells choose to die and may therefore be a novel target for cancer therapy.
Collapse
Affiliation(s)
- A Sullivan
- Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS, UK
| | - X Lu
- Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS, UK
- E-mail:
| |
Collapse
|