1
|
Sun Q, Yang W, Song Z, Lu H, Shang W, Li H, Yang Z, Gao W, Li Y, Xu Y, Luo M, Liu K, Wu Q, Xuan Z, Shen W, Yang Y, Yin D. Precisely Controlling the Activation of an Iron-Locked Drug Generator in the Liver Sinusoid to Enhance Barrier Penetration and Reduction of Liver Fibrosis. J Am Chem Soc 2024; 146:33784-33803. [PMID: 39584725 DOI: 10.1021/jacs.4c11988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Complex physical barriers and the nanomaterial's clearance mechanism in the liver greatly hinder the feasibility of using a conventional liver-targeting nanoplatform to deliver antifibrotic drugs to pathological sites for the treatment of liver fibrosis. Here, a novel drug delivery strategy was designed to overcome drug penetration barriers in a fibrotic liver and cooperated with oral nattokinase (NKase)-mediated antifibrosis therapy as a proof of concept, which relies on the coadministration of a nanosized iron-locked drug generator (named Pro-HAase) and orally absorbed iron chelator deferasirox (DFX). Such a strategy starts from the rapid accumulation of intravenously injected Pro-HAase in the microcapillaries of the fibrotic liver followed by disrupting the polyphenol-iron coordination inside Pro-HAase by DFX, liberating antifibrotic components, including procyanidine (PA) and hyaluronidase (HAase). Attractively, absorption of DFX requires the sequential processes of traversing the intestinal mucosa and targeting the liver, which enable DFX to preferentially disassemble Pro-HAase accumulated in the liver sinusoid rather than in systemic circulation or other organs, thus avoiding the off-target activation of Pro-HAase and depletion of the normal iron pool. The in situ disassembly process decreases the sequestration of Pro-HAase by cells of the mononuclear phagocyte system and promotes gradient-driven permeation of therapeutic components to surrounding liver tissues within 2 h, accompanied by biliary excretion of the inactive iron-DFX complex. As a result, the cooperation of Pro-HAase and DFX not only allows NKase-mediated therapy to completely reverse liver fibrosis but also suppresses the chronic hepatotoxicity of residual liver iron after multiple doses of Pro-HAase. The high spatiotemporal precision, unique barrier-penetration mechanism, and self-detoxification ability of this strategy will inspire the rational design of analogous iron-locked nanosystems to improve the therapeutic outcomes of liver fibrosis or other liver diseases.
Collapse
Affiliation(s)
- Quanwei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenshuo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zhengwei Song
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Huiyu Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wencui Shang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Huihui Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wenheng Gao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yunlong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yujing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Min Luo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Kang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM),, Hefei 230012, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230031, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM),, Hefei 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei 230021, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM),, Hefei 230012, China
| |
Collapse
|
2
|
Tipirneni-Sajja A, Brasher S, Shrestha U, Johnson H, Morin C, Satapathy SK. Quantitative MRI of diffuse liver diseases: techniques and tissue-mimicking phantoms. MAGMA (NEW YORK, N.Y.) 2023; 36:529-551. [PMID: 36515810 DOI: 10.1007/s10334-022-01053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Quantitative magnetic resonance imaging (MRI) techniques are emerging as non-invasive alternatives to biopsy for assessment of diffuse liver diseases of iron overload, steatosis and fibrosis. For testing and validating the accuracy of these techniques, phantoms are often used as stand-ins to human tissue to mimic diffuse liver pathologies. However, currently, there is no standardization in the preparation of MRI-based liver phantoms for mimicking iron overload, steatosis, fibrosis or a combination of these pathologies as various sizes and types of materials are used to mimic the same liver disease. Liver phantoms that mimic specific MR features of diffuse liver diseases observed in vivo are important for testing and calibrating new MRI techniques and for evaluating signal models to accurately quantify these features. In this study, we review the liver morphology associated with these diffuse diseases, discuss the quantitative MR techniques for assessing these liver pathologies, and comprehensively examine published liver phantom studies and discuss their benefits and limitations.
Collapse
Affiliation(s)
- Aaryani Tipirneni-Sajja
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA.
