1
|
Osman N, ELzayat R, ELtounsi I. Higher mTOR Expression: A Marker of Poor Outcome in Patients with de Novo AML. Indian J Hematol Blood Transfus 2023; 39:325-329. [PMID: 37006968 PMCID: PMC10064364 DOI: 10.1007/s12288-022-01569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/10/2022] [Indexed: 11/14/2022] Open
Abstract
Acute myeloid leukemia (AML) displays significant clinical diversity mainly due to the variation in the underlying molecular defects, which is now recognized as the main driver for leukemogenesis. mTOR deregulation is thought to promote the proliferation and survival of leukemic blasts. This work aimed to study mTOR gene expression as a prognostic marker and a potential therapeutic target in AML. Quantitative real-time PCR evaluated mTOR expression in 45 new AML cases in relation to disease characteristics and outcome. mTOR was overexpressed in AML patients and higher levels were seen in the group that was not in complete remission (CR), at the end of induction, compared to those who achieved remission (17.03 ± 16.44 vs 3.91 ± 2.55 respectively, p < 0.001). In addition, mTOR expression inversely correlated with survival (p < 0.001). Patients with mTOR expression > 5.2 had a median overall survival of 10 months as opposed to 23 months in those with an expression of ≤ 5.2, p < 0.001. mTOR was an independent risk factor for failure of response in our patient group (p 0.007 and OR 1.54). mTOR has prognostic implications as it predicted the response and survival in our patients. Supplementary Information The online version contains supplementary material available at 10.1007/s12288-022-01569-3.
Collapse
Affiliation(s)
- Nahla Osman
- Department of Clinical Pathology, Menoufia Faculty of Medicine, Shebin Elkom, Egypt
| | - Reham ELzayat
- Department of Clinical Pathology, Menoufia Faculty of Medicine, Shebin Elkom, Egypt
| | - Iman ELtounsi
- Department of Clinical Pathology, Menoufia Faculty of Medicine, Shebin Elkom, Egypt
| |
Collapse
|
2
|
Zhao Y, Peng H. The Role of N 6-Methyladenosine (m 6A) Methylation Modifications in Hematological Malignancies. Cancers (Basel) 2022; 14:332. [PMID: 35053496 PMCID: PMC8774242 DOI: 10.3390/cancers14020332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
Epigenetics is identified as the study of heritable modifications in gene expression and regulation that do not involve DNA sequence alterations, such as DNA methylation, histone modifications, etc. Importantly, N6-methyladenosine (m6A) methylation modification is one of the most common epigenetic modifications of eukaryotic messenger RNA (mRNA), which plays a key role in various cellular processes. It can not only mediate various RNA metabolic processes such as RNA splicing, translation, and decay under the catalytic regulation of related enzymes but can also affect the normal development of bone marrow hematopoiesis by regulating the self-renewal, proliferation, and differentiation of pluripotent stem cells in the hematopoietic microenvironment of bone marrow. In recent years, numerous studies have demonstrated that m6A methylation modifications play an important role in the development and progression of hematologic malignancies (e.g., leukemia, lymphoma, myelodysplastic syndromes [MDS], multiple myeloma [MM], etc.). Targeting the inhibition of m6A-associated factors can contribute to increased susceptibility of patients with hematologic malignancies to therapeutic agents. Therefore, this review elaborates on the biological characteristics and normal hematopoietic regulatory functions of m6A methylation modifications and their role in the pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Yan Zhao
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Hematology, Central South University, Changsha 410011, China
| | - Hongling Peng
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha 410011, China;
- Institute of Hematology, Central South University, Changsha 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha 410011, China
| |
Collapse
|
3
|
Vo TT, Herzog LO, Buono R, Lee JHS, Mallya S, Duong MR, Thao J, Gotesman M, Fruman DA. Targeting eIF4F translation complex sensitizes B-ALL cells to tyrosine kinase inhibition. Sci Rep 2021; 11:21689. [PMID: 34737376 PMCID: PMC8569117 DOI: 10.1038/s41598-021-00950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase whose activation is associated with poor prognosis in pre-B cell acute lymphoblastic leukemia (B-ALL). These and other findings have prompted diverse strategies for targeting mTOR signaling in B-ALL and other B-cell malignancies. In cellular models of Philadelphia Chromosome-positive (Ph+) B-ALL, mTOR kinase inhibitors (TOR-KIs) that inhibit both mTOR-complex-1 (mTORC1) and mTOR-complex-2 (mTORC2) enhance the cytotoxicity of tyrosine kinase inhibitors (TKIs) such as dasatinib. However, TOR-KIs have not shown substantial efficacy at tolerated doses in blood cancer clinical trials. Selective inhibition of mTORC1 or downstream effectors provides alternative strategies that may improve selectivity towards leukemia cells. Of particular interest is the eukaryotic initiation factor 4F (eIF4F) complex that mediates cap-dependent translation. Here we use novel chemical and genetic approaches to show that selective targeting of either mTORC1 kinase activity or components of the eIF4F complex sensitizes murine BCR-ABL-dependent pre-B leukemia cells to dasatinib. SBI-756, a small molecule inhibitor of eIF4F assembly, sensitizes human Ph+ and Ph-like B-ALL cells to dasatinib cytotoxicity without affecting survival of T lymphocytes or natural killer cells. These findings support the further evaluation of eIF4F-targeted molecules in combination therapies with TKIs in B-ALL and other blood cancers.
Collapse
Affiliation(s)
- Thanh-Trang Vo
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Lee-Or Herzog
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Roberta Buono
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Jong-Hoon Scott Lee
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Sharmila Mallya
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Madeleine R Duong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Joshua Thao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Moran Gotesman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Ianniello Z, Sorci M, Ceci Ginistrelli L, Iaiza A, Marchioni M, Tito C, Capuano E, Masciarelli S, Ottone T, Attrotto C, Rizzo M, Franceschini L, de Pretis S, Voso MT, Pelizzola M, Fazi F, Fatica A. New insight into the catalytic -dependent and -independent roles of METTL3 in sustaining aberrant translation in chronic myeloid leukemia. Cell Death Dis 2021; 12:870. [PMID: 34561421 PMCID: PMC8463696 DOI: 10.1038/s41419-021-04169-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/03/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by the presence of tyrosine kinase BCR-ABL1 fusion protein, which deregulate transcription and mRNA translation. Tyrosine kinase inhibitors (TKIs) are the first-choice treatment. However, resistance to TKIs remains a challenge to cure CML patients. Here, we reveal that the m6A methyltransferase complex METTL3/METTL14 is upregulated in CML patients and that is required for proliferation of primary CML cells and CML cell lines sensitive and resistant to the TKI imatinib. We demonstrate that depletion of METTL3 strongly impairs global translation efficiency. In particular, our data show that METTL3 is crucial for the expression of genes involved in ribosome biogenesis and translation. Specifically, we found that METTL3 directly regulates the level of PES1 protein identified as an oncogene in several tumors. We propose a model in which nuclear METTL3/METTL14 methyltransferase complex modified nascent transcripts whose translation is enhanced by cytoplasmic localization of METTL3, independently from its catalytic activity. In conclusion, our results point to METTL3 as a novel relevant oncogene in CML and as a promising therapeutic target for TKI resistant CML.
Collapse
Affiliation(s)
- Zaira Ianniello
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Melissa Sorci
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Lavinia Ceci Ginistrelli
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Marcella Marchioni
- Institute of Biology, Molecular Medicine and Nanobiotechnology, CNR, Sapienza University of Rome, Rome, Italy
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Ernestina Capuano
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.,Histology and Embryology Section, Department of Life Science and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Cristina Attrotto
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Stefano de Pretis
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Fondazione Santa Lucia, Laboratorio di Neuro-Oncoematologia, Rome, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy. .,Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy.
| | - Alessandro Fatica
- Department of Biology and Biotechnology 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
5
|
Chiu H, Buono R, Jackson LV, Herzog LO, Mallya S, Conn CS, Ruggero D, Fruman DA. Reduced eIF4E function impairs B-cell leukemia without altering normal B-lymphocyte function. iScience 2021; 24:102748. [PMID: 34278258 PMCID: PMC8261676 DOI: 10.1016/j.isci.2021.102748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 11/15/2022] Open
Abstract
The cap-binding protein eukaryotic initiation factor 4E (eIF4E) promotes translation of mRNAs associated with proliferation and survival and is an attractive target for cancer therapeutics. Here, we used Eif4e germline and conditional knockout models to assess the impact of reduced Eif4e gene dosage on B-cell leukemogenesis compared to effects on normal pre-B and mature B-cell function. Using a BCR-ABL-driven pre-B-cell leukemia model, we find that loss of one allele of Eif4e impairs transformation and reduces fitness in competition assays in vitro and in vivo. In contrast, reduced Eif4e gene dosage had no significant effect on development of pre-B and mature B cells or on survival or proliferation of non-transformed B lineage cells. These results demonstrate that inhibition of eIF4E could be a new therapeutic tool for pre-B-cell leukemia while preserving development and function of normal B cells.
