1
|
Pai CP, Wang H, Seachrist DD, Agarwal N, Adams JA, Liu Z, Keri RA, Cao K, Schiemann WP, Kao HY. The PML1-WDR5 axis regulates H3K4me3 marks and promotes stemness of estrogen receptor-positive breast cancer. Cell Death Differ 2024; 31:768-778. [PMID: 38627584 PMCID: PMC11164886 DOI: 10.1038/s41418-024-01294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/30/2024] Open
Abstract
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER+ breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer, and offer new insights into the unique roles of PML isoforms in breast cancer.
Collapse
Affiliation(s)
- Chun-Peng Pai
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Han Wang
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Neel Agarwal
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Joshua A Adams
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Zhenghao Liu
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ruth A Keri
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Departments of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kaixiang Cao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - William P Schiemann
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Hung-Ying Kao
- Departments of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Kao HY, Pai CP, Wang H, Agarwal N, Adams J, Liu Z, Seachrist D, Keri R, Schiemann W. The PML1-WDR5 axis regulates H3K4me3 marks and promotes stemness of estrogen receptor-positive breast cancer. RESEARCH SQUARE 2023:rs.3.rs-3266720. [PMID: 37720048 PMCID: PMC10503857 DOI: 10.21203/rs.3.rs-3266720/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The alternative splicing of PML precursor mRNA gives rise to various PML isoforms, yet their expression profile in breast cancer cells remains uncharted. We discovered that PML1 is the most abundant isoform in all breast cancer subtypes, and its expression is associated with unfavorable prognosis in estrogen receptor-positive (ER+) breast cancers. PML depletion reduces cell proliferation, invasion, and stemness, while heterologous PML1 expression augments these processes and fuels tumor growth and resistance to fulvestrant, an FDA-approved drug for ER + breast cancer, in a mouse model. Moreover, PML1, rather than the well-known tumor suppressor isoform PML4, rescues the proliferation of PML knockdown cells. ChIP-seq analysis reveals significant overlap between PML-, ER-, and Myc-bound promoters, suggesting their coordinated regulation of target gene expression, including genes involved in breast cancer stem cells (BCSCs), such as JAG1, KLF4, YAP1, SNAI1, and MYC. Loss of PML reduces BCSC-related gene expression, and exogenous PML1 expression elevates their expression. Consistently, PML1 restores the association of PML with these promoters in PML-depleted cells. We identified a novel association between PML1 and WDR5, a key component of H3K4 methyltransferase (HMTs) complexes that catalyze H3K4me1 and H3K4me3. ChIP-seq analyses showed that the loss of PML1 reduces H3K4me3 in numerous loci, including BCSC-associated gene promoters. Additionally, PML1, not PML4, re-establishes the H3K4me3 mark on these promoters in PML-depleted cells. Significantly, PML1 is essential for recruiting WDR5, MLL1, and MLL2 to these gene promoters. Inactivating WDR5 by knockdown or inhibitors phenocopies the effects of PML1 loss, reducing BCSC-related gene expression and tumorsphere formation and enhancing fulvestrant's anticancer activity. Our findings challenge the conventional understanding of PML as a tumor suppressor, redefine its role as a promoter of tumor growth in breast cancer and offer new insights into the unique roles of PML isoforms in breast cancer.
Collapse
Affiliation(s)
| | | | | | | | - Joshua Adams
- Washington University School of Medicine in St. Louis
| | | | | | - Ruth Keri
- Cleveland Clinic Lerner Research Institute
| | | |
Collapse
|
3
|
Uggè M, Simoni M, Fracassi C, Bernardi R. PML isoforms: a molecular basis for PML pleiotropic functions. Trends Biochem Sci 2022; 47:609-619. [DOI: 10.1016/j.tibs.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
4
|
Abstract
Acute myeloid leukemia (AML) is a very heterogeneous type of blood cancer, which presents with a high rate of mortality especially in elderly patients. Better understanding of critical players, such as molecules with tumor suppressive properties, may help to fine-tune disease classification and thereby treatment modalities for this detrimental disease. Here, we summarize well-known and established tumor suppressors as well as emerging tumor suppressors, including transcription factors (TCFs) and other transcriptional regulators, such as epigenetic modulators. In addition, we look into the versatile field of miRNAs also interfering with tumorigenesis and progression, which offer new possibilities in AML diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Jacqueline Wallwitz