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Sarah Brasher
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Utsav Shrestha
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Hayden Johnson
- Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
| | - Cara Morin
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sanjaya K Satapathy
- Northwell Health Center for Liver Diseases and Transplantation, Northshore University Hospital/Northwell Health, Manhasset, NY, USA
| |
Collapse
|
3
|
Locke M, Reddy PS, Badawy SM. Adherence to Iron Chelation Therapy among Adults with Thalassemia: A Systematic Review. Hemoglobin 2022; 46:201-213. [PMID: 35930250 PMCID: PMC9948767 DOI: 10.1080/03630269.2022.2072320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron chelation therapy (ICT) is essential to prevent complications of iron overload in patients with transfusion-dependent thalassemia. However, the role that adherence to ICT plays in health-related outcomes is less well known. Our objectives were to identify adherence rates of ICT, and to assess methods of measurement, predictors of adherence, and adherence-related health outcomes in the literature published between 1980 and 2020. Of 543 articles, 43 met the inclusion criteria. Studies measured ICT adherence, predictors, and/or outcomes associated with adherence. Most studies were across multiple countries in Europe and North America (n = 8/43, 18.6%), recruited in clinics (n = 39/43, 90.7%), and focused on β-thalassemia (β-thal) (n = 25/43, 58.1%). Common methods of assessing ICT adherence included patient self-report (n = 24/43, 55.8%), pill count (n = 9/43, 20.9%), prescription refill history (n = 3/43, 7.0%), provider scoring (n = 3/43, 7.0%), and combinations of methods (n = 4/43, 9.3%). Studies reported adherence either in 'categories' with different levels of adherence (n = 24) or 'quantitatively' as a percentage of doses of medication taken out of those prescribed (n = 17). Adherence levels varied (median 91.7%, range 42.0-99.97%). Studies varied in sample size and methods of adherence assessment and reporting, which prohibited meta-analysis. Due to a lack of consensus on how adherence is defined, it is difficult to compare ICT adherence reporting. Further research is needed to establish guidelines for assessing adherence and identifying suboptimal adherence. Behavioral digital interventions have the potential to optimize ICT adherence and health outcomes.
Collapse
Affiliation(s)
- Margaret Locke
- Department of Internal Medicine, Zucker School of Medicine at Hofstra/Northwell Institute, Hempstead, NY, USA
| | - Paavani S. Reddy
- Department of Medical Education, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sherif M. Badawy
- Division of Hematology, Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children’s Hospital of Chicago, IL, USA,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Biopsy-based optimization and calibration of a signal-intensity-ratio-based MRI method (1.5 Tesla) in a dextran-iron loaded mini-pig model, enabling estimation of very high liver iron concentrations. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:843-859. [PMID: 35038062 PMCID: PMC9463247 DOI: 10.1007/s10334-021-00998-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/15/2022]
Abstract
Objective Magnetic resonance imaging (MRI)-based techniques for non-invasive assessing liver iron concentration (LIC) in patients with iron overload have a limited upper measuring range around 35 mg/g dry weight, caused by signal loss from accelerated T1-, T2-, T2* shortening with increasing LIC. Expansion of this range is necessary to allow evaluation of patients with very high LIC. Aim To assess measuring range of a gradient-echo R2* method and a T1-weighted spin-echo (SE), signal intensity ratio (SIR)-based method (TE = 25 ms, TR = 560 ms), and to extend the upper measuring range of the SIR method by optimizing echo time (TE) and repetition time (TR) in iron-loaded minipigs. Methods Thirteen mini pigs were followed up during dextran-iron loading with repeated percutaneous liver biopsies for chemical LIC measurement and MRIs for parallel non-invasive estimation of LIC (81 examinations) using different TEs and TRs. Results SIR and R2* method had similar upper measuring range around 34 mg/g and similar method agreement. Using TE = 12 ms and TR = 1200 ms extended the upper measuring range to 115 mg/g and yielded good method of agreement. Discussion The wider measuring range is likely caused by lesser sensitivity of the SE sequence to iron, due to shorter TE, leading to later signal loss at high LIC, allowing evaluation of most severe hepatic iron overload. Validation in iron-loaded patients is necessary.