Collapse
Affiliation(s)
- Honyin Chiu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Roberta Buono
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Leandra V. Jackson
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Lee-or Herzog
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Sharmila Mallya
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Crystal S. Conn
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- School of Medicine and Department of Urology, University of California, San Francisco, CA 94143, USA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- School of Medicine and Department of Urology, University of California, San Francisco, CA 94143, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - David A. Fruman
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Total Saponins of Rubus Parvifolius L. Exhibited Anti-Leukemia Effect in vivo through STAT3 and eIF4E Signaling Pathways. Chin J Integr Med 2018; 24:920-924. [DOI: 10.1007/s11655-018-2563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2016] [Indexed: 01/18/2023]
|
7
|
Yang H, Chennamaneni LR, Ho MWT, Ang SH, Tan ESW, Jeyaraj DA, Yeap YS, Liu B, Ong EH, Joy JK, Wee JLK, Kwek P, Retna P, Dinie N, Nguyen TTH, Tai SJ, Manoharan V, Pendharkar V, Low CB, Chew YS, Vuddagiri S, Sangthongpitag K, Choong ML, Lee MA, Kannan S, Verma CS, Poulsen A, Lim S, Chuah C, Ong TS, Hill J, Matter A, Nacro K. Optimization of Selective Mitogen-Activated Protein Kinase Interacting Kinases 1 and 2 Inhibitors for the Treatment of Blast Crisis Leukemia. J Med Chem 2018; 61:4348-4369. [PMID: 29683667 DOI: 10.1021/acs.jmedchem.7b01714] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by bcr-abl1, a constitutively active tyrosine kinase fusion gene responsible for an abnormal proliferation of leukemic stem cells (LSCs). Inhibition of BCR-ABL1 kinase activity offers long-term relief to CML patients. However, for a proportion of them, BCR-ABL1 inhibition will become ineffective at treating the disease, and CML will progress to blast crisis (BC) CML with poor prognosis. BC-CML is often associated with excessive phosphorylated eukaryotic translation initiation factor 4E (eIF4E), which renders LSCs capable of proliferating via self-renewal, oblivious to BCR-ABL1 inhibition. In vivo, eIF4E is exclusively phosphorylated on Ser209 by MNK1/2. Consequently, a selective inhibitor of MNK1/2 should reduce the level of phosphorylated eIF4E and re-sensitize LSCs to BCR-ABL1 inhibition, thus hindering the proliferation of BC LSCs. We report herein the structure-activity relationships and pharmacokinetic properties of a selective MNK1/2 inhibitor clinical candidate, ETC-206, which in combination with dasatinib prevents BC-CML LSC self-renewal in vitro and enhances dasatinib antitumor activity in vivo.
Collapse
Affiliation(s)
- Haiyan Yang
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Lohitha Rao Chennamaneni
- Organic Chemistry, Institute of Chemical and Engineering Sciences (ICES), A*STAR , 8 Biomedical Grove, Neuros, #07-01 , 138665 Singapore
| | - Melvyn Wai Tuck Ho
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Shi Hua Ang
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Eldwin Sum Wai Tan
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | | | - Yoon Sheng Yeap
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Boping Liu
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Esther Hq Ong
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Joma Kanikadu Joy
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - John Liang Kuan Wee
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Perlyn Kwek
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Priya Retna
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Nurul Dinie
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Thuy Thi Hanh Nguyen
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Shi Jing Tai
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Vithya Manoharan
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Vishal Pendharkar
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Choon Bing Low
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Yun Shan Chew
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Susmitha Vuddagiri
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Kanda Sangthongpitag
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Meng Ling Choong
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - May Ann Lee
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII) , A*STAR , 30 Biopolis Street, #07-01 Matrix , 138671 Singapore.,School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 637551 Singapore.,Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , 117543 Singapore
| | - Anders Poulsen
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Sharon Lim
- Duke-NUS Medical School , 8 College Road , 169857 Singapore
| | - Charles Chuah
- Duke-NUS Medical School , 8 College Road , 169857 Singapore
| | - Tiong Sin Ong
- Duke-NUS Medical School , 8 College Road , 169857 Singapore.,Department of Medicine , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Jeffrey Hill
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Alex Matter
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| | - Kassoum Nacro
- Experimental Therapeutics Centre (ETC) , A*STAR , 31 Biopolis Way, Nanos #03-01 , 138669 Singapore
| |
Collapse
|
8
|
Chen K, Yang J, Li J, Wang X, Chen Y, Huang S, Chen JL. eIF4B is a convergent target and critical effector of oncogenic Pim and PI3K/Akt/mTOR signaling pathways in Abl transformants. Oncotarget 2017; 7:10073-89. [PMID: 26848623 PMCID: PMC4891105 DOI: 10.18632/oncotarget.7164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/24/2016] [Indexed: 11/26/2022] Open
Abstract
Activation of eIF4B correlates with Abl-mediated cellular transformation, but the precise mechanisms are largely unknown. Here we show that eIF4B is a convergent substrate of JAK/STAT/Pim and PI3K/Akt/mTOR pathways in Abl transformants. Both pathways phosphorylated eIF4B in Abl-transformed cells, and such redundant regulation was responsible for the limited effect of single inhibitor on Abl oncogenicity. Persistent inhibition of one signaling pathway induced the activation of the other pathway and thereby restored the phosphorylation levels of eIF4B. Simultaneous inhibition of the two pathways impaired eIF4B phosphorylation more effectively, and synergistically induced apoptosis in Abl transformed cells and inhibited the growth of engrafted tumors in nude mice. Similarly, the survival of Abl transformants exhibited a higher sensitivity to the pharmacological inhibition, when combined with the shRNA-based silence of the other pathway. Interestingly, such synergy was dependent on the phosphorylation status of eIF4B on Ser422, as overexpression of eIF4B phosphomimetic mutant S422E in the transformants greatly attenuated the synergistic effects of these inhibitors on Abl oncogenicity. In contrast, eIF4B knockdown sensitized Abl transformants to undergo apoptosis induced by the combined blockage. Collectively, the results indicate that eIF4B integrates the signals from Pim and PI3K/Akt/mTOR pathways in Abl-expressing leukemic cells, and is a promising therapeutic target for such cancers.
Collapse
Affiliation(s)
- Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jianling Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.,Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Department of Immunology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Ji-Long Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Ko TK, Chin HS, Chuah CT, Huang JW, Ng KP, Khaw SL, Huang DC, Ong ST. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget 2016; 7:2721-33. [PMID: 26517680 PMCID: PMC4823067 DOI: 10.18632/oncotarget.5436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022] Open
Abstract
Both germline polymorphisms and tumor-specific genetic alterations can determine the response of a cancer to a given therapy. We previously reported a germline deletion polymorphism in the BIM gene that was sufficient to mediate intrinsic resistance to tyrosine kinase inhibitors (TKI) in chronic myeloid leukemia (CML), as well as other cancers [1]. The deletion polymorphism favored the generation of BIM splice forms lacking the pro-apoptotic BH3 domain, conferring a relative resistance to the TKI imatinib (IM). However, CML patients with the BIM deletion polymorphism developed both partial and complete IM resistance. To understand the mechanisms underlying the latter, we grew CML cells either with or without the BIM deletion polymorphism in increasing IM concentrations. Under these conditions, the BIM deletion polymorphism enhanced the emergence of populations with complete IM resistance, mimicking the situation in patients. Importantly, the combined use of TKIs with the BH3 mimetic ABT-737 overcame the BCR-ABL1-dependent and -independent resistance mechanisms found in these cells. Our results illustrate the interplay between germline and acquired genetic factors in confering TKI resistance, and suggest a therapeutic strategy for patients with complete TKI resistance associated with the BIM deletion polymorphism.
