1
|
Majeres LE, Dilger AC, Shike DW, McCann JC, Beever JE. Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle. Genes (Basel) 2024; 15:576. [PMID: 38790206 PMCID: PMC11121065 DOI: 10.3390/genes15050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous studies have shown genetic variation at the LCORL-NCAPG locus is strongly associated with growth traits in beef cattle. However, a causative molecular variant has yet to be identified. To define all possible candidate variants, 34 Charolais-sired calves were whole-genome sequenced, including 17 homozygous for a long-range haplotype associated with increased growth (QQ) and 17 homozygous for potential ancestral haplotypes for this region (qq). The Q haplotype was refined to an 814 kb region between chr6:37,199,897-38,014,080 and contained 218 variants not found in qq individuals. These variants include an insertion in an intron of NCAPG, a previously documented mutation in NCAPG (rs109570900), two coding sequence mutations in LCORL (rs109696064 and rs384548488), and 15 variants located within ATAC peaks that were predicted to affect transcription factor binding. Notably, rs384548488 is a frameshift variant likely resulting in loss of function for long isoforms of LCORL. To test the association of the coding sequence variants of LCORL with phenotype, 405 cattle from five populations were genotyped. The two variants were in complete linkage disequilibrium. Statistical analysis of the three populations that contained QQ animals revealed significant (p < 0.05) associations with genotype and birth weight, live weight, carcass weight, hip height, and average daily gain. These findings affirm the link between this locus and growth in beef cattle and describe DNA variants that define the haplotype. However, further studies will be required to define the true causative mutation.
Collapse
Affiliation(s)
- Leif E. Majeres
- UTIA Genomics Center for the Advancement of Agriculture, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA;
| | - Anna C. Dilger
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Daniel W. Shike
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Joshua C. McCann
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (A.C.D.); (D.W.S.); (J.C.M.)
| | - Jonathan E. Beever
- UTIA Genomics Center for the Advancement of Agriculture, Institute of Agriculture, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
2
|
Kuchler O, Gerlach J, Vomhof T, Hettich J, Steinmetz J, Gebhardt JCM, Michaelis J, Knöll B. Single-molecule tracking (SMT) and localization of SRF and MRTF transcription factors during neuronal stimulation and differentiation. Open Biol 2022; 12:210383. [PMID: 35537478 PMCID: PMC9090491 DOI: 10.1098/rsob.210383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In cells, proteins encoded by the same gene do not all behave uniformly but engage in functional subpopulations induced by spatial or temporal segregation. While conventional microscopy has limitations in revealing such spatial and temporal diversity, single-molecule tracking (SMT) microscopy circumvented this problem and allows for high-resolution imaging and quantification of dynamic single-molecule properties. Particularly in the nucleus, SMT has identified specific DNA residence times of transcription factors (TFs), DNA-bound TF fractions and positions of transcriptional hot-spots upon cell stimulation. By contrast to cell stimulation, SMT has not been employed to follow dynamic TF changes along stages of cell differentiation. Herein, we analysed the serum response factor (SRF), a TF involved in the differentiation of many cell types to study nuclear single-molecule dynamics in neuronal differentiation. Our data in living mouse hippocampal neurons show dynamic changes in SRF DNA residence time and SRF DNA-bound fraction between the stages of adhesion, neurite growth and neurite differentiation in axon and dendrites. Using TALM (tracking and localization microscopy), we identified nuclear positions of SRF clusters and observed changes in their numbers and size during differentiation. Furthermore, we show that the SRF cofactor MRTF-A (myocardin-related TF or MKL1) responds to cell activation by enhancing the long-bound DNA fraction. Finally, a first SMT colocalization study of two proteins was performed in living cells showing enhanced SRF/MRTF-A colocalization upon stimulation. In summary, SMT revealed modulation of dynamic TF properties during cell stimulation and differentiation.
Collapse
Affiliation(s)
- Oliver Kuchler
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Jule Gerlach
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany,Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johannes Hettich
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Julia Steinmetz
- Department of Statistics, TU Dortmund University, August-Schmidt Straße 1, 44227 Dortmund, Germany
| | | | - Jens Michaelis
- Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Neurobiochemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
3
|
The Bright and the Dark Side of TGF-β Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers (Basel) 2022; 14:cancers14040940. [PMID: 35205692 PMCID: PMC8870127 DOI: 10.3390/cancers14040940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Transforming growth factor β (TGF-β) signaling is a preeminent regulator of diverse cellular and physiological processes. Frequent dysregulation of TGF-β signaling has been implicated in cancer. In hepatocellular carcinoma (HCC), the most prevalent form of primary liver cancer, the autocrine and paracrine effects of TGF-β have paradoxical implications. While acting as a potent tumor suppressor pathway in the early stages of malignancy, TGF-β diverts to a promoter of tumor progression in the late stages, reflecting its bright and dark natures, respectively. Within this context, targeting TGF-β represents a promising therapeutic option for HCC treatment. We discuss here the molecular properties of TGF-β signaling in HCC, attempting to provide an overview of its effects on tumor cells and the stroma. We also seek to evaluate the dysregulation mechanisms that mediate the functional switch of TGF-β from a tumor suppressor to a pro-tumorigenic signal. Finally, we reconcile its biphasic nature with the therapeutic implications. Abstract Hepatocellular carcinoma (HCC) is associated with genetic and nongenetic aberrations that impact multiple genes and pathways, including the frequently dysregulated transforming growth factor β (TGF-β) signaling pathway. The regulatory cytokine TGF-β and its signaling effectors govern a broad spectrum of spatiotemporally regulated molecular and cellular responses, yet paradoxically have dual and opposing roles in HCC progression. In the early stages of tumorigenesis, TGF-β signaling enforces profound tumor-suppressive effects, primarily by inducing cell cycle arrest, cellular senescence, autophagy, and apoptosis. However, as the tumor advances in malignant progression, TGF-β functionally switches to a pro-tumorigenic signal, eliciting aggressive tumor traits, such as epithelial–mesenchymal transition, tumor microenvironment remodeling, and immune evasion of cancer cells. On this account, the inhibition of TGF-β signaling is recognized as a promising therapeutic strategy for advanced HCC. In this review, we evaluate the functions and mechanisms of TGF-β signaling and relate its complex and pleiotropic biology to HCC pathophysiology, attempting to provide a detailed perspective on the molecular determinants underlying its functional diversion. We also address the therapeutic implications of the dichotomous nature of TGF-β signaling and highlight the rationale for targeting this pathway for HCC treatment, alone or in combination with other agents.