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Petra Aigner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Department Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
5
|
Lim J, Choi JH, Park EM, Choi YH. Interaction of promyelocytic leukemia/p53 affects signal transducer and activator of transcription-3 activity in response to oncostatin M. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:203-212. [PMID: 32392911 PMCID: PMC7193908 DOI: 10.4196/kjpp.2020.24.3.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 12/02/2022]
Abstract
Promyelocytic leukemia (PML) gene, through alternative splicing of its C-terminal region, generates several PML isoforms that interact with specific partners and perform distinct functions. The PML protein is a tumor suppressor that plays an important role by interacting with various proteins. Herein, we investigated the effect of the PML isoforms on oncostatin M (OSM)-induced signal transducer and activator of transcription-3 (STAT-3) transcriptional activity. PML influenced OSM-induced STAT-3 activity in a cell type-specific manner, which was dependent on the p53 status of the cells but regardless of PML isoform. Interestingly, overexpression of PML exerted opposite effects on OSM-induced STAT-3 activity in p53 wild-type and mutant cells. Specifically, overexpression of PML in the cell lines bearing wild-type p53 (NIH3T3 and U87-MG cells) decreased OSM-induced STAT-3 transcriptional activity, whereas overexpression of PML increased OSM-induced STAT-3 transcriptional activity in mutant p53-bearing cell lines (HEK293T and U251-MG cells). When wild-type p53 cells were co-transfected with PML-IV and R273H-p53 mutant, OSM-mediated STAT-3 transcriptional activity was significantly enhanced, compared to that of cells which were transfected with PML-IV alone; however, when cells bearing mutant p53 were co-transfected with PML-IV and wild-type p53, OSM-induced STAT-3 transcriptional activity was significantly decreased, compared to that of transfected cells with PML-IV alone. In conclusion, PML acts together with wild-type or mutant p53 and influences OSM-mediated STAT-3 activity in a negative or positive manner, resulting in the aberrant activation of STAT-3 in cancer cells bearing mutant p53 probably might occur through the interaction of mutant p53 with PML.
Collapse
Affiliation(s)
- Jiwoo Lim
- Departments of Physiology, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Ji Ha Choi
- Departments of Pharmacology, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Eun-Mi Park
- Departments of Pharmacology, Ewha Womans University College of Medicine, Seoul 07804, Korea
| | - Youn-Hee Choi
- Departments of Physiology, Ewha Womans University College of Medicine, Seoul 07804, Korea
| |
Collapse
|
6
|
Posavec Marjanović M, Hurtado-Bagès S, Lassi M, Valero V, Malinverni R, Delage H, Navarro M, Corujo D, Guberovic I, Douet J, Gama-Perez P, Garcia-Roves PM, Ahel I, Ladurner AG, Yanes O, Bouvet P, Suelves M, Teperino R, Pospisilik JA, Buschbeck M. MacroH2A1.1 regulates mitochondrial respiration by limiting nuclear NAD + consumption. Nat Struct Mol Biol 2017; 24:902-910. [PMID: 28991266 PMCID: PMC5791885 DOI: 10.1038/nsmb.3481] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
Histone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A1.1 contains a macrodomain capable of binding NAD+-derived metabolites. Here we report that macroH2A1.1 is rapidly induced during myogenic differentiation through a switch in alternative splicing, and that myotubes that lack macroH2A1.1 have a defect in mitochondrial respiratory capacity. We found that the metabolite-binding macrodomain was essential for sustained optimal mitochondrial function but dispensable for gene regulation. Through direct binding, macroH2A1.1 inhibits basal poly-ADP ribose polymerase 1 (PARP-1) activity and thus reduces nuclear NAD+ consumption. The resultant accumulation of the NAD+ precursor NMN allows for maintenance of mitochondrial NAD+ pools that are critical for respiration. Our data indicate that macroH2A1.1-containing chromatin regulates mitochondrial respiration by limiting nuclear NAD+ consumption and establishing a buffer of NAD+ precursors in differentiated cells.