Collapse
Affiliation(s)
- Tun Kiat Ko
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
| | - Hui San Chin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Charles T.H. Chuah
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Department of Haematology, Singapore General Hospital, Singapore
| | - John W.J. Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Present address: Singapore Institute for Clinical Sciences (SICS), Brenner Centre for Molecular Medicine, Singapore
| | - King-Pan Ng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Present address: Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Seong Lin Khaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - David C.S. Huang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Royal Children's Hospital, Parkville, VIC, Australia
| | - S. Tiong Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore
- Department of Haematology, Singapore General Hospital, Singapore
- Department of Medical Oncology, National Cancer Centre, Singapore
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Inhibition of Ras-mediated signaling pathways in CML stem cells. Cell Oncol (Dordr) 2015; 38:407-18. [PMID: 26458816 DOI: 10.1007/s13402-015-0248-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the presence of the BCR-ABL1 oncoprotein in cells with a hematopoietic stem cell (HSC) origin. BCR-ABL1 tyrosine kinase activity leads to constitutive activation of Ras, which in turn acts as a branch point to initiate multiple downstream signaling pathways governing proliferation, self-renewal, differentiation and apoptosis. As aberrant regulation of these cellular processes causes transformation and disease progression particularly in advanced stages of CML, investigation of these signaling pathways may uncover new therapeutic targets for the selective eradication of CML stem cells. Transcription factors play a crucial role in unbalancing the Ras signaling network and have recently been investigated as potential modulators in this regard. In this review, we first briefly summarize the Ras-associated molecular pathways that are involved in the regulation of CML stem cell properties. Next we discuss the relevance of Ras-associated transcription factors as nuclear targets in combination treatment strategies for CML. CONCLUSIONS A closer investigation of the influence of Ras-mediated signaling pathways on CML progression to blast crisis is warranted to uncover new directions for targeted therapies, particularly in cases that are resistant to current tyrosine kinase inhibitors.
Collapse
|
11
|
Podszywalow-Bartnicka P, Wolczyk M, Kusio-Kobialka M, Wolanin K, Skowronek K, Nieborowska-Skorska M, Dasgupta Y, Skorski T, Piwocka K. Downregulation of BRCA1 protein in BCR-ABL1 leukemia cells depends on stress-triggered TIAR-mediated suppression of translation. Cell Cycle 2015; 13:3727-41. [PMID: 25483082 DOI: 10.4161/15384101.2014.965013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BRCA1 tumor suppressor regulates crucial cellular processes involved in DNA damage repair and cell cycle control. We showed that expression of BCR-ABL1 correlates with decreased level of BRCA1 protein, which promoted aberrant mitoses and aneuploidy as well as altered DNA damage response. Using polysome profiling and luciferase-BRCA1 3'UTR reporter system here we demonstrate that downregulation of BRCA1 protein in CML is caused by inhibition of BRCA1 mRNA translation, but not by increased protein degradation or reduction of mRNA level and half-life. We investigated 2 mRNA-binding proteins - HuR and TIAR showing specificity to AU-Rich Element (ARE) sites in 3'UTR of mRNA. BCR-ABL1 promoted cytosolic localization of TIAR and HuR, their binding to BRCA1 mRNA and formation of the TIAR-HuR complex. HuR protein positively regulated BRCA1 mRNA stability and translation, conversely TIAR negatively regulated BRCA1 translation and was found localized predominantly in the cytosolic stress granules in CML cells. TIAR-dependent downregulation of BRCA1 protein level was a result of ER stress, which is activated in BCR-ABL1 expressing cells, as we previously shown. Silencing of TIAR in CML cells strongly elevated BRCA1 level. Altogether, we determined that TIAR-mediated repression of BRCA1 mRNA translation is responsible for downregulation of BRCA1 protein level in BCR-ABL1 -positive leukemia cells. This mechanism may contribute to genomic instability and provide justification for targeting PARP1 and/or RAD52 to induce synthetic lethality in "BRCAness" CML and BCR-ABL1 -positive ALL cells.
Collapse
Key Words
- ARE, AU-rich element
- ATM, Ataxia telangiectasia mutated kinase
- ATR, Ataxia telangiectasia and Rad3-related kinase
- BCR-ABL
- BRCA1
- BRCA1, Breast cancer type 1 susceptibility
- CML, chronic myeloid leukemia
- DNA damage response
- HuR
- HuR, Hu antigen R (alternative name: ELAV-like protein 1)
- TIAR
- TIAR, TIA1 cytotoxic granule-associated RNA-binding protein-like 1
- UPR, unfolded protein response
- UTR, untranslated region
- cell cycle
- eIF, eukaryotic initiation factor
- mRNA binding protein
- stress response
- synthetic lethality
- translation
Collapse
|
12
|
Shi F, Len Y, Gong Y, Shi R, Yang X, Naren D, Yan T. Ribavirin Inhibits the Activity of mTOR/eIF4E, ERK/Mnk1/eIF4E Signaling Pathway and Synergizes with Tyrosine Kinase Inhibitor Imatinib to Impair Bcr-Abl Mediated Proliferation and Apoptosis in Ph+ Leukemia. PLoS One 2015; 10:e0136746. [PMID: 26317515 PMCID: PMC4552648 DOI: 10.1371/journal.pone.0136746] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/07/2015] [Indexed: 02/05/2023] Open
Abstract
The eukaryotic translation initiation factor 4E (eIF4E), which is the main composition factor of eIF4F translation initiation complex, influences the growth of tumor through modulating cap-dependent protein translation. Previous studies reported that ribavirin could suppress eIF4E-controlled translation and reduce the synthesis of onco-proteins. Here, we investigated the anti-leukemic effects of ribavirin alone or in combination with tyrosine kinase inhibitor imatinib in Philadelphia chromosome positive (Ph+) leukemia cell lines SUP-B15 (Ph+ acute lymphoblastic leukemia cell line, Ph+ ALL) and K562 (chronic myelogenous leukemia cell line, CML). Our results showed that ribavirin had anti-proliferation effect; it down-regulated the phosphorylation levels of Akt, mTOR, 4EBP1, and eIF4E proteins in the mTOR/eIF4E signaling pathway, and MEK, ERK, Mnk1 and eIF4E proteins in ERK/Mnk1/eIF4E signaling pathway; reduced the expression of Mcl-1 (a translation substrates of eIF4F translation initiation complex) at protein synthesis level not mRNA transcriptional level; and induced cell apoptosis in both SUP-B15 and K562. 7-Methyl-guanosine cap affinity assay further demonstrated that ribavirin remarkably increased the eIF4E binding to 4EBP1 and decreased the combination of eIF4E with eIF4G, consequently resulting in a major inhibition of eIF4F complex assembly. The combination of ribavirin with imatinib enhanced antileukemic effects mentioned above, indicating that two drugs have synergistic anti-leukemic effect. Consistent with the cell lines, similar results were observed in Ph+ acute lymphoblastic primary leukemic blasts; however, the anti-proliferative role of ribavirin in other types of acute primary leukemic blasts was not obvious, which indicated that the anti-leukemic effect of ribavirin was different in cell lineages.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Synergism
- Eukaryotic Initiation Factor-4E/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Imatinib Mesylate/pharmacology
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- Philadelphia Chromosome
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Ribavirin/pharmacology
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Fangfang Shi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Len
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail:
| | - Rui Shi
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Yang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Duolan Naren
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianyou Yan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Teo T, Lam F, Yu M, Yang Y, Basnet SKC, Albrecht H, Sykes MJ, Wang S. Pharmacologic Inhibition of MNKs in Acute Myeloid Leukemia. Mol Pharmacol 2015; 88:380-9. [PMID: 26044548 DOI: 10.1124/mol.115.098012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 02/14/2025] Open
Abstract
The Ras/Raf/MAPK and PI3K/Akt/mTOR pathways are key signaling cascades involved in the regulation of cell proliferation and survival, and have been implicated in the pathogenesis of several types of cancers, including acute myeloid leukemia (AML). The oncogenic activity of eIF4E driven by the Mnk kinases is a convergent determinant of the two cascades, suggesting that targeting the Mnk/eIF4E axis may provide therapeutic opportunity for the treatment of cancer. Herein, a potent and selective Mnk2 inhibitor (MNKI-85) and a dual-specific Mnk1 and Mnk2 inhibitor (MNKI-19), both derived from a thienopyrimidinyl chemotype, were selected to explore their antileukemic properties. MNKI-19 and MNKI-85 are effective in inhibiting the growth of AML cells that possess an M5 subtype with FLT3-internal tandem duplication mutation. Further mechanistic studies show that the downstream effects with respect to the selective Mnk1/2 kinase inhibition in AML cells causes G1 cell cycle arrest followed by induction of apoptosis. MNKI-19 and MNKI-85 demonstrate similar Mnk2 kinase activity and cellular antiproliferative activity but exhibit different time-dependent effects on cell cycle progression and apoptosis. Collectively, this study shows that pharmacologic inhibition of both Mnk1 and Mnk2 can result in a more pronounced cellular response than targeting Mnk2 alone. However, MNKI-85, a first-in-class inhibitor of Mnk2, can be used as a powerful pharmacologic tool in studying the Mnk2/eIF4E-mediated tumorigenic mechanism. In conclusion, this study provides a better understanding of the mechanism underlying the inhibition of AML cell growth by Mnk inhibitors and suggests their potential utility as a therapeutic agent for AML.