Collapse
|
4
|
Contextual Regulation of TGF-β Signaling in Liver Cancer. Cells 2019; 8:cells8101235. [PMID: 31614569 PMCID: PMC6829617 DOI: 10.3390/cells8101235] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is one of the leading causes for cancer-related death worldwide. Transforming growth factor beta (TGF-β) is a pleiotropic cytokine that signals through membrane receptors and intracellular Smad proteins, which enter the nucleus upon receptor activation and act as transcription factors. TGF-β inhibits liver tumorigenesis in the early stage by inducing cytostasis and apoptosis, but promotes malignant progression in more advanced stages by enhancing cancer cell survival, EMT, migration, invasion and finally metastasis. Understanding the molecular mechanisms underpinning the multi-faceted roles of TGF-β in liver cancer has become a persistent pursuit during the last two decades. Contextual regulation fine-tunes the robustness, duration and plasticity of TGF-β signaling, yielding versatile albeit specific responses. This involves multiple feedback and feed-forward regulatory loops and also the interplay between Smad signaling and non-Smad pathways. This review summarizes the known regulatory mechanisms of TGF-β signaling in liver cancer, and how they channel, skew and even switch the actions of TGF-β during cancer progression.
Collapse
|
5
|
An J, Naruse TK, Hinohara K, Soejima Y, Sawabe M, Nakagawa Y, Kuwahara K, Kimura A. MRTF-A regulates proliferation and survival properties of pro-atherogenic macrophages. J Mol Cell Cardiol 2019; 133:26-35. [DOI: 10.1016/j.yjmcc.2019.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022]
|
6
|
Cabezas F, Farfán P, Marzolo MP. Participation of the SMAD2/3 signalling pathway in the down regulation of megalin/LRP2 by transforming growth factor beta (TGF-ß1). PLoS One 2019; 14:e0213127. [PMID: 31120873 PMCID: PMC6532859 DOI: 10.1371/journal.pone.0213127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022] Open
Abstract
Megalin/LRP2 is a receptor that plays important roles in the physiology of several organs, such as kidney, lung, intestine, and gallbladder and also in the physiology of the nervous system. Megalin expression is reduced in diseases associated with fibrosis, including diabetic nephropathy, hepatic fibrosis and cholelithiasis, as well as in some breast and prostate cancers. One of the hallmarks of these conditions is the presence of the cytokine transforming growth factor beta (TGF-ß). Although TGF-ß has been implicated in the reduction of megalin levels, the molecular mechanism underlying this regulation is not well understood. Here, we show that treatment of two epithelial cell lines (from kidney and gallbladder) with TGF-ß1 is associated with decreased megalin mRNA and protein levels, and that these effects are reversed by inhibiting the TGF-ß1 type I receptor (TGF-ßRI). Based on in silico analyses, the two SMAD-binding elements (SBEs) in the megalin promoter are located at positions -57 and -605. Site-directed mutagenesis of the SBEs and chromatin immunoprecipitation (ChIP) experiments revealed that SMAD2/3 transcription factors interact with SBEs. Both the presence of SMAD2/3 and intact SBEs were associated with repression of the megalin promoter, in the absence as well in the presence of TGF-ß1. Also, reduced megalin expression and promoter activation triggered by high concentration of albumin are dependent on the expression of SMAD2/3. Interestingly, the histone deacetylase inhibitor Trichostatin A (TSA), which induces megalin expression, reduced the effects of TGF-ß1 on megalin mRNA levels. These data show the significance of TGF-ß and the SMAD2/3 signalling pathway in the regulation of megalin and explain the decreased megalin levels observed under conditions in which TGF-ß is upregulated, including fibrosis-associated diseases and cancer.
Collapse
Affiliation(s)
- Felipe Cabezas
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Farfán
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María-Paz Marzolo
- Laboratorio de Tráfico Intracelular y Señalización, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
7
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
8
|
Hatem-Vaquero M, Griera M, Giermakowska W, Luengo A, Calleros L, Gonzalez Bosc LV, Rodríguez-Puyol D, Rodríguez-Puyol M, De Frutos S. Integrin linked kinase regulates the transcription of AQP2 by NFATC3. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:922-935. [PMID: 28736155 DOI: 10.1016/j.bbagrm.2017.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/01/2022]
Abstract
Two processes are associated with progressive loss of renal function: 1) decreased aquaporin-2 (AQP2) expression and urinary concentrating capacity (Nephrogenic Diabetes Insipidus, NDI); and 2) changes in extracellular matrix (ECM) composition, e.g. increased collagen I (Col I) deposition, characteristic of tubule-interstitial fibrosis. AQP2 expression is regulated by both the ECM-to-intracellular scaffold protein integrin-linked kinase (ILK) by NFATc/AP1 and other transcription factors. In the present work, we used in vivo and in vitro approaches to examine ILK participation in NFATc3/AP-1-mediated increases in AQP2 gene expression. Both NFATc3 knock-out mice and ILK conditional-knockdown mice (cKD-ILK) display symptoms of NDI (polyuria and reduced AQP2 expression). NFATc3 is upregulated in the renal medulla tubular cells of cKD-ILK mice but with reduced nuclear localization. Inner medullary collecting duct mIMCD3 cells were subjected to ILK depletion and transfected with reporter plasmids. Pharmacological activators or inhibitors determined the effect of ILK activity on NFATc/AP-1-dependent increases in transcription of AQP2. Finally, mIMCD3 cultured on Col I showed reduced activity of the ILK/GSK3β/NFATc/AQP2 axis, suggesting this pathway is a potential target for therapeutic treatment of NDI.