Collapse
|
5
|
Matsuoka Y, Izumi Y, Takahashi M, Bamba T, Yamada KI. Method for Structural Determination of Lipid-Derived Radicals. Anal Chem 2020; 92:6993-7002. [DOI: 10.1021/acs.analchem.0c00053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuta Matsuoka
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Ohtemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Yoshihiro Izumi
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Ohtemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Bamba
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Ohtemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Ohtemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
6
|
Consequences of parenteral iron-dextran loading investigated in minipigs. A new model of transfusional iron overload. Blood Cells Mol Dis 2020; 83:102440. [PMID: 32353700 DOI: 10.1016/j.bcmd.2020.102440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022]
Abstract
Patients with blood transfusion-dependent anemias develop transfusional iron overload (TIO), which may cause cardiosiderosis. In patients with an ineffective erythropoiesis, such as thalassemia major, common transfusion regimes aim at suppression of erythropoiesis and of enteral iron loading. Recent data suggest that maintaining residual, ineffective erythropoiesis may protect from cardiosiderosis. We investigated the common consequences of TIO, including cardiosiderosis, in a minipig model of iron overload with normal erythropoiesis. TIO was mimicked by long-term, weekly iron-dextran injections. Iron-dextran loading for around one year induced very high liver iron concentrations, but extrahepatic iron loading, and iron-induced toxicities were mild and did not include fibrosis. Iron deposits were primarily in reticuloendothelial cells, and parenchymal cardiac iron loading was mild. Compared to non-thalassemic patients with TIO, comparable cardiosiderosis in minipigs required about 4-fold greater body iron loads. It is suggested that this resistance against extrahepatic iron loading and toxicity in minipigs may at least in part be explained by a protective effect of the normal erythropoiesis, and additionally by a larger total iron storage capacity of RES than in patients with TIO. Parenteral iron-dextran loading of minipigs is a promising and feasible large-animal model of iron overload, that may mimic TIO in non-thalassemic patients.
Collapse
|
7
|
Sobbe A, Bridle KR, Jaskowski L, de Guzman CE, Santrampurwala N, Clouston AD, Campbell CM, Subramaniam VN, Crawford DHG. Inconsistent hepatic antifibrotic effects with the iron chelator deferasirox. J Gastroenterol Hepatol 2015; 30:638-45. [PMID: 25168203 DOI: 10.1111/jgh.12720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIM Development of effective antifibrotic treatments that can be translated to clinical practice is an important challenge in contemporary hepatology. A recent report on β-thalassemia patients demonstrated that deferasirox treatment reversed or stabilized liver fibrosis independent of its iron-chelating properties. In this study, we investigated deferasirox in cell and animal models to better understand its potential antifibrotic effects. METHODS The LX-2 stellate cell line was treated with 5 μM or 50 μM deferasirox (Exjade, Novartis Pharmaceuticals Australia, North Ryde, NSW, Australia) for up to 120 h. Three-week-old multidrug resistance 2 null (Mdr2(-/-) ) mice received oral deferasirox or vehicle for 4 weeks (30 mg/kg/day). Cells and liver tissue were collected for assessment of fibrosis and fibrogenic gene expression. RESULTS In LX-2 cells treated with 50 μM deferasirox for 12 h, α1(I)procollagen expression was decreased by 25%, with maximal reductions (10-fold) seen following 24-120 h of treatment. Similarly, α-smooth muscle actin (αSMA) expression was significantly lower. Alterations in matrix remodeling genes, specifically decreased expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2, were observed. There was no significant difference in hepatic hydroxyproline content in Mdr2(-/-) mice following deferasirox administration (vehicle: 395 ± 27 μg/g vs deferasirox: 421 ± 33 μg/g). Similarly, no changes in the expression of fibrogenic genes were observed. CONCLUSION Despite reductions in α1(I)procollagen and αSMA expression and alterations in matrix degradation genes in LX-2 cells, deferasirox did not exhibit antifibrotic activity in Mdr2(-/-) mice. Given the positive outcomes seen in human trials, it may be appropriate to study deferasirox in other animal models of fibrosis and/or for a longer duration of therapy.
