1
|
Martoriati A, Molinaro C, Marchand G, Fliniaux I, Marin M, Bodart JF, Takeda-Uchimura Y, Lefebvre T, Dehennaut V, Cailliau K. Follicular cells protect Xenopus oocyte from abnormal maturation via integrin signaling downregulation and O-GlcNAcylation control. J Biol Chem 2023; 299:104950. [PMID: 37354972 PMCID: PMC10366548 DOI: 10.1016/j.jbc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin β1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin β1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
Collapse
Affiliation(s)
- Alain Martoriati
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Molinaro
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Marchand
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ingrid Fliniaux
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Matthieu Marin
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean-François Bodart
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yoshiko Takeda-Uchimura
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Katia Cailliau
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
2
|
Jessus C, Munro C, Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells 2020; 9:E1150. [PMID: 32392797 PMCID: PMC7290932 DOI: 10.3390/cells9051150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
During oocyte development, meiosis arrests in prophase of the first division for a remarkably prolonged period firstly during oocyte growth, and then when awaiting the appropriate hormonal signals for egg release. This prophase arrest is finally unlocked when locally produced maturation initiation hormones (MIHs) trigger entry into M-phase. Here, we assess the current knowledge of the successive cellular and molecular mechanisms responsible for keeping meiotic progression on hold. We focus on two model organisms, the amphibian Xenopus laevis, and the hydrozoan jellyfish Clytia hemisphaerica. Conserved mechanisms govern the initial meiotic programme of the oocyte prior to oocyte growth and also, much later, the onset of mitotic divisions, via activation of two key kinase systems: Cdk1-Cyclin B/Gwl (MPF) for M-phase activation and Mos-MAPkinase to orchestrate polar body formation and cytostatic (CSF) arrest. In contrast, maintenance of the prophase state of the fully-grown oocyte is assured by highly specific mechanisms, reflecting enormous variation between species in MIHs, MIH receptors and their immediate downstream signalling response. Convergence of multiple signalling pathway components to promote MPF activation in some oocytes, including Xenopus, is likely a heritage of the complex evolutionary history of spawning regulation, but also helps ensure a robust and reliable mechanism for gamete production.
Collapse
Affiliation(s)
- Catherine Jessus
- Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, LBD - IBPS, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Catriona Munro
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
- Inserm, Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, 75005 Paris, France
| | - Evelyn Houliston
- Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France;
| |
Collapse
|
3
|
Buschiazzo J, Alonso TS, Biscoglio M, Antollini SS, Bonini IC. Nongenomic steroid- and ceramide-induced maturation in amphibian oocytes involves functional caveolae-like microdomains associated with a cytoskeletal environment. Biol Reprod 2011; 85:808-22. [PMID: 21653896 DOI: 10.1095/biolreprod.110.090365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Stimulation of full-grown amphibian oocytes with progesterone initiates a nontranscriptional signaling pathway that converges in the activation of Cdc2/cyclin B and reentry into meiosis. We observed that cholesterol depletion mediated by methyl-beta-cyclodextrin (MbetaCD) inhibited meiotic maturation, suggesting involvement of membrane rafts. In the present study, we further characterized caveolae-like membranes from Rhinella arenarum oocytes biochemically and functionally. The identification by mass spectrometry of a nonmuscle myosin heavy-chain associated with caveolar membranes showed evidence of direct involvement of the underlying cytoskeletal environment in the structure of oocyte rafts. Biophysical analysis using the fluorescent probe Laurdan revealed that MbetaCD-mediated cholesterol depletion affected membrane lipid order. In line with this finding, cholesterol removal also affected the localization of the raft marker lipid GM1. Results demonstrated that ceramide is an effective inducer of maturation that alters the distribution of the raft markers caveolin-1, SRC, and GM1, while progesterone seems not to affect membrane microdomain integrity. Cholesterol depletion had a greater effect on ceramide-induced maturation, thus suggesting that ceramide is an inducer more vulnerable to changes in the plasma membrane. MbetaCD treatment delayed tyrosine phosphorylation and MAPK activation in progesterone-induced maturation. Functional studies regarding tyrosine phosphorylation raise the possibility that the hormone receptor is located in the nonraft membrane in the absence of ligand and that it translocates to the caveola when it binds to progesterone. The presence of raft markers and the finding of signaling molecules from MAPK cascade functionally associated to oocyte light membranes suggest that this caveolae-rich fraction efficiently recreates, in part, maturation signaling.
Collapse
Affiliation(s)
- Jorgelina Buschiazzo
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
4
|
Ferro E, Trabalzini L. RalGDS family members couple Ras to Ral signalling and that's not all. Cell Signal 2010; 22:1804-10. [PMID: 20478380 DOI: 10.1016/j.cellsig.2010.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/07/2010] [Indexed: 11/26/2022]
Abstract
Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.