Collapse
Affiliation(s)
- Marco Hatem-Vaquero
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Wieslawa Giermakowska
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Alicia Luengo
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura Calleros
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Laura V Gonzalez Bosc
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain; Biomedical Research Foundation and Nephrology Department, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid, Spain.
| | - Manuel Rodríguez-Puyol
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| | - Sergio De Frutos
- Department of Systems Biology, Physiology Unit, Faculty of Medicine, University of Alcalá, 28805 Alcalá de Henares, Madrid, Spain; Instituto Reina Sofia de Investigación Renal and REDinREN from Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Transcriptional profiling revealed the anti-proliferative effect of MFN2 deficiency and identified risk factors in lung adenocarcinoma. Tumour Biol 2016; 37:8643-55. [DOI: 10.1007/s13277-015-4702-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/20/2015] [Indexed: 01/11/2023] Open
|
10
|
Nguyen TT, Kim SJ, Park JM, Hahm KB, Lee HJ. Repressed TGF-β signaling through CagA-Smad3 interaction as pathogenic mechanisms of Helicobacter pylori-associated gastritis. J Clin Biochem Nutr 2015; 57:113-20. [PMID: 26388668 PMCID: PMC4566024 DOI: 10.3164/jcbn.15-38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection
causes chronic gastric inflammation, peptic ulceration, and gastric
carcinogenesis, in which H. pylori cytotoxin-associated gene A
(CagA) plays major pathogenic action. Since transforming growth factor-β
(TGF-β) and its signaling also are principally implicated in either
modulating gastric mucosal inflammatory responses or causing carcinogenesis and
are attenuated after H. pylori infection, we hypothesized that
dysregulated Smad signaling and repressed TGF-β might be core pathogenic
mechanism for H. pylori-associated gastritis or carcinogenesis.
Until now, no precise underlying mechanism how deranged TGF-β signaling
developed after H. pylori infection relevant to various
clinical manifestations remains unclear. In this study, we examined the
molecular mechanism about the inhibition of TGF-β signaling by H.
pylori CagA protein. H. pylori CagA significantly
suppressed TGF-β/Smad transcriptional responses through critical
inhibition of Smad3, though CagA interacted constitutively with Smad2, Smad3,
and Smad4. CagA inhibited TGF-β-induced suppression of proinflammatory
chemokines, such as IL-8, CXCL1 and CXCL3, as well as TGF-β-induced
transcription of target genes. In conclusion, repressed TGF-β signaling
associated with CagA-positive H. pylori infection could be an
important determinant for the outcome of H. pylori infection.
Therefore, TGF-β signaling is one of the important determinants to avoid
from H. pylori CagA pathogenicity.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Laboratory of Chemoprevention, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea
| | - Seong-Jin Kim
- CHA University Cancer Prevention Research Center, CHA Bio Complex, 335 Pangyo-ro, Gundang-gu, Seongnam 463-400, Korea
| | - Jong Min Park
- CHA University Cancer Prevention Research Center, CHA Bio Complex, 335 Pangyo-ro, Gundang-gu, Seongnam 463-400, Korea
| | - Ki Baik Hahm
- CHA University Cancer Prevention Research Center, CHA Bio Complex, 335 Pangyo-ro, Gundang-gu, Seongnam 463-400, Korea
| | - Ho-Jae Lee
- Laboratory of Chemoprevention, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
11
|
Wang HY, Tu YS, Long J, Zhang HQ, Qi CL, Xie XB, Li SH, Zhang YJ. SRF-miR‑29b-MMP2 axis inhibits NSCLC invasion and metastasis. Int J Oncol 2015; 47:641-9. [PMID: 26044095 DOI: 10.3892/ijo.2015.3034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/27/2015] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs play key roles in tumour metastasis. miR‑29b was previously reported to act as a tumour suppressor or an oncogene in diverse cancers. However, its accurate function and mechanism in metastasis of no-small cell lung cancer (NSCLC) are not well known. In this study, we describe the function of miR‑29b in NSCLC metastasis and its regulatory mechanisms. We found that miR‑29b is downregulated in high-metastatic NSCLC cells and low-expression of miR‑29b in primary NSCLC tissue was correlated with lymph node metastasis. Both gain- and loss-of-function study indicated overexpression of miR‑29b could suppress migration and invasion abilities of high-metastatic NSCLC cells, while downregulation of miR‑29b expression promoted migration and invasion of low-metastatic NSCLC cells in vitro. Moreover, introduction of miR‑29b inhibited high‑metastatic NSCLC cells, in vivo, metastasis to liver and lungs. Mechanistically, miR‑29b, induced by the transcription factor SRF, posttranscriptionally downregulates MMP2 expression by directly targeting its 3'-untranslated regions. These findings indicate a new regulatory mode, whereby miR‑29b, which is inhibited by its upstream transcription factor SRF, was able to promote its direct target MMP2 leading to NSCLC invasion and metastasis.