Collapse
Affiliation(s)
- Amy Sobbe
- School of Medicine, The University of Queensland, Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kountouras D, Tsagarakis NJ, Fatourou E, Dalagiorgos E, Chrysanthos N, Berdoussi H, Vgontza N, Karagiorga M, Lagiandreou A, Kaligeros K, Voskaridou E, Roussou P, Diamanti-Kandarakis E, Koskinas J. Liver disease in adult transfusion-dependent beta-thalassaemic patients: investigating the role of iron overload and chronic HCV infection. Liver Int 2013; 33:420-7. [PMID: 23402611 DOI: 10.1111/liv.12095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Accepted: 12/10/2012] [Indexed: 12/28/2022]
Abstract
BACKGROUND Iron overload and hepatitis-C virus (HCV) infection, have been implicated in the evolution of liver disease, in patients with transfusion-dependent beta-thalassaemia major (BTM). However, the impact of these factors in late stages of liver disease in adults with BTM, has not been extensively studied. AIMS To investigate serum indices of iron overload, HCV infection and liver disease, in a cohort of 211 adult Greek patients with BTM, in relation with the findings from liver biopsies. METHODS In this cross-sectional study, 211 patients with BTM were enrolled and studied, in relation with HCV infection, ferritin, transaminases, chelation treatment and antiviral treatment. Based on 109 patients biopsied, we correlated liver fibrosis, haemosiderosis and inflammation, with serum indices and HCV status RESULTS Among all patients, 74.4% were anti-HCV positive (HCV+). Ferritin was positively correlated with transaminases and negatively correlated with age, while it was not significantly different among HCV+ and HCV- patients. Among the HCV+ patients, 55.4% reported antiviral treatment, while genotype 1 predominated. In a subfraction of 109 patients, in which liver biopsy was performed, 89% were HCV+ and 11% HCV-. Fibrosis was significantly correlated with age (P = 0.046), AST (P = 0.004), ALT (P = 0.044) and inflammation (P < 0.001). Advanced fibrosis was present with even minimal haemosiderosis, independently of ferritin values or HCV history. CONCLUSIONS These data suggest that in the late stages of liver disease in BTM patients, iron overload may be the critical determinant, since fibrosis is related to the minimal haemosiderosis, independently of HCV history.
Collapse
Affiliation(s)
- Dimitrios Kountouras
- 2nd Department of Internal Medicine, Hippokration General Hospital, Medical School, University of Athens, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ballas SK, Kesen MR, Goldberg MF, Lutty GA, Dampier C, Osunkwo I, Wang WC, Hoppe C, Hagar W, Darbari DS, Malik P. Beyond the definitions of the phenotypic complications of sickle cell disease: an update on management. ScientificWorldJournal 2012; 2012:949535. [PMID: 22924029 PMCID: PMC3415156 DOI: 10.1100/2012/949535] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/01/2012] [Indexed: 12/25/2022] Open
Abstract
The sickle hemoglobin is an abnormal hemoglobin due to point mutation (GAG → GTG) in exon 1 of the β globin gene resulting in the substitution of glutamic acid by valine at position 6 of the β globin polypeptide chain. Although the molecular lesion is a single-point mutation, the sickle gene is pleiotropic in nature causing multiple phenotypic expressions that constitute the various complications of sickle cell disease in general and sickle cell anemia in particular. The disease itself is chronic in nature but many of its complications are acute such as the recurrent acute painful crises (its hallmark), acute chest syndrome, and priapism. These complications vary considerably among patients, in the same patient with time, among countries and with age and sex. To date, there is no well-established consensus among providers on the management of the complications of sickle cell disease due in part to lack of evidence and in part to differences in the experience of providers. It is the aim of this paper to review available current approaches to manage the major complications of sickle cell disease. We hope that this will establish another preliminary forum among providers that may eventually lead the way to better outcomes.
Collapse
Affiliation(s)
- Samir K Ballas
- Cardeza Foundation and Department of Medicine, Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Deugnier Y, Turlin B, Ropert M, Cappellini MD, Porter JB, Giannone V, Zhang Y, Griffel L, Brissot P. Improvement in liver pathology of patients with β-thalassemia treated with deferasirox for at least 3 years. Gastroenterology 2011; 141:1202-11, 1211.e1-3. [PMID: 21741344 DOI: 10.1053/j.gastro.2011.06.065] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Most data on the effects of iron chelation therapy for patients with liver fibrosis come from small studies. We studied the effects of the oral iron chelator deferasirox on liver fibrosis and necroinflammation in a large population of patients with iron overload β-thalassemia. METHODS We studied data from 219 patients with β-thalassemia, collected from histologic analyses of biopsy samples taken at baseline and after at least 3 years of treatment with deferasirox. Treatment response was assessed from liver iron concentrations at baseline and the end of the study. Liver fibrosis, necroinflammation, and markers of iron overload and liver enzymes were recorded. Patients were also assessed, by serologic analysis at baseline, for hepatitis C virus infection. RESULTS By the end of the study, stability of Ishak fibrosis staging scores (change of -1, 0, or +1) or improvements (change of ≤-2) were observed in 82.6% of patients; Ishak necroinflammatory scores improved by a mean value of -1.3 (P<.001). Improvements in fibrosis stage and necroinflammation were independent of hepatitis C virus exposure or reduction in liver iron concentration defined by the response criteria. Absolute changes in concentrations of liver iron by the end of the study did not correlate with improved Ishak fibrosis or necroinflammatory scores. CONCLUSIONS Deferasirox treatment for 3 or more years reversed or stabilized liver fibrosis in 83% of patients with iron-overloaded β-thalassemia. This therapeutic effect was independent of reduced concentration of liver iron (defined by the response criteria) or previous exposure to hepatitis C virus.