Collapse
Affiliation(s)
- Melanija Posavec Marjanović
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
- PhD Program in Biomedicine, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sarah Hurtado-Bagès
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- PhD Program in Biomedicine, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maximilian Lassi
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Vanesa Valero
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roberto Malinverni
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Hélène Delage
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Miriam Navarro
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain
- Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - David Corujo
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Iva Guberovic
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Julien Douet
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pau Gama-Perez
- Department of Physiological Sciences II, Faculty of Medicine - University of Barcelona, Spain
| | - Pablo M. Garcia-Roves
- Department of Physiological Sciences II, Faculty of Medicine - University of Barcelona, Spain
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andreas G. Ladurner
- Biomedical Center Munich (BMC) - Physiological Chemistry, Center for Integrated Protein Science Munich, Munich Cluster for Systems Neurology, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Oscar Yanes
- Metabolomics Platform, Department of Electronic Engineering (DEEEA), Universitat Rovira i Virgili, Tarragona, Spain
- Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Philippe Bouvet
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Cancer Cell Plasticity Department, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Mònica Suelves
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Marcus Buschbeck
- Programme of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Badalona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
7
|
Zhu S, Zhao L, Li Y, Hou P, Yao R, Tan J, Liu D, Han L, Huang B, Lu J, Zhang Y. Suppression of RAD21 Induces Senescence of MDA‐MB‐231 Human Breast Cancer Cells Through RB1 Pathway Activation Via c‐Myc Downregulation. J Cell Biochem 2015; 117:1359-69. [DOI: 10.1002/jcb.25426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 10/30/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Shan Zhu
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchun130024China
- The First Affiliated HospitalJilin UniversityChangchun130012China
| | - Li Zhao
- The Key Laboratory of Molecular Epigenetics of the Ministry of EducationNortheast Normal UniversityChangchun130020China
| | - Yueyang Li
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchun130024China
| | - Pingfu Hou
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchun130024China
| | - Ruosi Yao
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchun130024China
| | - Jiang Tan
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchun130024China
| | - Dongxu Liu
- The University of AucklandGraftonAuckland1023New Zealand
| | - Liping Han
- School of Life SciencesChangchun Normal UniversityChangchun130032China
| | - Baiqu Huang
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchun130024China
| | - Jun Lu
- The First Affiliated HospitalJilin UniversityChangchun130012China
| | - Yu Zhang
- The Institute of Genetics and CytologyNortheast Normal UniversityChangchun130024China
| |
Collapse
|
8
|
Yoshimura Y, Shiino A, Muraki K, Fukami T, Yamada S, Satow T, Fukuda M, Saiki M, Hojo M, Miyamoto S, Onishi N, Saya H, Inubushi T, Nozaki K, Tanigaki K. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor. PLoS One 2015; 10:e0128288. [PMID: 26038891 PMCID: PMC4454553 DOI: 10.1371/journal.pone.0128288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma multiforme (GBM) is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC) of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs) than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.
Collapse
Affiliation(s)
- Yayoi Yoshimura
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Akihiko Shiino
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazue Muraki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
| | - Tadateru Fukami
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Shigeki Yamada
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Takeshi Satow
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Miyuki Fukuda
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masaaki Saiki
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Masato Hojo
- Department of Neurosurgery, Shiga Medical Center, Shiga 524–8524, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606–8507, Japan
| | - Nobuyuki Onishi
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, School of Medicine, Keio University, Tokyo 160–8582, Japan
| | - Toshiro Inubushi
- Biomedical MR Science Center, Shiga University of Medical Science, Shiga 520–2192, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Shiga 520–2192, Japan
- * E-mail: (KN); (KT)
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, Moriyama 5-4-30, Shiga 524–8524, Japan
- * E-mail: (KN); (KT)
| |
Collapse
|
9
|
Creppe C, Palau A, Malinverni R, Valero V, Buschbeck M. A Cbx8-containing polycomb complex facilitates the transition to gene activation during ES cell differentiation. PLoS Genet 2014; 10:e1004851. [PMID: 25500566 PMCID: PMC4263398 DOI: 10.1371/journal.pgen.1004851] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/25/2014] [Indexed: 02/07/2023] Open
Abstract
Polycomb proteins play an essential role in maintaining the repression of developmental genes in self-renewing embryonic stem cells. The exact mechanism allowing the derepression of polycomb target genes during cell differentiation remains unclear. Our project aimed to identify Cbx8 binding sites in differentiating mouse embryonic stem cells. Therefore, we used a genome-wide chromatin immunoprecipitation of endogenous Cbx8 coupled to direct massive parallel sequencing (ChIP-Seq). Our analysis identified 171 high confidence peaks. By crossing our data with previously published microarray analysis, we show that several differentiation genes transiently recruit Cbx8 during their early activation. Depletion of Cbx8 partially impairs the transcriptional activation of these genes. Both interaction analysis, as well as chromatin immunoprecipitation experiments support the idea that activating Cbx8 acts in the context of an intact PRC1 complex. Prolonged gene activation results in eviction of PRC1 despite persisting H3K27me3 and H2A ubiquitination. The composition of PRC1 is highly modular and changes when embryonic stem cells commit to differentiation. We further demonstrate that the exchange of Cbx7 for Cbx8 is required for the effective activation of differentiation genes. Taken together, our results establish a function for a Cbx8-containing complex in facilitating the transition from a Polycomb-repressed chromatin state to an active state. As this affects several key regulatory differentiation genes this mechanism is likely to contribute to the robust execution of differentiation programs.