Collapse
Affiliation(s)
- Hong-Yan Wang
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangdong 510180, P.R. China
| | - Yong-Sheng Tu
- Department of Physiology, School of Basic Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Jie Long
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangdong 510180, P.R. China
| | - Hui-Qiu Zhang
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangdong 510180, P.R. China
| | - Cui-Ling Qi
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangdong 510180, P.R. China
| | - Xiao-Bin Xie
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangdong 510180, P.R. China
| | - Shu-Hua Li
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangdong 510180, P.R. China
| | - Ya-Jie Zhang
- Department of Pathology, School of Basic Sciences, Guangzhou Medical University, Guangdong 510180, P.R. China
| |
Collapse
|
12
|
Thien A, Prentzell MT, Holzwarth B, Kläsener K, Kuper I, Boehlke C, Sonntag AG, Ruf S, Maerz L, Nitschke R, Grellscheid SN, Reth M, Walz G, Baumeister R, Neumann-Haefelin E, Thedieck K. TSC1 activates TGF-β-Smad2/3 signaling in growth arrest and epithelial-to-mesenchymal transition. Dev Cell 2015; 32:617-30. [PMID: 25727005 DOI: 10.1016/j.devcel.2015.01.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 12/19/2014] [Accepted: 01/22/2015] [Indexed: 11/27/2022]
Abstract
The tuberous sclerosis proteins TSC1 and TSC2 are key integrators of growth factor signaling. They suppress cell growth and proliferation by acting in a heteromeric complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1). In this study, we identify TSC1 as a component of the transforming growth factor β (TGF-β)-Smad2/3 pathway. Here, TSC1 functions independently of TSC2. TSC1 interacts with the TGF-β receptor complex and Smad2/3 and is required for their association with one another. TSC1 regulates TGF-β-induced Smad2/3 phosphorylation and target gene expression and controls TGF-β-induced growth arrest and epithelial-to-mesenchymal transition (EMT). Hyperactive Akt specifically activates TSC1-dependent cytostatic Smad signaling to induce growth arrest. Thus, TSC1 couples Akt activity to TGF-β-Smad2/3 signaling. This has implications for cancer treatments targeting phosphoinositide 3-kinases and Akt because they may impair tumor-suppressive cytostatic TGF-β signaling by inhibiting Akt- and TSC1-dependent Smad activation.
Collapse
Affiliation(s)
- Antje Thien
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Mirja Tamara Prentzell
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Birgit Holzwarth
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Kathrin Kläsener
- Molecular Immunology (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Molecular Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ineke Kuper
- Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands; Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | | | - Annika G Sonntag
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Stefanie Ruf
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Research Training Group (RTG) 1104, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lars Maerz
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Roland Nitschke
- BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | - Michael Reth
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Molecular Immunology (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Molecular Immunology, Max-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, 79106 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Research Training Group (RTG) 1104, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Center for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; ZBMZ Centre for Biochemistry and Molecular Cell Research (Faculty of Medicine), Albert-Ludwigs-University Freiburg, 79106 Freiburg, Germany
| | | | - Kathrin Thedieck
- Bioinformatics and Molecular Genetics (Faculty of Biology), Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany.
| |
Collapse
|
13
|
Yang Y, Cui J, Xue F, Zhang C, Mei Z, Wang Y, Bi M, Shan D, Meredith A, Li H, Xu ZQD. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:270-81. [PMID: 25514493 DOI: 10.1016/j.bbagrm.2014.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/20/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022]
Abstract
Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway.
Collapse
Affiliation(s)
- Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China.
| | - Jiajun Cui
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA; Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, 100071, China
| | - Feng Xue
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chuanfu Zhang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhu Mei
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China
| | - Yue Wang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mingjun Bi
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA
| | - Dapeng Shan
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Alex Meredith
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA
| | - Hui Li
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington KY, 40536, USA
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China.
| |
Collapse
|
14
|
Zhao M, Xu H, He X, Hua H, Luo Y, Zuo L. Expression of serum response factor in gastric carcinoma and its molecular mechanisms involved in the regulation of the invasion and migration of SGC-7901 cells. Cancer Biother Radiopharm 2012; 28:146-52. [PMID: 23134219 DOI: 10.1089/cbr.2012.1265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Serum response factor (SRF) is a transcription factor of the MADS box family. To date, DNA binding sites for SRF [serum response elements (SREs)] have been found in the promoters of approximately 50 different genes known to be involved in the regulation cell proliferation, differentiation, and apoptosis. Recent studies have indicated that SRF plays a role in the development of some tumors, including hepatocellular, thyroid, esophageal, and lung carcinomas. However, expression of SRF and its roles in gastric carcinoma are unclear. We found SRF to be highly expressed in human gastric carcinoma as well as ectopic or reduced expression for E-cadherin and β-catenin. Blockage of SRF expression was found to inhibit proliferation, invasion, and migration. We also found that an inhibitor (Y-27632) of Rho-associated coiled kinase (ROCK1), a regulator of actin cytoskeleton that regulates cell adhesion, migration, and motility, suppressed SRF expression as well. These results demonstrate that SRF is involved in the aggressive behavior of gastric carcinoma cells. We also found that the inhibition of ROCK1 by Y-27632 can inhibit the invasion and migration of gastric cells done at least, in part, by attenuating SRF expression.