Collapse
Affiliation(s)
- Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Frankie Lam
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Yuchao Yang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Matthew J Sykes
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, Centre for Cancer Biology, and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
14
|
Tsai BP, Jimenez J, Lim S, Fitzgerald KD, Zhang M, Chuah CTH, Axelrod H, Wilson L, Ong ST, Semler BL, Waterman ML. A novel Bcr-Abl-mTOR-eIF4A axis regulates IRES-mediated translation of LEF-1. Open Biol 2015; 4:140180. [PMID: 25392452 PMCID: PMC4248067 DOI: 10.1098/rsob.140180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Internal ribosome entry sites (IRESs) in cellular mRNAs direct expression of growth-promoting factors through an alternative translation mechanism that has yet to be fully defined. Lymphoid enhancer factor-1 (LEF-1), a Wnt-mediating transcription factor important for cell survival and metastasis in cancer, is produced via IRES-directed translation, and its mRNA is frequently upregulated in malignancies, including chronic myeloid leukaemia (CML). In this study, we determined that LEF1 expression is regulated by Bcr-Abl, the oncogenic protein that drives haematopoietic cell transformation to CML. We have previously shown that the LEF1 5′ untranslated region recruits a complex of proteins to its IRES, including the translation initiation factor eIF4A. In this report, we use two small molecule inhibitors, PP242 (dual mTOR (mammalian target of rapamycin) kinase inhibitor) and hippuristanol (eIF4A inhibitor), to define IRES regulation via a Bcr-Abl–mTOR–eIF4A axis in CML cell lines and primary patient leukaemias. We found that LEF1 and other IRESs are uniquely sensitive to the activities of Bcr-Abl/mTOR. Most notably, we discovered that eIF4A, an RNA helicase, elicits potent non-canonical effects on the LEF1 IRES. Hippuristanol inhibition of eIF4A stalls translation of IRES mRNA and triggers dissociation from polyribosomes. We propose that a combination drug strategy which targets mTOR and IRES-driven translation disrupts key factors that contribute to growth and proliferation in CML.
Collapse
Affiliation(s)
- Becky Pinjou Tsai
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Judith Jimenez
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Sharon Lim
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Graduate Medical School, Singapore Department of Haematology, Singapore General Hospital, Singapore
| | - Kerry D Fitzgerald
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Min Zhang
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California, Irvine, CA, USA
| | - Charles T H Chuah
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Graduate Medical School, Singapore Department of Haematology, Singapore General Hospital, Singapore
| | - Haley Axelrod
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Luke Wilson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - S Tiong Ong
- Cancer and Stem Cell Biology Signature Research Program, Duke-NUS Graduate Medical School, Singapore Department of Haematology, Singapore General Hospital, Singapore Department of Medical Oncology, National Cancer Centre, Singapore Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
15
|
Fonseca BD, Smith EM, Yelle N, Alain T, Bushell M, Pause A. The ever-evolving role of mTOR in translation. Semin Cell Dev Biol 2014; 36:102-12. [PMID: 25263010 DOI: 10.1016/j.semcdb.2014.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 02/06/2023]
Abstract
Control of translation allows for the production of stoichiometric levels of each protein in the cell. Attaining such a level of fine-tuned regulation of protein production requires the coordinated temporal and spatial control of numerous cellular signalling cascades impinging on the various components of the translational machinery. Foremost among these is the mTOR signalling pathway. The mTOR pathway regulates both the initiation and elongation steps of protein synthesis through the phosphorylation of numerous translation factors, while simultaneously ensuring adequate folding of nascent polypeptides through co-translational degradation of misfolded proteins. Perhaps most remarkably, mTOR is also a key regulator of the synthesis of ribosomal proteins and translation factors themselves. Two seminal studies have recently shown in translatome analysis that the mTOR pathway preferentially regulates the translation of mRNAs encoding ribosomal proteins and translation factors. Therefore, the role of the mTOR pathway in the control of protein synthesis extends far beyond immediate translational control. By controlling ribosome production (and ultimately ribosome availability), mTOR is a master long-term controller of protein synthesis. Herein, we review the literature spanning the early discoveries of mTOR on translation to the latest advances in our understanding of how the mTOR pathway controls the synthesis of ribosomal proteins.
Collapse
Affiliation(s)
- Bruno D Fonseca
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
| | - Ewan M Smith
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Nicolas Yelle
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Martin Bushell
- MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - Arnim Pause
- Goodman Cancer Research Centre, Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
16
|
Targeting of the MNK-eIF4E axis in blast crisis chronic myeloid leukemia inhibits leukemia stem cell function. Proc Natl Acad Sci U S A 2013; 110:E2298-307. [PMID: 23737503 DOI: 10.1073/pnas.1301838110] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia responds well to therapy targeting the oncogenic fusion protein BCR-ABL1 in chronic phase, but is resistant to treatment after it progresses to blast crisis (BC). BC is characterized by elevated β-catenin signaling in granulocyte macrophage progenitors (GMPs), which enables this population to function as leukemia stem cells (LSCs) and act as a reservoir for resistance. Because normal hematopoietic stem cells (HSCs) and LSCs depend on β-catenin signaling for self-renewal, strategies to specifically target BC will require identification of drugable factors capable of distinguishing between self-renewal in BC LSCs and normal HSCs. Here, we show that the MAP kinase interacting serine/threonine kinase (MNK)-eukaryotic translation initiation factor 4E (eIF4E) axis is overexpressed in BC GMPs but not normal HSCs, and that MNK kinase-dependent eIF4E phosphorylation at serine 209 activates β-catenin signaling in BC GMPs. Mechanistically, eIF4E overexpression and phosphorylation leads to increased β-catenin protein synthesis, whereas MNK-dependent eIF4E phosphorylation is required for nuclear translocation and activation of β-catenin. Accordingly, we found that a panel of small molecule MNK kinase inhibitors prevented eIF4E phosphorylation, β-catenin activation, and BC LSC function in vitro and in vivo. Our findings identify the MNK-eIF4E axis as a specific and critical regulator of BC self-renewal, and suggest that pharmacologic inhibition of the MNK kinases may be therapeutically useful in BC chronic myeloid leukemia.