Collapse
Affiliation(s)
- Catherine Creppe
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
| | - Anna Palau
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
| | - Roberto Malinverni
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
| | - Vanesa Valero
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
| | - Marcus Buschbeck
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Badalona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
10
|
Growth-promoting and tumourigenic activity of c-Myc is suppressed by Hhex. Oncogene 2014; 34:3011-22. [PMID: 25220416 DOI: 10.1038/onc.2014.240] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/18/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022]
Abstract
c-Myc transcription factor is a key protein involved in cellular growth, proliferation and metabolism. c-Myc is one of the most frequently activated oncogenes, highlighting the need to identify intracellular molecules that interact directly with c-Myc to suppress its function. Here we show that Hhex is able to interact with the basic region/helix-loop-helix/leucine zipper of c-Myc. Knockdown of Hhex increases proliferation rate in hepatocellular carcinoma cells, whereas Hhex expression cell-autonomously reduces cell proliferation rate in multiple cell lines by increasing G1 phase length through a c-Myc-dependent mechanism. Global transcriptomic analysis shows that Hhex counter-regulates multiple c-Myc targets involved in cell proliferation and metabolism. Concomitantly, Hhex expression leads to reduced cell size, lower levels of cellular RNA, downregulation of metabolism-related genes, decreased sensitivity to methotrexate and severe reduction in the ability to form tumours in nude mouse xenografts, all indicative of decreased c-Myc activity. Our data suggest that Hhex is a novel regulator of c-Myc function that limits c-Myc activity in transformed cells.
Collapse
|
11
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
12
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
13
|
Li J, Zou WX, Chang KS. Inhibition of Sp1 functions by its sequestration into PML nuclear bodies. PLoS One 2014; 9:e94450. [PMID: 24728382 PMCID: PMC3984170 DOI: 10.1371/journal.pone.0094450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/16/2014] [Indexed: 01/17/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are comprised of PML and a striking variety of its associated proteins. Various cellular functions have been attributed to PML NBs, including the regulation of gene expression. We report here that induced expression of PML recruits Sp1 into PML NBs, leading to the reduction of Sp1 transactivation function. Specifically, Chromatin immunoprecipitation (ChIP) assay demonstrated that induced expression of PML significantly diminishes the amount of Sp1 binding to its target gene promoter, immunofluorescence staining showed dramatic increase in the co-localization between PML and Sp1 upon induction of PML expression, moreover, PML and Sp1 co-fractionated in the core nuclear matrix. Our study further showed that PML promotes SUMOylation of Sp1 in a RING-motif-dependent manner, SUMOylation of Sp1 facilitates physical interaction between Sp1 and PML and recruitment of Sp1 into the PML NBs, the SUMO binding motif of PML was also important for its interaction with Sp1. The results of this study demonstrate a novel mechanism by which PML regulates gene expression through sequestration of the transcription factor into PML NBs.
Collapse
Affiliation(s)
- June Li
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| | - Wen-Xin Zou
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kun-Sang Chang
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| |
Collapse
|
14
|
Gamell C, Jan Paul P, Haupt Y, Haupt S. PML tumour suppression and beyond: Therapeutic implications. FEBS Lett 2014; 588:2653-62. [DOI: 10.1016/j.febslet.2014.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/24/2023]
|
15
|
Deschênes-Simard X, Kottakis F, Meloche S, Ferbeyre G. ERKs in cancer: friends or foes? Cancer Res 2014; 74:412-9. [PMID: 24408923 DOI: 10.1158/0008-5472.can-13-2381] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extracellular signal-regulated kinase ERK1 and ERK2 (ERK1/2) cascade regulates a variety of cellular processes by phosphorylating multiple target proteins. The outcome of its activation ranges from stimulation of cell survival and proliferation to triggering tumor suppressor responses such as cell differentiation, cell senescence, and apoptosis. This pathway is intimately linked to cancer as several of its upstream activators are frequently mutated in human disease and are shown to accelerate tumorigenesis when engineered in the mouse genome. However, measurement of activated ERKs in human cancers or mouse models does not always support a role in tumorigenesis, and data consistent with a role in tumor suppression have been reported as well. The intensity of ERK signaling, negative feedback loops that regulate the pathway, and cross-talks with other signaling pathways, seem to be of primary importance in determining the final cellular outcome. Cell senescence, a putative tumor-suppression mechanism, depends on high-intensity ERK signals that trigger phosphorylation-dependent protein degradation of multiple proteins required for cell-cycle progression. This response may be circumvented during carcinogenesis by a variety of mechanisms, some of them yet to be discovered, which in essence turn ERK functions from tumor suppression to tumor promotion. The use of pharmacologic inhibitors targeting this pathway must be carefully evaluated so they are applied to cases in which ERKs are mainly oncogenic.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Authors' Affiliations: Département de Biochimie et Médecine Moléculaire; Department of Pharmacology and Program in Molecular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montréal, Québec, Canada; and Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
16
|
PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 2013; 123:261-70. [PMID: 24255919 DOI: 10.1182/blood-2013-02-483289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Promyelocytic leukemia protein (PML) has been implicated as a participant in multiple cellular processes including senescence, apoptosis, proliferation, and differentiation. Studies of PML function in hematopoietic differentiation previously focused principally on its myeloid activities and also indicated that PML is involved in erythroid colony formation. However, the exact role that PML plays in erythropoiesis is essentially unknown. In this report, we found that PML4, a specific PML isoform expressed in erythroid cells, promotes endogenous erythroid genes expression in K562 and primary human erythroid cells. We show that the PML4 effect is GATA binding protein 1 (GATA-1) dependent using GATA-1 knockout/rescued G1E/G1E-ER4 cells. PML4, but not other detected PML isoforms, directly interacts with GATA-1 and can recruit it into PML nuclear bodies. Furthermore, PML4 facilitates GATA-1 trans-activation activity in an interaction-dependent manner. Finally, we present evidence that PML4 enhances GATA-1 occupancy within the globin gene cluster and stimulates cooperation between GATA-1 and its coactivator p300. These results demonstrate that PML4 is an important regulator of GATA-1 and participates in erythroid differention by enhancing GATA-1 trans-activation activity.