Collapse
Affiliation(s)
- Min Zhao
- Oncology Department, Hebei Medical University, Shi Jiazhuang, China
| | | | | | | | | | | |
Collapse
|
15
|
Schiro MM, Stauber SE, Peterson TL, Krueger C, Darnell SJ, Satyshur KA, Drinkwater NR, Newton MA, Hoffmann FM. Mutations in protein-binding hot-spots on the hub protein Smad3 differentially affect its protein interactions and Smad3-regulated gene expression. PLoS One 2011; 6:e25021. [PMID: 21949838 PMCID: PMC3176292 DOI: 10.1371/journal.pone.0025021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/22/2011] [Indexed: 02/06/2023] Open
Abstract
Background Hub proteins are connected through binding interactions to many other proteins. Smad3, a mediator of signal transduction induced by transforming growth factor beta (TGF-β), serves as a hub protein for over 50 protein-protein interactions. Different cellular responses mediated by Smad3 are the product of cell-type and context dependent Smad3-nucleated protein complexes acting in concert. Our hypothesis is that perturbation of this spectrum of protein complexes by mutation of single protein-binding hot-spots on Smad3 will have distinct consequences on Smad3-mediated responses. Methodology/Principal Findings We mutated 28 amino acids on the surface of the Smad3 MH2 domain and identified 22 Smad3 variants with reduced binding to subsets of 17 Smad3-binding proteins including Smad4, SARA, Ski, Smurf2 and SIP1. Mutations defective in binding to Smad4, e.g., D408H, or defective in nucleocytoplasmic shuttling, e.g., W406A, were compromised in modulating the expression levels of a Smad3-dependent reporter gene or six endogenous Smad3-responsive genes: Mmp9, IL11, Tnfaip6, Fermt1, Olfm2 and Wnt11. However, the Smad3 mutants Y226A, Y297A, W326A, K341A, and E267A had distinct differences on TGF-β signaling. For example, K341A and Y226A both reduced the Smad3-mediated activation of the reporter gene by ∼50% but K341A only reduced the TGF-β inducibilty of Olfm2 in contrast to Y226A which reduced the TGF-β inducibility of all six endogenous genes as severely as the W406A mutation. E267A had increased protein binding but reduced TGF-β inducibility because it caused higher basal levels of expression. Y297A had increased TGF-β inducibility because it caused lower Smad3-induced basal levels of gene expression. Conclusions/Significance Mutations in protein binding hot-spots on Smad3 reduced the binding to different subsets of interacting proteins and caused a range of quantitative changes in the expression of genes induced by Smad3. This approach should be useful for unraveling which Smad3 protein complexes are critical for specific biological responses.
Collapse
Affiliation(s)
- Michelle M. Schiro
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sara E. Stauber
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tami L. Peterson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Chateen Krueger
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Steven J. Darnell
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kenneth A. Satyshur
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Norman R. Drinkwater
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michael A. Newton
- Departments of Statistics and of Biostatistics and Medical Informatics, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - F. Michael Hoffmann
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
16
|
Krueger C, Hoffmann FM. Identification of retinoic acid in a high content screen for agents that overcome the anti-myogenic effect of TGF-beta-1. PLoS One 2010; 5:e15511. [PMID: 21152098 PMCID: PMC2994897 DOI: 10.1371/journal.pone.0015511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/07/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Transforming growth factor beta 1 (TGF-β1) is an inhibitor of muscle cell differentiation that is associated with fibrosis, poor regeneration and poor function in some diseases of muscle. When neutralizing antibodies to TGF-β1 or the angiotensin II inhibitor losartan were used to reduce TGF-β1 signaling, muscle morphology and function were restored in mouse models of Marfan Syndrome and muscular dystrophy. The goal of our studies was to identify additional agents that overcome the anti-myogenic effect of TGF-β1. METHODOLOGY/PRINCIPAL FINDINGS A high-content cell-based assay was developed in a 96-well plate format that detects the expression of myosin heavy chain (MHC) in C2C12 cells. The assay was used to quantify the dose-dependent responses of C2C12 cell differentiation to TGF-β1 and to the TGF-β1 Type 1 receptor kinase inhibitor, SB431542. Thirteen agents previously described as promoting C2C12 differentiation in the absence of TGF-β1 were screened in the presence of TGF-β1. Only all-trans retinoic acid and 9-cis retinoic acid allowed a maximal level of C2C12 cell differentiation in the presence of TGF-β1; the angiotensin-converting enzyme inhibitor captopril and 10 nM estrogen provided partial rescue. Vitamin D was a potent inhibitor of retinoic acid-induced myogenesis in the presence of TGF-β1. TGF-β1 inhibits myoblast differentiation through activation of Smad3; however, retinoic acid did not inhibit TGF-β1-induced activation of a Smad3-dependent reporter gene in C2C12 cells. CONCLUSIONS/SIGNIFICANCE Retinoic acid alleviated the anti-myogenic effect of TGF-β1 by a Smad3-independent mechanism. With regard to the goal of improving muscle regeneration and function in individuals with muscle disease, the identification of retinoic acid is intriguing in that some retinoids are already approved for human therapy. However, retinoids also have well-described adverse effects. The quantitative, high-content assay will be useful to screen for less-toxic retinoids or combinations of agents that promote myoblast differentiation in the presence of TGF-β1.