Collapse
|
17
|
Farooqi AA, Nawaz A, Javed Z, Bhatti S, Ismail M. While at Rome miRNA and TRAIL do whatever BCR-ABL commands to do. Arch Immunol Ther Exp (Warsz) 2012; 61:59-74. [PMID: 23229677 DOI: 10.1007/s00005-012-0204-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/20/2012] [Indexed: 11/25/2022]
Abstract
It is a well-acclaimed fact that proteins expressed as a consequence of oncogenic fusions, mutations or amplifications can facilitate ectopic protein-protein interactions that re-wire signal dissemination pathways, in a manner that escalates malignancy. BCR-ABL-mediated signal transduction cascades in leukemic cells are assembled and modulated by a finely controlled network of protein-protein interactions, mediated by characteristic signaling domains and their respective binding motifs. BCR-ABL functions in a cell context-specific and cell type-specific manner to integrate signals that affect uncontrolled cellular proliferation. In this review, we draw attention to the recent progress made in outlining resistance against TRAIL-mediated apoptosis and diametrically opposed roles of miRNAs in BCR-ABL-positive leukemic cells. BCR-ABL governs carcinogenesis through well-organized web of antiapoptotic proteins and over-expressed oncomirs which target death receptors and pro-apoptotic genes. Set of oncomirs which inversely correlate with expression of TRAIL via suppression of SMAD is an important dimension which is gradually gaining attention of the researchers. Contrary to this, some current findings show a new role of BCR-ABL in nucleus with spotlight on apoptosis. It seems obvious that genetic heterogeneity of leukemias poses therapeutic challenges, and pharmacological agents that target components of the cancer promoting nano-machinery still need broad experimental validation to be considered competent as a component of the therapeutic arsenal for this group of diseases. Rapidly developing technologies are empowering us to explain the molecular "nature" of a patient and/or tumor and with this integration of personalized medicine, with maximized efficacy, cost effectiveness will hopefully improve survival chances of the patient.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College (RLMC), Lahore, Pakistan.
| | | | | | | | | |
Collapse
|
18
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
19
|
Ge Y, Cheng R, Zhou Y, Shen J, Peng L, Xu X, Dai Q, Liu P, Wang H, Ma X, Jia J, Chen Z. Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E. Mol Cell Biochem 2012; 368:17-25. [PMID: 22614784 DOI: 10.1007/s11010-012-1338-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 05/03/2012] [Indexed: 12/19/2022]
Abstract
Cryptotanshinone (CPT), a diterpene quinone isolated from Salvia miltiorrhiza, is recently reported to have obvious anticancer activities against diverse cancer cells. However, the effect and regulatory mechanism of CPT remain unclear in human chronic myeloid leukemia (CML) cells. In this study, we investigated the antiproliferative activity of CPT on the multidrug resistant CML cells K562/ADM. Our results demonstrated that CPT decreased the cell viability of K562/ADM cells by inducing cell cycle arrest and apoptosis through suppressing the expression of cyclin D1 and Bcl-2. Further studies indicated that CPT mainly functions at post-transcriptional levels, suggesting the involvement of eukaryotic initiation factor 4E (eIF4E). CPT significantly reduced the expression and activity of eIF4E in K562/ADM cells. Overexpression of eIF4E obvious conferred resistance to the CPT antiproliferation and proapoptotic activity as well as the cyclin D1 and Bcl-2 expressions. Knockdown of eIF4E significantly reduced the inhibitory effect of CPT in K562/ADM, confirming the participation of eIF4E during CPT function process. More importantly, the relative inhibitory efficiency of CPT positively correlated with the reductions on eIF4E in primary CML specimens. These results demonstrated that CPT played antitumor roles in K562/ADM cells by inhibiting the eIF4E regulatory system. Our results provide a novel anticancer mechanism of CPT in human CML cells.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Checkpoints/genetics
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Eukaryotic Initiation Factor-4E/genetics
- Eukaryotic Initiation Factor-4E/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Gene Knockdown Techniques
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Peptide Chain Initiation, Translational/drug effects
- Peptide Chain Initiation, Translational/genetics
- Phenanthrenes/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
Collapse
Affiliation(s)
- Yuqing Ge
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Juan WC, Ong ST. The role of protein phosphorylation in therapy resistance and disease progression in chronic myelogenous leukemia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:107-42. [PMID: 22340716 DOI: 10.1016/b978-0-12-396456-4.00007-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review focuses on the central role that protein phosphorylation plays in the pathogenesis of chronic myelogenous leukemia (CML). It will cover the signaling pathways that are dysregulated by the oncogenic tyrosine kinase, BCR-ABL1, which both defines and drives the disease, and the barriers to disease control. These will include the mechanisms that underlie drug resistance, as well as the features of CML that prevent its cure by tyrosine kinase inhibitors. In the second section, we will cover the proteins and pathways that lead to the transformation of early chronic-phase CML to the more advanced blast phase of the disease. Here, we will outline the key pathophysiologic differences between the chronic and the blast phase, the mechanisms that contribute to these differences, and how these might be therapeutically targeted in patients. In the final section, we will summarize the major lessons learnt from the CML clinic. We will focus on how these observations have impacted our understanding of the therapeutic potential of modulating protein phosphorylation in human diseases and areas in which future research in CML pathophysiology may be important.
Collapse
Affiliation(s)
- Wen Chun Juan
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | | |
Collapse
|
21
|
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in growth and survival of BCR-ABL transformed cells. AMPK kinase is a metabolic sensor that exhibits suppressive effects on the mTOR pathway and negatively regulates mTOR activity. We report that AMPK activators, such as metformin and 5-aminoimidazole-4-carboxamide ribonucleotide, suppress activation of the mTOR pathway in BCR-ABL-expressing cells. Treatment with these inhibitors results in potent suppression of chronic myeloid leukemia leukemic precursors and Ph(+) acute lymphoblastic leukemia cells, including cells expressing the T315I-BCR-ABL mutation. Altogether, our data suggest that AMPK is an attractive target for the treatment of BCR-ABL-expressing malignancies and raise the potential for use of AMPK activators in the treatment of refractory chronic myeloid leukemia and Ph(+) acute lymphoblastic leukemia.
Collapse
|
22
|
Shieh MP, Mitsuhashi M, Lilly M. Moving on up: Second-Line Agents as Initial Treatment for Newly-Diagnosed Patients with Chronic Phase CML. Clin Med Insights Oncol 2011; 5:185-99. [PMID: 21792346 PMCID: PMC3140277 DOI: 10.4137/cmo.s6416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The treatment of chronic myelogenous leukemia (CML) was revolutionized by the development of imatinib mesylate, a small molecule inhibitor of several protein tyrosine kinases, including the ABL1 protein tyrosine kinase. The current second generation of FDA-approved ABL tyrosine kinase inhibitors, dasatinib and nilotinib, are more potent inhibitors of BCR-ABL1 kinase in vitro. Originally approved for the treatment of patients who were refractory to or intolerant of imatinib, dasatinib and nilotinib are now also FDA approved in the first-line setting. The choice of tyrosine kinase inhibitor (ie, standard or high dose imatinib, dasatinib, nilotinib) to use for initial therapy in chronic-phase CML (CML-CP) will not always be obvious. Therapy selection will depend on both clinical and molecular factors, which we will discuss in this review.
Collapse
Affiliation(s)
- Marie P Shieh
- Division of Hematology-Oncology, Department of Medicine, and Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
23
|
Perrotti D, Harb JG. BCR-ABL1 kinase-dependent alteration of mRNA metabolism: potential alternatives for therapeutic intervention. Leuk Lymphoma 2011; 52 Suppl 1:30-44. [PMID: 21299458 DOI: 10.3109/10428194.2010.546914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of first- and second-generation tyrosine kinase inhibitors (TKIs) significantly improves prognosis for patients with early chronic phase chronic myeloid leukemia (CML) and efficiently counteracts leukemia in most patients with CML bearing a disease characterized by the expression of BCR-ABL1 mutants. However, the so-called 'tinib' TKIs (e.g. imatinib, nilotinib, dasatinib, and bosutinib) are both ineffective in patients who undergo blastic transformation and unable to eradicate CML at the stem cell level. This raises a few important questions. Is BCR-ABL1 expression and/or activity essential for blastic transformation? Is blastic transformation the result of genetic or epigenetic events that occur at the stem cell level which only become apparent in the granulocyte-macrophage progenitor (GMP) cell pool, or does it arise directly at the GMP level? As altered mRNA metabolism contributes to the phenotype of blast crisis CML progenitors (decreased translation of tumor suppressor genes and transcription factors essential for terminal differentiation and increased translation of anti-apoptotic genes), one attractive concept is to restore levels of these essential molecules to their normal levels. In this review, we discuss the mechanisms by which mRNA processing, translation, and degradation are deregulated in BCR-ABL1 myeloid blast crisis CML progenitors, and present encouraging results from studies with pharmacologic inhibitors which support their inclusion in the clinic.