Collapse
Affiliation(s)
- Yves Deugnier
- Liver Disease Unit and Inserm U-991, Department of Pathology, University Hospital Pontchaillou, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Berdoukas V, Farmaki K, Wood JC, Coates T. Iron chelation in thalassemia: time to reconsider our comfort zones. Expert Rev Hematol 2011; 4:17-26. [PMID: 21322775 DOI: 10.1586/ehm.10.74] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Over the last 20 years, the management of thalassemia major has improved to the point where we predict that the patients' life expectancy will approach that of the normal population. These outcomes result from safer blood transfusions, the availability of three iron chelators, new imaging techniques that allow organ-specific assessment of the degree of iron overload and improvement in the treatment of hepatitis. The ability to prescribe any of the three chelators, as well as their combinations, has led to a more effective reduction of the total body iron. The ability to determine the amount of iron in the liver and heart by MRI has allowed the prescription of the most appropriate chelation regime for the patient and has allowed the reconsideration of 'the comfort zones'. Thus, normalizing iron stores not only prevents new morbidities but also reverses many complications, such as cardiac failure, hypothyroidism, hypogonadism, impaired glucose tolerance and Type 2 diabetes, therefore improving survival and patients' quality of life. Furthermore, outcomes should continue to improve in the future. Starting relatively intensive chelation in younger children may prevent short stature and abnormal pubertal maturation, as well as other iron-related morbidities. In addition, further information should become available on the use of other combinations in chelation treatment, some of which have only been used in a very limited fashion so far. New safe oral chelators may also become available that may offer additional ease of use. All these advances in management do require absolute cooperation and understanding on behalf of children's parents and subsequently the adult themself. Only with such cooperation can normal long-term survival be achieved as it is likely that adherence to treatment is the primary barrier to longevity.
Collapse
Affiliation(s)
- Vasilios Berdoukas
- The Division of Hematology/Oncology, The Children's Hospital of Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027-6016, USA.
| | | | | | | |
Collapse
|
12
|
Elalfy MS, Abdin IA, El Safy UR, Ibrahim AS, Ebeid FS, Salem DS. Cardiac events and cardiac T2* in Egyptian children and young adults with β-thalassemia major taking deferoxamine. Hematol Oncol Stem Cell Ther 2010; 3:174-8. [DOI: 10.5144/1658-3876.2010.174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Berdoukas V, Chouliaras G, Moraitis P, Zannikos K, Berdoussi E, Ladis V. The efficacy of iron chelator regimes in reducing cardiac and hepatic iron in patients with thalassaemia major: a clinical observational study. J Cardiovasc Magn Reson 2009; 11:20. [PMID: 19558722 PMCID: PMC2713224 DOI: 10.1186/1532-429x-11-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 06/28/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Available iron chelation regimes in thalassaemia may achieve different changes in cardiac and hepatic iron as assessed by MR. The aim of this study was to assess the efficacy of four available iron chelator regimes in 232 thalassaemia major patients by assessing the rate of change in repeated measurements of cardiac and hepatic MR. RESULTS For the heart, deferiprone and the combination of deferiprone and deferoxamine significantly reduced cardiac iron at all levels of iron loading. As patients were on deferasirox for a shorter time, a second analysis ("Initial interval analysis") assessing the change between the first two recorded MR results for both cardiac and hepatic iron (minimum interval 12 months) was made. Combination therapy achieved the most rapid fall in cardiac iron load at all levels and deferiprone alone was significantly effective with moderate and mild iron load. In the liver, deferasirox effected significant falls in iron load and combination therapy resulted in the most rapid decline. CONCLUSION With the knowledge of the efficacy of the different available regimes and the specific iron load in the heart and the liver, appropriate tailoring of chelation therapy should allow clearance of iron. Combination therapy is best in reducing both cardiac and hepatic iron, while monotherapy with deferiprone or deferasirox are effective in the heart and liver respectively. The outcomes of this study may be useful to physicians as to the chelation they should prescribe according to the levels of iron load found in the heart and liver by MR.