Collapse
Affiliation(s)
- Chateen Krueger
- McArdle Laboratory for Cancer Research, Departments of Oncology and Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - F. Michael Hoffmann
- McArdle Laboratory for Cancer Research, Departments of Oncology and Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
17
|
Zelivianski S, Cooley A, Kall R, Jeruss JS. Cyclin-dependent kinase 4-mediated phosphorylation inhibits Smad3 activity in cyclin D-overexpressing breast cancer cells. Mol Cancer Res 2010; 8:1375-87. [PMID: 20736297 PMCID: PMC3253857 DOI: 10.1158/1541-7786.mcr-09-0537] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smad3, a component of the transforming growth factor β signaling cascade, contributes to G(1) arrest in breast cancer cells. Cyclin D1/cyclin-dependent kinase 4 (CDK4) promotes G(1)-S-phase transition, and CDK phosphorylation of Smad3 has been associated with inhibition of Smad3 activity. We hypothesized that overexpression of cyclin D1 exerts tumorigenic effects in breast cancer cells through CDK4-mediated phosphorylation and inhibition of Smad3 and release of G(1) arrest. Real-time quantitative reverse transcription-PCR and immunoblotting were used to evaluate expression of study proteins in cyclin D1-overexpressing breast cancer cells. Smad3 transcriptional activity and cell cycle control were examined in cells transfected with wild-type (WT) Smad3 or Smad3 with single or multiple CDK phosphorylation site mutations (M) in the presence or absence of the CDK4 inhibitor or cotransfection with cdk4 small interfering RNA (siRNA). Transfection of the Smad3 5M construct resulted in decreased c-myc and higher p15(INK4B) expression. Compared with WT Smad3, overexpression of the Smad3 T8, T178, 4M, or 5M mutant constructs resulted in higher Smad3 transcriptional activity. Compared with cells transfected with WT Smad3, Smad3 transcriptional activity was higher in cells overexpressing Smad3 mutant constructs and treated with the CDK4 inhibitor or transfected with cdk4 siRNA. Cells transfected with Smad3 T8 or T178 and treated with the CDK4 inhibitor showed an increase in the G(1) cell population. Inhibition of CDK-mediated Smad3 phosphorylation released cyclin D1-regulated blockade of Smad3 transcriptional activity and recovered cell cycle arrest in breast cancer cells. Targeted inhibition of CDK4 activity may have a role in the treatment of cyclin D-overexpressing breast cancers.
Collapse
Affiliation(s)
- Stanislav Zelivianski
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anne Cooley
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Ron Kall
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Jacqueline S. Jeruss
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611
| |
Collapse
|
18
|
Abstract
We developed the Genomic Regions Enrichment of Annotations Tool (GREAT) to analyze the functional significance of cis-regulatory regions identified by localized measurements of DNA binding events across an entire genome. Whereas previous methods took into account only binding proximal to genes, GREAT is able to properly incorporate distal binding sites and control for false positives using a binomial test over the input genomic regions. GREAT incorporates annotations from 20 ontologies and is available as a web application. Applying GREAT to data sets from chromatin immunoprecipitation coupled with massively parallel sequencing (ChIP-seq) of multiple transcription-associated factors, including SRF, NRSF, GABP, Stat3 and p300 in different developmental contexts, we recover many functions of these factors that are missed by existing gene-based tools, and we generate testable hypotheses. The utility of GREAT is not limited to ChIP-seq, as it could also be applied to open chromatin, localized epigenomic markers and similar functional data sets, as well as comparative genomics sets.
Collapse
|
19
|
Serum response factor depletion affects the proliferation of the hepatocellular carcinoma cells HepG2 and JHH6. Biochimie 2010; 92:455-63. [PMID: 20144681 DOI: 10.1016/j.biochi.2010.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 01/12/2010] [Indexed: 02/07/2023]
Abstract
For hepatocellular carcinoma (HCC), a leading cause of cancer death world-wide, there is no effective therapy especially for the advanced stage of the disease. Thus, we started the investigations about a novel anti HCC approach based on the depletion of the transcription factor serum response factor (SRF) in HCC cell lines; SRF choice was based on its recently proposed contribution to HCC tissue development and on its important role in cell proliferation. SRF depletion, obtained by a siRNA (siSRF797), was studied in two HCC cell lines, i.e. HepG2 and JHH6 assigned to high and low hepatocytic differentiation grade on the base of the capacity to synthesize albumin. In the HCC cell lines examined, siSRF797 reduced both the mRNA and protein levels of SRF without inducing unspecific interferon response or cytotoxicity. Moreover, SRF depletion induced the reduction of S-phase cells and a decrease in cell number and vitality. Particularly in HepG2, cell growth impairment was paralleled by the decrease of the levels of the transcription factor E2F1 together with some of its regulated genes. In HepG2 but not in JHH6, SRF depletion was associated with apoptosis. Finally, in both HepG2 and JHH6, the combined administration of siSRF797 and bortezomib, a proteasome inhibitor whose therapeutic potential for HCC is considered attractive, further reduced cell viability compared to either siSRF797 or bortezomib treatment alone. In conclusion, SRF depletion affects the expansion of the high and low differentiation grade HCC cells HepG2 and JHH6. These results can pave the way to understand the role of SRF in HCC development and possibly to identify novel anti HCC therapeutic strategies.
Collapse
|
20
|
Masszi A, Speight P, Charbonney E, Lodyga M, Nakano H, Szászi K, Kapus A. Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. ACTA ACUST UNITED AC 2010; 188:383-99. [PMID: 20123992 PMCID: PMC2819691 DOI: 10.1083/jcb.200906155] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smad3 inhibits activation of the smooth muscle actin promoter and functions as a timer for myogenic programming in the epithelium. Epithelial–myofibroblast (MF) transition (EMyT) is a critical process in organ fibrosis, leading to α–smooth muscle actin (SMA) expression in the epithelium. The mechanism underlying the activation of this myogenic program is unknown. We have shown previously that both injury to intercellular contacts and transforming growth factor β (TGF-β) are indispensable for SMA expression (two-hit model) and that contact disruption induces nuclear translocation of myocardin-related transcription factor (MRTF). Because the SMA promoter harbors both MRTF-responsive CC(A/T)-rich GG element (CArG) boxes and TGF-β–responsive Smad-binding elements, we hypothesized that the myogenic program is mobilized by a synergy between MRTF and Smad3. In this study, we show that the synergy between injury and TGF-β exclusively requires CArG elements. Surprisingly, Smad3 inhibits MRTF-driven activation of the SMA promoter, and Smad3 silencing renders injury sufficient to induce SMA expression. Furthermore, Smad3 is degraded under two-hit conditions, thereby liberating the myogenic program. Thus, Smad3 is a critical timer/delayer of MF commitment in the epithelium, and EMyT can be dissected into Smad3-promoted (mesenchymal) and Smad3-inhibited (myogenic) phases.