Collapse
Affiliation(s)
- Danilo Perrotti
- Human Cancer Genetics Program, Depatment of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center and Center for RNA Biology, The Ohio State University, Columbus, OH 43210-2207, USA.
| | | |
Collapse
|
24
|
Xiong L, Zhang J, Yuan B, Dong X, Jiang X, Wang Y. Global proteome quantification for discovering imatinib-induced perturbation of multiple biological pathways in K562 human chronic myeloid leukemia cells. J Proteome Res 2010; 9:6007-15. [PMID: 20949922 DOI: 10.1021/pr100814y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imatinib mesylate, currently marketed by Novartis as Gleevec in the U.S., has emerged as the leading compound to treat the chronic phase of chronic myeloid leukemia (CML), through its inhibition of Bcr-Abl tyrosine kinases, and other cancers. However, resistance to imatinib develops frequently, particularly in late-stage disease. To identify new cellular pathways affected by imatinib treatment, we applied mass spectrometry together with stable isotope labeling by amino acids in cell culture (SILAC) for the comparative study of protein expression in K562 cells that were untreated or treated with a clinically relevant concentration of imatinib. Our results revealed that, among the 1344 quantified proteins, 73 had significantly altered levels of expression induced by imatinib and could be quantified in both forward and reverse SILAC labeling experiments. These included the down-regulation of thymidylate synthase, S-adenosylmethionine synthetase, and glycerol-3-phosphate dehydrogenase as well as the up-regulation of poly(ADP-ribose) polymerase 1, hemoglobins, and enzymes involved in heme biosynthesis. We also found, by assessing alteration in the acetylation level in histone H4 upon imatinib treatment, that the imatinib-induced hemoglobinization and erythroid differentiation in K562 cells are associated with global histone H4 hyperacetylation. Overall, these results provided potential biomarkers for monitoring the therapeutic intervention of CML using imatinib and offered important new knowledge for gaining insight into the molecular mechanisms of action of imatinib.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S, Lacombe C, Mayeux P, Bouscary D. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 2010; 24:1686-99. [PMID: 20703258 DOI: 10.1038/leu.2010.170] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a protein kinase implicated in the regulation of various cellular processes, including those required for tumor development, such as the initiation of mRNA translation, cell-cycle progression and cellular proliferation. In a wide range of hematological malignancies, the mTORC1 signaling pathway has been found to be deregulated and has been designed as a major target for tumor therapy. Given that pre-clinical studies have clearly established the therapeutic value of mTORC1 inhibition, numerous clinical trials of rapamycin and its derivates (rapalogs) are ongoing for treatment of these diseases. At this time, although disease stabilization and tumor regression have been observed, objective responses in some tumor types have been modest. Nevertheless, some of the mechanisms underlying cancer-cell resistance to rapamycin have now been described, thereby leading to the development of new strategy to efficiently target mTOR signaling in these diseases. In this review, we discuss the rationale for using mTOR inhibitors as novel therapies for a variety of hematological, malignancies with a focus on promising new perspectives for these approaches.
Collapse
Affiliation(s)
- N Chapuis
- Département d'Immunologie-Hématologie, Institut Cochin, Université Paris Descartes, CNRS, UMR8104, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mancini M, Petta S, Martinelli G, Barbieri E, Santucci MA. RAD 001 (everolimus) prevents mTOR and Akt late re-activation in response to imatinib in chronic myeloid leukemia. J Cell Biochem 2010; 109:320-8. [PMID: 20014066 DOI: 10.1002/jcb.22380] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mammalian target of rapamycin (mTOR) is one target of BCR-ABL fusion gene of chronic myeloid leukemia (CML). Moreover, it drives a compensatory route to Imatinib mesylate (IM) possibly involved in the progression of leukemic progenitors towards a drug-resistant phenotype. Accordingly, mTOR inhibitors are proposed for combined therapeutic strategies in CML. The major caveat in the use of mTOR inhibitors for cancer therapy comes from the induction of an mTOR-phosphatidylinositol 3 kinase (PI3k) feedback loop driving the retrograde activation of Akt. Here we show that the rapamycin derivative RAD 001 (everolimus, Novartis Institutes for Biomedical Research) inhibits mTOR and, more importantly, revokes mTOR late re-activation in response to IM. RAD 001 interferes with the assembly of both mTOR complexes: mTORC1 and mTORC2. The inhibition of mTORC2 results in the de-phosphorylation of Akt at Ser(473) in the hydrophobic motif of C-terminal tail required for Akt full activation and precludes Akt re-phosphorylation in response to IM. Moreover, RAD 001-induced inhibition of Akt causes the de-phosphorylation of tuberous sclerosis tumor suppressor protein TSC2 at 14-3-3 binding sites, TSC2 release from 14-3-3 sigma (restoring its inhibitory function on mTORC1) and nuclear import (promoting the nuclear translocation of cyclin-dependent kinase [CDK] inhibitor p27(Kip1), the stabilization of p27(Kip1) ligand with CDK2, and the G(0)/G(1) arrest). RAD 001 cytotoxicity on cells not expressing the BCR-ABL fusion gene or its p210 protein tyrosine kinase (TK) activity suggests that the inhibition of normal hematopoiesis may represent a drug side effect.
Collapse
Affiliation(s)
- Manuela Mancini
- Dipartimento di Ematologia e Scienze Oncologiche "Lorenzo e Ariosto Seràgnoli," University of Bologna-Medical School, Bologna, Italy.
| | | | | | | | | |
Collapse
|
27
|
Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci U S A 2010; 6:966-7. [PMID: 20616057 DOI: 10.1073/pnas.1005114107] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
mTOR-generated signals play critical roles in growth of leukemic cells by controlling mRNA translation of genes that promote mitogenic responses. Despite extensive work on the functional relevance of rapamycin-sensitive mTORC1 complexes, much less is known on the roles of rapamycin-insensitive (RI) complexes, including mTORC2 and RI-mTORC1, in BCR-ABL-leukemogenesis. We provide evidence for the presence of mTORC2 complexes in BCR-ABL-transformed cells and identify phosphorylation of 4E-BP1 on Thr37/46 and Ser65 as RI-mTORC1 signals in primary chronic myelogenous leukemia (CML) cells. Our studies establish that a unique dual mTORC2/mTORC1 inhibitor, OSI-027, induces potent suppressive effects on primitive leukemic progenitors from CML patients and generates antileukemic responses in cells expressing the T315I-BCR-ABL mutation, which is refractory to all BCR-ABL kinase inhibitors currently in clinical use. Induction of apoptosis by OSI-027 appears to negatively correlate with induction of autophagy in some types of BCR-ABL transformed cells, as shown by the induction of autophagy during OSI-027-treatment and the potentiation of apoptosis by concomitant inhibition of such autophagy. Altogether, our studies establish critical roles for mTORC2 and RI-mTORC1 complexes in survival and growth of BCR-ABL cells and suggest that dual therapeutic targeting of such complexes may provide an approach to overcome leukemic cell resistance in CML and Ph+ ALL.
Collapse
|
28
|
Guigon CJ, Fozzatti L, Lu C, Willingham MC, Cheng SY. Inhibition of mTORC1 signaling reduces tumor growth but does not prevent cancer progression in a mouse model of thyroid cancer. Carcinogenesis 2010; 31:1284-91. [PMID: 20299527 DOI: 10.1093/carcin/bgq059] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Selective drugs targeting dysregulated oncogenic pathways are promising cancer therapies. Because the mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated in human follicular thyroid cancer (FTC), we hypothesized that its inhibition could block cancer development and progression. We, therefore, analyzed the effect of a treatment with a specific mTORC1 inhibitor (RAD001) in a faithful mouse model of FTC with constitutive mTORC1 activation (TRbeta(PV/PV)Pten(+/-) mice). The treatment did not prevent capsular and vascular invasion of the thyroid and the occurrence of lung metastasis. However, it substantially decelerated thyroid tumor growth, thereby prolonging TRbeta(PV/PV)Pten(+/-) mouse life span. RAD001 efficiently inhibited mTORC1 activity, as shown by the reduced phosphorylation of its downstream targets involved in the activity of the translation machinery, such as ribosomal S6 kinase (p70(S6K)), eukaryotic translation initiation factor 4E binding protein (4E-BP1) and the eukaryotic translation initiation factors eIF-4B and eIF-4G. Whereas mTORC1 signaling inhibition did not alter cell apoptosis, it induced a significant decrease in cell proliferation that was associated with the reduced abundance and altered activity of key regulators of cell cycle progression. Altogether, our data indicate that mTORC1 signaling plays a major role in the integration of the mitogenic signal in FTC. Therefore, our preclinical study with a relevant mouse model of FTC demonstrates for the first time that RAD001 efficaciously stabilizes cancer growth although it does not prevent its fatal outcome. In conclusion, our work underscores that in the treatment of FTC patients, RAD001 can only be used in combination with drugs and therapies inducing tumor shrinkage and blocking metastasis.