Collapse
Affiliation(s)
- Vasilios Berdoukas
- Thalassaemia Unit, First Department of Paediatrics, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Giorgos Chouliaras
- Thalassaemia Unit, First Department of Paediatrics, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiotis Moraitis
- Thalassaemia Unit, First Department of Paediatrics, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Kirykos Zannikos
- Thalassaemia Unit, First Department of Paediatrics, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Eleni Berdoussi
- Thalassaemia Unit, First Department of Paediatrics, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vassilios Ladis
- Thalassaemia Unit, First Department of Paediatrics, University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
14
|
Abstract
Beta-thalassemia and sickle cell anemia (SCD) represent the most common hemoglobinopathies caused, respectively, by deficient production or alteration of the beta chain of hemoglobin (Hb). Patients affected by the most severe form of thalassemia suffer from profound anemia that requires chronic blood transfusions and chelation therapies to prevent iron overload. However, patients affected by beta-thalassemia intermedia, a milder form of the disease that does not require chronic blood transfusions, eventually also show elevated body iron content due to increased gastrointestinal iron absorption. Even SCD patients might require blood transfusions and iron chelation to prevent deleterious and painful vaso-occlusive crises and complications due to iron overload. Although definitive cures are presently available, such as bone marrow transplantation (BMT), or are in development, such as correction of the disease through hematopoietic stem cell beta-globin gene transfer, they are potentially hazardous procedures or too experimental to provide consistently safe and predictive clinical outcomes. Therefore, studies that aim to better understand the pathophysiology of the hemoglobinopathies might provide further insight and new drugs to dramatically improve the understanding and current treatment of these diseases. This review will describe how recent discoveries on iron metabolism and erythropoiesis could lead to new therapeutic strategies and better clinical care of these diseases, thereby yielding a much better quality of life for the patients.
Collapse
Affiliation(s)
- Gideon Rechavi
- Cancer Research Center, Chaim Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 52621, Israel
| | - Stefano Rivella
- Department of Pediatric Hematology-Oncology, Children’s Cancer and Blood Foundation Laboratories, Weill Medical College of Cornell University, 515 E 71 Street, S702, Box 284, New York, NY, USA
| |
Collapse
|
15
|
Abstract
The aim of the study was to investigate the differing epidemiology of hepatitis C-related end-stage liver disease in ethnic minorities in England. We used Hospital Episode Statistics from 1997/98 to 2004/05 to directly age-standardize numbers of episodes and deaths from hepatitis C-related end-stage liver disease in ethnic groups using the white English population as standard and the age-structured population by ethnic group from the 2001 Census. We estimated the odds of having a diagnosis of end-stage liver disease amongst hepatitis C-infected individuals in each ethnic group compared with whites using logistic regression. The main outcome measures were age-standardized morbidity and mortality ratios and morbidity and mortality odds ratios. Standardized ratios (95% confidence interval) for hepatitis C-related end-stage liver disease ranged from 73 (38-140) in Chinese people to 1063 (952-1186) for those from an 'Other' ethnic group. Amongst individuals with a diagnosis of hepatitis C infection, the odds ratios (95% CI) of severe liver disease were 1.42 (1.13-1.79), 1.57 (1.36-1.81), 2.44 (1.85-3.22), 1.73 (1.36-2.19) and 1.83 (1.08-3.10) comparing individuals of Black African, Pakistani, Bangladeshi, Indian and Chinese origin with whites, respectively. Ethnic minority populations in England are more likely than whites to experience an admission or to die from severe liver disease as a result of hepatitis C infection. Ethnic minority populations may have a higher prevalence of hepatitis C or they may experience a poorer prognosis because of differential access to health services, longer duration of infection or the prevalence of co-morbidities.
Collapse
Affiliation(s)
- A G Mann
- Immunisation Department, Health Protection Agency Centre for Infections, London, UK.
| | | | | | | |
Collapse
|