Collapse
Affiliation(s)
- András Masszi
- Keenan Research Centre, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Yun CH, Yoon SY, Nguyen TT, Cho HY, Kim TH, Kim ST, Kim BC, Hong YS, Kim SJ, Lee HJ. Geldanamycin inhibits TGF-beta signaling through induction of Hsp70. Arch Biochem Biophys 2009; 495:8-13. [PMID: 19995547 DOI: 10.1016/j.abb.2009.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 01/10/2023]
Abstract
Dysregulation of transforming growth factor-beta (TGF-beta) signaling has been implicated in the pathogenesis of a variety of diseases including cancer; therefore, pharmacological inhibitors that target the TGF-beta signaling pathway might be promising drugs for disease therapy. In this study, we investigated the mechanism of inhibition of TGF-beta signaling by the Hsp90 inhibitor geldanamycin (GA). Treatment with GA suppressed TGF-beta signaling, as evidenced by inhibition of TGF-beta-induced phosphorylation and transcriptional activity of Smad3 and decreased induction of target genes. Western blot analysis revealed that GA induced degradation of TGF-beta type I and type II receptors through a proteasome-dependent pathway. Notably, induction of Hsp70 by GA correlated with inhibition of TGF-beta signaling. Suppression of Hsp70 expression by Hsp70 siRNA or KNK437, an inhibitor of Hsp70 synthesis, blocked the inhibition of TGF-beta signaling by GA. Furthermore, Hsp70 interacted directly with TGF-beta receptors following GA treatment. Our results suggest that GA-mediated induction of Hsp70 and its subsequent interaction with TGF-beta receptors plays a crucial role in inhibition of TGF-beta signaling.
Collapse
Affiliation(s)
- Chang-Hyun Yun
- Lee Gi Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo, Yeonsu, Incheon 406-840, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Transforming growth factor beta (TGFbeta) pathways are implicated in metazoan development, adult homeostasis and disease. TGFbeta ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFbeta family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFbeta signal transduction in metazoans and emphasize events crucial for embryonic development.
Collapse
|
23
|
Munoz-Pinto DJ, Bulick AS, Hahn MS. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior. J Biomed Mater Res A 2009; 90:303-16. [PMID: 19402139 DOI: 10.1002/jbm.a.32492] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although scaffold material properties are known to critically impact cell behavior, it has proven difficult to correlate specific cell responses to isolated scaffold parameters, inhibiting rational design of scaffold material properties. The aim of this study was to validate a systematic approach for evaluating the influence of initial scaffold modulus and mesh size on cell extracellular matrix (ECM) deposition and phenotype. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were selected for this study because of their tunable material properties. Following screening of six distinct PEGDA hydrogels, three formulations were identified which permitted uncoupled investigation of scaffold mesh size and modulus within the target incremental modulus range of approximately 100-300 kPa. Smooth muscle cells (SMCs) were encapsulated within these three formulations, and cell ECM deposition and phenotype were evaluated following 21 days of culture. Although elastin content appeared to be correlated with scaffold mesh size and modulus to a similar degree, levels of collagen and serum response factor (SRF), a key regulator of SMC phenotype, were more strongly correlated with mesh size. To gain insight into the cell signaling underlying these observed correlations, variations in cell metabolic state and in RhoA signaling were semi-quantitatively evaluated. Both RhoA activity, which is largely modulated by scaffold mechanics in 2D, and cell metabolic activity were highly correlated with hydrogel mesh size. These results indicate that the effects of scaffold mechanics on RhoA activity in 3D may be distinct from those in 2D and underscore the need for uncoupled investigation of scaffold parameters on cell behavior. Furthermore, the present data suggest that RhoA signaling and cell metabolic regulation may be closely linked.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
24
|
Blüthgen N, Legewie S, Kielbasa SM, Schramme A, Tchernitsa O, Keil J, Solf A, Vingron M, Schäfer R, Herzel H, Sers C. A systems biological approach suggests that transcriptional feedback regulation by dual-specificity phosphatase 6 shapes extracellular signal-related kinase activity in RAS-transformed fibroblasts. FEBS J 2009; 276:1024-35. [PMID: 19154344 DOI: 10.1111/j.1742-4658.2008.06846.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling determines crucial cell fate decisions in most cell types, and mediates cellular transformation in many types of cancer. The activity of MAPK is controlled by reversible phosphorylation, and the quantitative characteristics of MAPK activation determine the cellular response. Many systems biological studies have analyzed the activation kinetics and the dose-response behavior of the MAPK signaling pathway. Here we investigate how the pathway activity is controlled by transcriptional feedback loops. Initially, we predict that MAPK signaling regulates phosphatases, by integrating promoter sequence data and ontology-based classification of gene function. From this, we deduce that MAPK signaling might be controlled by transcriptional negative feedback regulation via dual-specificity phosphatases (DUSPs), and implement a mathematical model to further test this hypothesis. Using time-resolved measurements of pathway activity and gene expression, we employ a model selection approach, and select DUSP6 as a highly likely candidate for shaping the activity of the MAPK pathway during cellular transformation caused by oncogenic RAS. Two predictions from the model were confirmed: first, feedback regulation requires that DUSP6 mRNA and protein are unstable; and second, the activation kinetics of MAPK are ultrasensitive. Taken together, an integrated systems biological approach reveals that transcriptional negative feedback controls the kinetics and the extent of MAPK activation under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Nils Blüthgen