Collapse
Affiliation(s)
- Celine J Guigon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | | | | | |
Collapse
|
29
|
Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, Vu C, Lilly MB, Mallya S, Ong ST, Konopleva M, Martin MB, Ren P, Liu Y, Rommel C, Fruman DA. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010; 16:205-13. [PMID: 20072130 DOI: 10.1038/nm.2091] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023]
Abstract
Targeting the mammalian target of rapamycin (mTOR) protein is a promising strategy for cancer therapy. The mTOR kinase functions in two complexes, TORC1 (target of rapamycin complex-1) and TORC2 (target of rapamycin complex-2); however, neither of these complexes is fully inhibited by the allosteric inhibitor rapamycin or its analogs. We compared rapamycin with PP242, an inhibitor of the active site of mTOR in both TORC1 and TORC2 (hereafter referred to as TORC1/2), in models of acute leukemia harboring the Philadelphia chromosome (Ph) translocation. We demonstrate that PP242, but not rapamycin, causes death of mouse and human leukemia cells. In vivo, PP242 delays leukemia onset and augments the effects of the current front-line tyrosine kinase inhibitors more effectively than does rapamycin. Unexpectedly, PP242 has much weaker effects than rapamycin on the proliferation and function of normal lymphocytes. PI-103, a less selective TORC1/2 inhibitor that also targets phosphoinositide 3-kinase (PI3K), is more immunosuppressive than PP242. These findings establish that Ph(+) transformed cells are more sensitive than normal lymphocytes to selective TORC1/2 inhibitors and support the development of such inhibitors for leukemia therapy.
Collapse
Affiliation(s)
- Matthew R Janes
- Department of Molecular Biology & Biochemistry, Institute for Immunology, University of California-Irvine, Irvine, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Robert F, Pelletier J. Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 2009; 13:1279-93. [PMID: 19705976 DOI: 10.1517/14728220903241625] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a master regulator of translation initiation that controls the recruitment of ribosomes to mRNA templates in response to intracellular and extracellular cues. Evidence suggests that mTOR and its direct downstream targets, S6K and eIF4E/4E-BP, play significant roles in oncogenesis, and that inhibiting this pathway holds promise as an anti-proliferative approach. Recent genome-wide analyses of mutations in human cancers indicate that transformed cells activate a handful of processes and signalling pathways that are major contributors to their phenotype. Here we review the current literature implicating mTOR and translation initiation downstream of many of these various signalling pathways and processes usurped in human cancers. This review highlights the widespread activation of mTOR/eIF4E following acquisition of oncogenic lesions and its implication in promoting the transformation phenotype and indicates that targeting the control of translation initiation makes logical sense as a broad-acting therapeutic approach.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry and Goodman cancer centre, McGill University, McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | | |
Collapse
|
31
|
Wang S, Wilkes MC, Leof EB, Hirschberg R. Noncanonical TGF-beta pathways, mTORC1 and Abl, in renal interstitial fibrogenesis. Am J Physiol Renal Physiol 2009; 298:F142-9. [PMID: 19846571 DOI: 10.1152/ajprenal.00320.2009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal interstitial fibrosis is a major determinant of renal failure in the majority of chronic renal diseases. Transforming growth factor-beta (TGF-beta) is the single most important cytokine promoting renal fibrogenesis. Recent in vitro studies identified novel non-smad TGF-beta targets including p21-activated kinase-2 (PAK2), the abelson nonreceptor tyrosine kinase (c-Abl), and the mammalian target of rapamycin (mTOR) that are activated by TGF-beta in mesenchymal cells, specifically in fibroblasts but less in epithelial cells. In the present studies, we show that non-smad effectors of TGF-beta including PAK2, c-Abl, Akt, tuberin (TSC2), and mTOR are activated in experimental unilateral obstructive nephropathy in rats. Treatment with c-Abl or mTOR inhibitors, imatinib mesylate and rapamycin, respectively, each blocks noncanonical (non-smad) TGF-beta pathways in the kidney in vivo and diminishes the number of interstitial fibroblasts and myofibroblasts as well as the interstitial accumulation of extracellular matrix proteins. These findings indicate that noncanonical TGF-beta pathways are activated during the early and rapid renal fibrogenesis of obstructive nephropathy. Moreover, the current findings suggest that combined inhibition of key regulators of these non-smad TGF-beta pathways even in dose-sparing protocols are effective treatments in renal fibrogenesis.
Collapse
Affiliation(s)
- Shinong Wang
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90509, USA
| | | | | | | |
Collapse
|
32
|
Mancini M, Corradi V, Petta S, Martinelli G, Barbieri E, Santucci MA. mTOR inhibitor RAD001 (Everolimus) enhances the effects of imatinib in chronic myeloid leukemia by raising the nuclear expression of c-ABL protein. Leuk Res 2009; 34:641-8. [PMID: 19643477 DOI: 10.1016/j.leukres.2009.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/01/2009] [Accepted: 07/04/2009] [Indexed: 01/21/2023]
Abstract
Constitutive tyrosine kinase (TK) activity of p210 BCR-ABL fusion protein of chronic myeloid leukemia (CML) usurps physiological functions of normal p145 c-ABL protein. Accordingly, its inhibition by imatinib mesylate (IM) lets p145 c-ABL translocate into the nuclear compartment, which drives cell growth arrest and apoptotic death. Here we show that IM and the mammalian target of rapamycin (mTOR) inhibitor RAD001 (Everolimus) have additive effects on BCR-ABL-expressing cells. Those effects are at least partly conditional upon the enhanced nuclear accumulation of p145 c-ABL through events encompassing post-translational modifications of p145 c-ABL (Thr(735) phosphorylation) precluding its nuclear export and of 14-3-3 sigma (Ser(186) phosphorylation by c-Jun N-terminal kinase [JNK]) promoting p145 c-ABL nuclear re-import.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Benzamides
- Blotting, Western
- Cell Line, Tumor
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cell Separation
- Everolimus
- Flow Cytometry
- Gene Expression/drug effects
- Humans
- Imatinib Mesylate
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Microscopy, Confocal
- Piperazines/administration & dosage
- Protein Processing, Post-Translational/drug effects
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Transport/drug effects
- Proto-Oncogene Proteins c-abl/biosynthesis
- Proto-Oncogene Proteins c-abl/drug effects
- Pyrimidines/administration & dosage
- Sirolimus/administration & dosage
- Sirolimus/analogs & derivatives
- TOR Serine-Threonine Kinases
Collapse
Affiliation(s)
- Manuela Mancini
- Dipartimento di Ematologia e Scienze Oncologiche Lorenzo e Ariosto Seràgnoli, University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Inhibition of polysome assembly enhances imatinib activity against chronic myelogenous leukemia and overcomes imatinib resistance. Mol Cell Biol 2008; 28:6496-509. [PMID: 18694961 DOI: 10.1128/mcb.00477-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dysregulated mRNA translation is implicated in the pathogenesis of many human cancers including chronic myelogenous leukemia (CML). Because our prior work has specifically implicated translation initiation in CML, we tested compounds that could modulate translation initiation and polysomal mRNA assembly. Here, we evaluated the activity of one such compound, CGP57380, against CML cells and explored its mechanisms of action. First, using polysomal mRNA profiles, we found that imatinib and CGP57380 could independently, and cooperatively, impair polysomal mRNA loading. Imatinib and CGP57380 also synergistically inhibited the growth of Ba/F3-Bcr-Abl and K562 cells via impaired cell cycle entry and increased apoptosis. Mechanistically, CGP57380 inhibited efficient polysomal assembly via two processes. First, it enhanced imatinib-mediated inhibition of eukaryotic initiation factor 4F induction, and second, it independently impaired phosphorylation of ribosomal protein S6 on the preinitiation complex. We also identified multiple substrates of the mTOR, Rsk, and Mnk kinases as targets of CGP57380. Finally, we found a novel negative-feedback loop to the mitogen-activated protein kinase/Mnk pathway that is triggered by CGP57380 and demonstrated that an interruption of the loop further increased the activity of the combination against imatinib-sensitive and -resistant CML cells. Together, this work supports the inhibition of translation initiation as a therapeutic strategy for treating cancers fueled by dysregulated translation.