Collapse
|
17
|
Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK. Differential Roles of PML Isoforms. Front Oncol 2013; 3:125. [PMID: 23734343 PMCID: PMC3660695 DOI: 10.3389/fonc.2013.00125] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/05/2013] [Indexed: 12/17/2022] Open
Abstract
The tumor suppressor promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL). Treatment of APL patients with arsenic trioxide (As2O3) reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed.
Collapse
Affiliation(s)
- Sébastien Nisole
- INSERM UMR-S 747 Paris, France ; Université Paris Descartes Paris, France
| | | | | | | | | |
Collapse
|
18
|
Haupt S, Mitchell C, Corneille V, Shortt J, Fox S, Pandolfi PP, Castillo-Martin M, Bonal DM, Cordon-Cardo C, Lozano G, Haupt Y. Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle 2013; 12:1722-31. [PMID: 23656786 DOI: 10.4161/cc.24805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED p53 mutations and downregulation of promyelocytic leukemia (PML) are common genetic alterations in human cancers. In healthy cells these two key tumor suppressors exist in a positive regulatory loop, promoting cell death and cellular senescence. However, the influence of their interplay on tumorigenesis has not been explored directly in vivo. The contribution of PML to mutant p53 driven cancer was evaluated in a mouse model harboring a p53 mutation (p53 (wild-type/R172H) ) that recapitulates a frequent p53 mutation (p53 (R175H) ) in human sporadic and Li-Fraumeni cancers. These mice with PML displayed perturbation of the hematopoietic compartment, manifested either as lymphoma or extramedullary hematopoiesis (EMH). EMH was associated with peripheral blood leucocytosis and macrocytic anemia, suggestive of myeloproliferative- myelodysplastic overlap. In contrast, a complete loss of PML from these mice resulted in a marked alteration in tumor profile. While the incidence of lymphomas was unaltered, EMH was not detected and the majority of mice succumbed to sarcomas. Further, males lacking PML exhibited a high incidence of soft tissue sarcomas and reduced survival, while females largely developed osteosarcomas, without impact on survival. Together, these findings demonstrate that PML is an important tumor suppressor dictating disease development in a pertinent mouse model of human cancer. KEY POINTS (1) A mutant p53 allele disrupts hematopoiesis in mice, by promoting lymphomas and myeloproliferative / myelodysplastic overlap. (2) Coincidental p53 allele mutation and PML loss shifts the tumor profile toward sarcoma formation, which is paralleled in human leiomyosarcomas (indicated by immunohistochemistry; IHC).
Collapse
Affiliation(s)
- Sue Haupt
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol Cell Biol 2012; 32:1442-52. [PMID: 22331466 DOI: 10.1128/mcb.06323-11] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
One of the most striking epigenetic alterations that occurs at the level of the nucleosome is the complete exchange of the canonical H2A histones for the macroH2A variant. Here, we provide insight into the poorly recognized function of macroH2A in transcriptional activation and demonstrate its relevance in embryonic and adult stem cells. Knockdown of macroH2A1 in mouse embryonic stem (mES) cells limited their capacity to differentiate but not their self-renewal. The loss of macroH2A1 interfered with the proper activation of differentiation genes, most of which are direct target genes of macroH2A. Additionally, macroH2A1-deficient mES cells displayed incomplete inactivation of pluripotency genes and formed defective embryoid bodies. In vivo, macroH2A1-deficient teratomas contained a massive expansion of malignant, undifferentiated carcinoma tissue. In the heterogeneous culture of primary human keratinocytes, macroH2A1 levels negatively correlated with the self-renewal capacity of the pluripotent compartment. Together these results establish macroH2A1 as a critical chromatin component that regulates the delicate balance between self-renewal and differentiation of embryonic and adult stem cells.