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Park SY, Jang KY, Kim YN, Kim HJ, Park HS, Chung MJ, Yu HC, Cho BH, Kim KR, Moon WS. Expression and Prognostic Significance of Serum Response Factor in Cholangiocarcinoma. KOREAN JOURNAL OF PATHOLOGY 2009. [DOI: 10.4132/koreanjpathol.2009.43.6.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shin Young Park
- Department of Pathology, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Yo Na Kim
- Department of Pathology, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Hee Jin Kim
- Department of Pathology, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Hee Chul Yu
- Department of Surgery, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Baik Hwan Cho
- Department of Surgery, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| | - Kyoung Ryul Kim
- Forensic Medicine Division, Forensic Medicine Department, National Institute of Scientific Investigations, Seoul, Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Jeonju, Korea
| |
Collapse
|
26
|
Elberg G, Chen L, Elberg D, Chan MD, Logan CJ, Turman MA. MKL1 mediates TGF-β1-induced α-smooth muscle actin expression in human renal epithelial cells. Am J Physiol Renal Physiol 2008; 294:F1116-28. [DOI: 10.1152/ajprenal.00142.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is known to induce epithelial-mesenchymal transition in the kidney, a process involved in tubulointerstitial fibrosis. We hypothesized that a coactivator of the serum response factor (SRF), megakaryoblastic leukemia factor-1 (MKL1), stimulates α-smooth muscle actin (α-SMA) transcription in primary cultures of renal tubular epithelial cells (RTC), which convert into myofibroblasts on treatment with TGF-β1. Herein, we study the effect of MKL1 expression on α-SMA in these cells. We demonstrate that TGF-β1 stimulation of α-SMA transcription is mediated through CC(A/T)6-rich GG elements known to bind to SRF. These elements also mediate the MKL1 effect that dramatically activates α-SMA transcription in serum-free media. MKL1 fused to green fluorescent protein localizes to the nucleus and induces α-SMA expression regardless of treatment with TGF-β1. Using proteasome inhibitors, we also demonstrate that the proteolytic ubiquitin pathway regulates MKL1 expression. These data indicate that MKL1 overexpression is sufficient to induce α-SMA expression. Inhibition of endogenous expression of MKL1 by small interfering RNA abolishes TGF-β1 stimulation of α-SMA expression. Therefore, MKL1 is also absolutely required for TGF-β1 stimulation of α-SMA expression. Western blot and immunofluorescence analysis show that overexpressed and endogenous MKL1 are located in the nucleus in non-stimulated RTC. Chromatin immunoprecipitation assay demonstrates that TGF-β1 induces binding of endogenous SRF and MKL1 to the α-SMA promoter in chromatin. Since MKL1 constitutes a potent factor regulating α-SMA expression, modulation of endogenous MKL1 expression or activity may have a profound effect on myofibroblast formation and function in the kidney.
Collapse
|
27
|
Aragues R, Sander C, Oliva B. Predicting cancer involvement of genes from heterogeneous data. BMC Bioinformatics 2008; 9:172. [PMID: 18371197 PMCID: PMC2330045 DOI: 10.1186/1471-2105-9-172] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 03/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data. Results We implemented a systematic method using the PIANA software that predicts cancer involvement of genes by integrating heterogeneous datasets. Specifically, we produced lists of genes likely to be involved in cancer by relying on: (i) protein-protein interactions; (ii) differential expression data; and (iii) structural and functional properties of cancer genes. The integrative approach that combines multiple sources of data obtained positive predictive values ranging from 23% (on a list of 811 genes) to 73% (on a list of 22 genes), outperforming the use of any of the data sources alone. We analyze a list of 20 cancer gene predictions, finding that most of them have been recently linked to cancer in literature. Conclusion Our approach to identifying and prioritizing candidate cancer genes can be used to produce lists of genes likely to be involved in cancer. Our results suggest that differential expression studies yielding high numbers of candidate cancer genes can be filtered using protein interaction networks.
Collapse
Affiliation(s)
- Ramon Aragues
- Structural Bioinformatics Lab, (GRIB), Universitat Pompeu Fabra-IMIM, Barcelona Research Park of Biomedicine (PRBB), 08003-Barcelona, Catalonia, Spain.
| | | | | |
Collapse
|
28
|
Brown KA, Pietenpol JA, Moses HL. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. J Cell Biochem 2007; 101:9-33. [PMID: 17340614 DOI: 10.1002/jcb.21255] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is an important growth inhibitor of epithelial cells, and insensitivity to this cytokine results in uncontrolled cell proliferation and can contribute to tumorigenesis. Smad2 and Smad3 are direct mediators of TGF-beta signaling, however little is known about the selective activation of Smad2 versus Smad3. The Smad2 and Smad3 knockout mouse phenotypes and studies comparing Smad2 and Smad3 activation of TGF-beta target genes, suggest that Smad2 and Smad3 have distinct roles in TGF-beta signaling. The observation that TGF-beta inhibits proliferation of Smad3-null mammary gland epithelial cells, whereas Smad3 deficient fibroblasts are only partially growth inhibited, suggests that Smad3 has a different role in epithelial cells and fibroblasts. Herein, the current understanding of Smad2 and Smad3-mediated TGF-beta signaling and their relative roles are discussed, in addition to potential mechanisms for the selective activation of Smad2 versus Smad3. Since alterations in the TGF-beta signaling pathway play an important role in promoting tumorigenesis and cancer progression, methods for therapeutic targeting of the TGF-beta signaling pathway are being pursued. Determining how Smad2 or Smad3 differentially regulate the TGF-beta response may translate into developing more effective strategies for cancer therapy.
Collapse
Affiliation(s)
- Kimberly A Brown
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|