Collapse
|
34
|
Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Curr Opin Hematol 2008; 15:88-94. [DOI: 10.1097/moh.0b013e3282f3deaa] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Yeager N, Brewer C, Cai KQ, Xu XX, Di Cristofano A. Mammalian target of rapamycin is the key effector of phosphatidylinositol-3-OH-initiated proliferative signals in the thyroid follicular epithelium. Cancer Res 2008; 68:444-9. [PMID: 18199538 DOI: 10.1158/0008-5472.can-07-3030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the phosphatidylinositol-3-OH kinase (PI3K) signaling cascade is becoming increasingly recognized as a common feature of thyroid follicular neoplasms. We have recently shown that conditional loss of Pten in the mouse thyroid follicular cells is sufficient to stimulate continuous autonomous growth, leading to a homogeneously hyperplastic gland and to the development of follicular adenomas. Because the PI3K/AKT cascade can activate a plethora of different signaling pathways, it is still unclear which of these may represent the key mitogenic output of PI3K-initiated signaling. Here, we show that the in vivo proliferative response to chronic PI3K activation profoundly relies on the activation of the mammalian target of rapamycin (mTOR)/S6K1 axis, and that mTOR inhibition in Pten mutant mice and cells restores virtually normal proliferation rates, despite the presence of still elevated Akt activity, at least in part by down-regulating cyclins D1 and D3, and without affecting cell survival.
Collapse
Affiliation(s)
- Nicole Yeager
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
The mammalian target of rapamycin mTOR is a central element in an evolutionary conserved signalling pathway that regulates cell growth, survival and proliferation, orchestrating signals originating from growth factors, nutrients or particular stress stimuli. Two important modulators of mTOR activity are the AKT and ERK/MAPK signalling pathways. Many studies have shown that mTOR plays an important role in the biology of malignant cells, including deregulation of the cell cycle, inactivation of apoptotic machinery and resistance to chemotherapeutic agents. The development of several mTOR inhibitors, in addition to rapamycin, has facilitated studies of the role of mTOR in cancer, and verified the antitumour effect of mTOR inhibition in many types of neoplasms, including lymphomas. Clinical trials of rapamycin derivatives in lymphoma patients are already in development and there are encouraging preliminary results, such as the substantial response of a subset of mantle cell lymphoma patients to the rapamycin analogue temsirolimus. Based on results obtained from in vitro and in vivo studies of the mTOR pathway in lymphomas, it seems that better understanding of mTOR regulation will reveal aspects of lymphomagenesis and contribute to the development of more powerful, targeted therapies for lymphoma patients.
Collapse
|
37
|
Carayol N, Katsoulidis E, Sassano A, Altman JK, Druker BJ, Platanias LC. Suppression of programmed cell death 4 (PDCD4) protein expression by BCR-ABL-regulated engagement of the mTOR/p70 S6 kinase pathway. J Biol Chem 2008; 283:8601-10. [PMID: 18223253 DOI: 10.1074/jbc.m707934200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There is accumulating evidence that mammalian target of rapamycin (mTOR)-activated pathways play important roles in cell growth and survival of BCR-ABL-transformed cells. We have previously shown that the mTOR/p70 S6 kinase (p70 S6K) pathway is constitutively activated in BCR-ABL transformed cells and that inhibition of BCR-ABL kinase activity by imatinib mesylate abrogates such activation. We now provide evidence for the existence of a novel regulatory mechanism by which BCR-ABL promotes cell proliferation, involving p70 S6K-mediated suppression of expression of programmed cell death 4 (PDCD4), a tumor suppressor protein that acts as an inhibitor of cap-dependent translation by blocking the translation initiation factor eIF4A. Our data also establish that second generation BCR-ABL kinase inhibitors block activation of p70 S6K and downstream engagement of the S6 ribosomal protein in BCR-ABL transformed cells. Moreover, PDCD4 protein expression is up-regulated by inhibition of the BCR-ABL kinase in K562 cells and BaF3/BCR-ABL transfectants, suggesting a mechanism for the generation of the proapoptotic effects of such inhibitors. Knockdown of PDCD4 expression results in reversal of the suppressive effects of nilotinib and imatinib mesylate on leukemic progenitor colony formation, suggesting an important role for this protein in the generation of antileukemic responses. Altogether, our studies identify a novel mechanism by which BCR-ABL may promote leukemic cell growth, involving sequential engagement of the mTOR/p70 S6K pathway and downstream suppression of PDCD4 expression.
Collapse
Affiliation(s)
- Nathalie Carayol
- Robert H Lurie Comprehensive Cancer Center and Division of Hematology/Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
38
|
Donahue AC, Fruman DA. Distinct signaling mechanisms activate the target of rapamycin in response to different B-cell stimuli. Eur J Immunol 2007; 37:2923-36. [PMID: 17724683 DOI: 10.1002/eji.200737281] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphoinositide 3-kinase (PI3K) and the mammalian target of rapamycin (mTOR), a downstream kinase, are both required for proliferation of splenic B cells. However, the functions of PI3K and mTOR in response to different stimuli and among B cell subsets have not been fully elucidated. We used flow cytometry and magnetic cell sorting to examine the requirement for PI3K and mTOR in responses of splenic B cell subsets to BCR and LPS stimulation. BCR-mediated phosphorylation of Akt and Erk is sensitive to the PI3K catalytic inhibitor wortmannin in both marginal zone (MZ) and follicular (FO) cells. BCR-mediated mTOR activation in both subsets is inhibited by wortmannin, though less strongly in MZ cells. In contrast, LPS-induced mTOR signaling is strikingly resistant to wortmannin in both subsets. Similarly, functional responses to LPS are partially wortmannin resistant yet sensitive to mTOR inhibition by rapamycin. We also observed mitogen-independent mTOR activity that is regulated by nutrient availability, and is significantly elevated in MZ cells relative to FO cells. These data define both similarities and differences in PI3K/mTOR signaling mechanisms in MZ and FO cells, and suggest that mTOR signaling can occur in the absence of PI3K activation to promote B cell responses to LPS.
Collapse
Affiliation(s)
- Amber C Donahue
- Department of Molecular Biology & Biochemistry, and Center for Immunology, University of California Irvine, Irvine, CA 92697-3900, USA
| | | |
Collapse
|
39
|
Brewer C, Yeager N, Di Cristofano A. Thyroid-stimulating hormone initiated proliferative signals converge in vivo on the mTOR kinase without activating AKT. Cancer Res 2007; 67:8002-6. [PMID: 17804710 DOI: 10.1158/0008-5472.can-07-2471] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thyroid-stimulating hormone (TSH) has long been recognized as the major proliferative and functional stimulus for thyroid follicular cells. TSH receptor (TSHR) engagement stimulates the production of cyclic AMP and the subsequent activation of downstream effector molecules, including protein kinase A, S6K1, and Rap1, whereas the role of the RAS and phosphatidylinositol-3-kinase signaling cascades downstream of TSHR is still controversial. Despite the abundance of candidates, it is still unclear which of these pathways represent(s) the key mitogenic output of TSH-initiated signaling. We have used an in vivo model of goitrogenesis to dissect the contribution of these pathways to TSH-induced thyrocyte proliferation and thyroid hyperplasia. We show that the in vivo proliferative response to chronic TSHR stimulation relies heavily on the activation of the mTOR/S6K1 axis, and that mTOR inhibition during goitrogenic stimulation abrogates the hyperplastic but not the hypertrophic thyrocyte responses to TSH, thus functionally uncoupling these two processes. Strikingly, goitrogenesis was not associated with an increase in AKT phosphorylation levels, underlining the existence of an AKT-independent pathway leading to mTOR activation upon TSH stimulation.
Collapse
Affiliation(s)
- Charlene Brewer
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
40
|
Donahue AC, Kharas MG, Fruman DA. Measuring Phosphorylated Akt and Other Phosphoinositide 3-kinase-Regulated Phosphoproteins in Primary Lymphocytes. Methods Enzymol 2007; 434:131-54. [DOI: 10.1016/s0076-6879(07)34008-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|