Collapse
|
20
|
TRIM involvement in transcriptional regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 770:59-76. [PMID: 23631000 DOI: 10.1007/978-1-4614-5398-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Members of the tripartite motif (TRIM) protein family are found in all multicellular eukaryotes and function in a wide range of cellular processes such as cell cycle regulation, differentiation, development, oncogenesis and viral response. Over the past few years, several TRIM proteins have been reported to control gene expression through regulation of the transcriptional activity of numerous sequence-specific transcription factors. These proteins include the transcriptional intermediary factor 1 (TIF1) regulators, the promyelocytic leukemia tumor suppressor PML and the RET finger protein (RFP). In this chapter, we will consider the molecular interactions made by these TRIM proteins and will attempt to clarify some of the molecular mechanisms underlying their regulatory effect on transcription.
Collapse
|
21
|
Uribesalgo I, Buschbeck M, Gutiérrez A, Teichmann S, Demajo S, Kuebler B, Nomdedéu JF, Martín-Caballero J, Roma G, Benitah SA, Di Croce L. E-box-independent regulation of transcription and differentiation by MYC. Nat Cell Biol 2011; 13:1443-9. [PMID: 22020439 DOI: 10.1038/ncb2355] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/08/2011] [Indexed: 01/01/2023]
Abstract
MYC proto-oncogene is a key player in cell homeostasis that is commonly deregulated in human carcinogenesis(1). MYC can either activate or repress target genes by forming a complex with MAX (ref. 2). MYC also exerts MAX-independent functions that are not yet fully characterized(3). Cells possess an intrinsic pathway that can abrogate MYC-MAX dimerization and E-box interaction, by inducing phosphorylation of MYC in a PAK2-dependent manner at three residues located in its helix-loop-helix domain(4). Here we show that these carboxy-terminal phosphorylation events switch MYC from an oncogenic to a tumour-suppressive function. In undifferentiated cells, MYC-MAX is targeted to the promoters of retinoic-acid-responsive genes by its direct interaction with the retinoic acid receptor-α (RARα). MYC-MAX cooperates with RARα to repress genes required for differentiation, in an E-box-independent manner. Conversely, on C-terminal phosphorylation of MYC during differentiation, the complex switches from a repressive to an activating function, by releasing MAX and recruiting transcriptional co-activators. Phospho-MYC synergizes with retinoic acid to eliminate circulating leukaemic cells and to decrease the level of tumour invasion. Our results identify an E-box-independent mechanism for transcriptional regulation by MYC that unveils previously unknown functions for MYC in differentiation. These may be exploited to develop alternative targeted therapies.
Collapse
Affiliation(s)
- Iris Uribesalgo
- Centre de Regulació Genòmica and UPF, Barcelona 08003, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Reineke EL, Liu Y, Kao HY. Promyelocytic leukemia protein controls cell migration in response to hydrogen peroxide and insulin-like growth factor-1. J Biol Chem 2010; 285:9485-9492. [PMID: 20100838 PMCID: PMC2843199 DOI: 10.1074/jbc.m109.063362] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 01/19/2010] [Indexed: 01/14/2023] Open
Abstract
Promyelocytic leukemia protein (PML) was originally identified as part of a chromosomal translocation that contributes to the development of acute promyelocytic leukemia (APL). Since its discovery, PML has been found to play diverse roles in different cellular processes. Notably, PML has anti-proliferative and pro-apoptotic activity that supports its role as a tumor suppressor. We have previously shown that the peptidyl-prolyl isomerase Pin1 is able to affect cell proliferation and hydrogen peroxide (H(2)O(2))-mediated cell death through modulation of the steady-state levels of PML. We have extended these studies to show that the interaction between PML and Pin1 is targeted by multiple extracellular signals in the cell. We show that H(2)O(2) up-regulates and IGF-1 down-regulates PML expression in a Pin1-dependent manner. Interestingly, we found that H(2)O(2)- and IGF-1-mediated alteration in PML accumulation regulate MDA-MB-231 cell migration. Furthermore, we show that the control of cell migration by PML, and thus H(2)O(2) and IGF-1, results from PML-dependent decreased expression of integrin beta1 (ITGB1). Knockdown of Pin1 leads to decreased cell migration, lower levels of ITGB1 expression and resistance to IGF-1- and H(2)O(2)-induced changes in cell migration and ITGB1 expression. Taken together, our work identifies PML as a common target for H(2)O(2) and IGF-1 and supports a novel tumor suppressive role for PML in controlling cell migration through the expression of ITGB1.