Collapse
Affiliation(s)
- Elisa Ferro
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, Via Fiorentina, 1, 53100 Siena, Italy
| | | |
Collapse
|
5
|
Zhang L, Hou SY, Wang D, Wu K, Xia L. Effects of thioglycolic acid on progesterone-induced maturation of Xenopus oocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2009; 72:1123-1131. [PMID: 20077179 DOI: 10.1080/15287390902953519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In order to examine the effects of thioglycolic acid (TGA) on reproduction, Xenopus oocytes were treated with different concentrations of TGA. During culture, frequencies of germinal vesicle breakdown (GVBD) and MI-MII transition were determined. Samples collected at indicated times were subjected to immunoblotting. Data indicated that TGA accelerated the frequency of GVBD, but inhibited polar body extrusion and formation of MII-arrested eggs in a concentration-dependent manner. At 4 h after progesterone addition, phosphorylation of extracellular signal-regulated kinase (ERK) and p90 ribosomal S6 kinase, two members of the mitogen-activated protein kinase (MAPK) pathway, was upregulated in TGA-treated oocytes. The regulatory subunit of M-phase promoting factor (MPF)-cyclin B was also upregulated by TGA, while phospho-Cdc2 was downregulated. At 8 h, Cdc2 dephosphorylation and cyclin B1 were downregulated by TGA treatment. However, TGA exerted no effect on Mos, an MAPKKK (MAPK kinase kinase). In conclusion, TGA has the potential to inhibit in vitro maturation of Xenopus oocyte with increased GVBD frequency accompanied by alterations in protein expression and phosphorylation involved in MPF and MAPK pathways. Since egg formation is essential to maintain appropriate reproductive capacity, our findings may have certain toxicological implications.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Nutrition and Food Hygiene, Harbin Medical University, Heilongjiang, China
| | | | | | | | | |
Collapse
|
6
|
Pelech S, Jelinkova L, Susor A, Zhang H, Shi X, Pavlok A, Kubelka M, Kovarova H. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. J Proteome Res 2008; 7:2860-71. [DOI: 10.1021/pr800082a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven Pelech
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Lucie Jelinkova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Andrej Susor
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hong Zhang
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Xiaoqing Shi
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Antonin Pavlok
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Michal Kubelka
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hana Kovarova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| |
Collapse
|
7
|
Li M, Liang CG, Xiong B, Xu BZ, Lin SL, Hou Y, Chen DY, Schatten H, Sun QY. PI3-kinase and mitogen-activated protein kinase in cumulus cells mediate EGF-induced meiotic resumption of porcine oocyte. Domest Anim Endocrinol 2008; 34:360-71. [PMID: 18023131 DOI: 10.1016/j.domaniend.2007.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/03/2007] [Accepted: 10/04/2007] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that epidermal growth factor (EGF) has the ability to promote in vitro cultured porcine oocyte maturation. However, little is known about the detailed downstream events in EGF-induced meiotic resumption. We designed this study to determine the relationship of EGF, EGFR, phosphatidylinositol 3-kinase (PI3-kinase), MAPK, and germinal vesicle breakdown (GVBD) during oocyte maturation. Our results showed that GVBD in cumulus-enclosed oocytes (CEOs) but not in denuded oocytes (DOs) was induced by EGF in a dose-dependent manner, which indicated that cumulus cells but not oocyte itself were the main target for EGF-induced meiotic resumption. Furthermore, we found that MAPK in cumulus cells rather than in oocyte was activated immediately after EGF administration. To explore whether EGF exerts its functions through MAPK pathway, the activities of EGF receptor (EGFR) and MAPK were inhibited by employing AG1478 and U0126, respectively. Inhibition of MAPK blocked EGF-induced GVBD, whereas inhibition of EGFR prevented MAPK activation. Both AG1478 and U0126 could lead to the failure of EGF-induced GVBD singly. Notably, we found that LY294002, a specific inhibitor of PI3-kinase, effectively inhibited EGF-induced MAPK activation as well as subsequent oocyte meiotic resumption and this inhibition could not be reversed by adding additional EGF. Thus, PI3-kinase-induced MAPK activation in cumulus cells mediated EGF-induced meiotic resumption in porcine CEOs. Together, this study provides evidences demonstrating a linear relationship of EGF/EGFR, PI3-kinase, MAPK and GVBD and presents a relatively definitive mechanism of EGF-induced meiotic resumption of porcine oocyte.
Collapse
Affiliation(s)
- Mo Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Da Tun Road, Chaoyang, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liang CG, Su YQ, Fan HY, Schatten H, Sun QY. Mechanisms Regulating Oocyte Meiotic Resumption: Roles of Mitogen-Activated Protein Kinase. Mol Endocrinol 2007; 21:2037-55. [PMID: 17536005 DOI: 10.1210/me.2006-0408] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractOocyte meiotic maturation is one of the important physiological requirements for species survival. However, little is known about the detailed events occurring during this process. A number of studies have demonstrated that MAPK plays a pivotal role in the regulation of meiotic cell cycle progression in oocytes, but controversial findings have been reported in both lower vertebrates and mammals. In this review, we summarized the roles of MAPK cascade and related signal pathways in oocyte meiotic reinitiation in both lower vertebrates and mammals. We also tried to reconcile the paradoxical results and highlight the new findings concerning the function of MAPK in both oocytes and the surrounding follicular somatic cells. The unresolved questions and future research directions regarding the role of MAPK in meiotic resumption are addressed.
Collapse
Affiliation(s)
- Cheng-Guang Liang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang Beijing 100101, China
| | | | | | | | | |
Collapse
|