Collapse
Affiliation(s)
- Erin L Reineke
- Department of Biochemistry, School of Medicine, Case Western Reserve University, the Case Comprehensive Cancer Center, and University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Yu Liu
- Department of Biochemistry, School of Medicine, Case Western Reserve University, the Case Comprehensive Cancer Center, and University Hospitals of Cleveland, Cleveland, Ohio 44106
| | - Hung-Ying Kao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, the Case Comprehensive Cancer Center, and University Hospitals of Cleveland, Cleveland, Ohio 44106.
| |
Collapse
|
23
|
Cluett C, Melzer D. Human genetic variations: Beacons on the pathways to successful ageing. Mech Ageing Dev 2009; 130:553-63. [PMID: 19580824 DOI: 10.1016/j.mad.2009.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/19/2009] [Accepted: 06/26/2009] [Indexed: 01/25/2023]
Abstract
Avoiding age-related disease until late in life is key to 'successful' ageing. Over 300 genome-wide association study papers have been published. Over 50 variants have already been identified as associated with four key age-related diseases, namely cardiovascular disease, type 2 diabetes, osteoporosis and prostate cancer. We review these findings with reference to pathways linked to ageing, including cell cycle control or cell senescence, oxidative stress, insulin, IGF1 and other endocrine signalling, and inflammation. Many variants are disease specific or of unknown function. Of the remainder, those with functions likely to be relevant to ageing are predominantly in cell cycle control and therefore tissue repair. Three loci associated with two or more age-related diseases have been identified, two apparently related to cell cycle control. The third shared locus (near TERT), may be involved in telomerase activity and is associated with several environmentally caused age-related cancers. These findings challenge current ideas, suggesting large numbers of cell type specific effects, often driven by regulatory rather than coding changes. They also confirm the central role of cell cycle and re-growth as a key pathway underlying the human variation in successful ageing.
Collapse
|
24
|
Britschgi C, Fey MF. Tumor suppressor genes in myeloid differentiation and leukemogenesis. Future Oncol 2009; 5:245-57. [PMID: 19284382 DOI: 10.2217/14796694.5.2.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.
Collapse
Affiliation(s)
- Christian Britschgi
- Department of Medical Oncology, Inselspital, University Hospital of Bern, Bern, Switzerland.
| | | |
Collapse
|
25
|
Reineke EL, Kao HY. Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. Int J Biol Sci 2009; 5:366-76. [PMID: 19471587 PMCID: PMC2686094 DOI: 10.7150/ijbs.5.366] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 05/06/2009] [Indexed: 01/17/2023] Open
Abstract
The promyelocytic leukemia protein (PML) is involved in many cellular processes including cell cycle progression, DNA damage response, transcriptional regulation, viral infection, and apoptosis. These cellular activities often rely on the localization of PML to unique subnuclear structures known as PML nuclear bodies (NBs). More than 50 cellular proteins are known to traffic in and out of PML NBs, either transiently or constitutively. In order to understand the dynamics of these NBs, it is important to delineate the regulation of PML itself. PML is subject to extensive regulation at transcriptional, post-transcriptional, and post-translational levels. Many of these modes of regulation depend on the cellular context and the presence of extracellular signals. This review focuses on the current knowledge of regulation of PML under normal cellular conditions as well as the role for regulation of PML in viral infection and cancer.
Collapse
Affiliation(s)
- Erin L Reineke
- Department of Biochemistry, School of Medicine, Case Western Reserve University and the Comprehensive Cancer Center of CWRU, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
26
|
Abstract
The promyelocytic leukemia protein (PML) is a tumor suppressor identified in acute PML and implicated in the pathogenesis of a variety of tumors. PML is essential for the proper assembly of a nuclear macromolecular structure called the PML nuclear body (PML-NB). PML and PML-NBs are functionally promiscuous and have been associated with the regulation of several cellular functions. Above all these is the control of apoptosis, a function of PML whose physiological relevance is emphasized by in vivo studies that demonstrate that mice and cells lacking Pml are resistant to a vast variety of apoptotic stimuli. The function of PML in regulating apoptosis is not confined to a linear pathway; rather, PML works within a regulatory network that finely tunes various apoptotic pathways, depending on the cellular context and the apoptotic stimulus. Here, we will summarize earlier and recent advances on the molecular mechanisms by which PML regulates apoptosis and the implication of these findings for cancer pathogenesis.
Collapse
Affiliation(s)
- R Bernardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
27
|
MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol 2008; 28:5912-23. [PMID: 18644863 DOI: 10.1128/mcb.00467-08] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In plants, as in mammals, mutations in SNF2-like DNA helicases/ATPases were shown to affect not only chromatin structure but also global methylation patterns, suggesting a potential functional link between chromatin structure and epigenetic marks. The SNF2-like ATPase containing nucleosome remodeling and deacetylase corepressor complex (NuRD) is involved in gene transcriptional repression and chromatin remodeling. We have previously shown that the leukemogenic protein PML-RARa represses target genes through recruitment of DNA methytransferases and Polycomb complex. Here, we demonstrate a direct role of the NuRD complex in aberrant gene repression and transmission of epigenetic repressive marks in acute promyelocytic leukemia (APL). We show that PML-RARa binds and recruits NuRD to target genes, including to the tumor-suppressor gene RARbeta2. In turn, the NuRD complex facilitates Polycomb binding and histone methylation at lysine 27. Retinoic acid treatment, which is often used for patients at the early phase of the disease, reduced the promoter occupancy of the NuRD complex. Knockdown of the NuRD complex in leukemic cells not only prevented histone deacetylation and chromatin compaction but also impaired DNA and histone methylation, as well as stable silencing, thus favoring cellular differentiation. These results unveil an important role for NuRD in the establishment of altered epigenetic marks in APL, demonstrating an essential link between chromatin structure and epigenetics in leukemogenesis that could be exploited for therapeutic intervention.
Collapse
|
28
|
|
29
|
Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 2007; 8:1006-16. [PMID: 17928811 DOI: 10.1038/nrm2277] [Citation(s) in RCA: 715] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The promyelocytic leukaemia (PML) tumour suppressor protein epitomizes the PML-nuclear body (PML-NB) and is crucially required for the proper assembly of this macromolecular nuclear structure. Unlike other, more specialized subnuclear structures such as Cajal and Polycomb group bodies, PML-NBs are functionally promiscuous and have been implicated in the regulation of diverse cellular functions. PML-NBs are dynamic structures that favour the sequestration and release of proteins, mediate their post-translational modifications and promote specific nuclear events in response to various cellular stresses. Recent data suggest that PML-NBs may be heterogeneous in composition, mobility and function.
Collapse
Affiliation(s)
- Rosa Bernardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
30
|
Degradation of the tumor suppressor PML by Pin1 contributes to the cancer phenotype of breast cancer MDA-MB-231 cells. Mol Cell Biol 2007; 28:997-1006. [PMID: 18039859 DOI: 10.1128/mcb.01848-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Promyelocytic leukemia protein (PML) is an important regulator due to its role in numerous cellular processes including apoptosis, viral infection, senescence, DNA damage repair, and cell cycle regulation. Despite the role of PML in many cellular functions, little is known about the regulation of PML itself. We show that PML stability is regulated through interaction with the peptidyl-prolyl cis-trans isomerase Pin1. This interaction is mediated through four serine-proline motifs in the C terminus of PML. Binding to Pin1 results in degradation of PML in a phosphorylation-dependent manner. Furthermore, our data indicate that sumoylation of PML blocks the interaction, thus preventing degradation of PML by this pathway. Functionally, we show that in the MDA-MB-231 breast cancer cell line modulating levels of Pin1 affects steady-state levels of PML. Furthermore, degradation of PML due to Pin1 acts both to protect these cells from hydrogen peroxide-induced death and to increase the rate of proliferation. Taken together, our work defines a novel mechanism by which sumoylation of PML prevents Pin1-dependent degradation. This interaction likely occurs in numerous cell lines and may be a pathway for oncogenic transformation.
Collapse
|
31
|
Mallette FA, Gaumont-Leclerc MF, Huot G, Ferbeyre G. Myc Down-regulation as a Mechanism to Activate the Rb Pathway in STAT5A-induced Senescence. J Biol Chem 2007; 282:34938-44. [PMID: 17913706 DOI: 10.1074/jbc.m707074200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Senescence is a general antiproliferative program that avoids the expansion of cells bearing oncogenic mutations. We found that constitutively active STAT5A (ca-STAT5A) can induce a p53- and Rb-dependent cellular senescence response. However, ca-STAT5A did not induce p21 and p16(INK4a), which are responsible for inhibiting cyclin-dependent protein kinases and engaging the Rb pathway during the senescence response to oncogenic ras. Intriguingly, ca-STAT5A led to a down-regulation of Myc and Myc targets, including CDK4, a negative regulator of Rb. The down-regulation of Myc was in part proteasome-dependent and correlated with its localization to promyelocytic leukemia bodies, which were found to be highly abundant during STAT5-induced senescence. Introduction of CDK4 or Myc bypassed STAT5A-induced senescence in cells in which p53 was also inactivated. These results uncover a novel mechanism to engage the Rb pathway in oncogene-induced senescence and indicate the existence of oncogene-specific pathways that regulate senescence.
Collapse
Affiliation(s)
- Frédérick A Mallette
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|