1
|
In vitro antioxidant and antityrosinase activities of Manilkara kauki. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:153-162. [PMID: 32697742 DOI: 10.2478/acph-2021-0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 01/19/2023]
Abstract
Manilkara kauki L. Dubard is a tropical plant in the genus Manilkara of family Sapotaceae. This study investigated the total phenolic and flavonoid contents, and antioxidant and antityrosinase activities in different parts of M. kauki (fruits, leaves, seeds, stem barks and woods) and in fractions of stem barks. The total phenolic and flavonoid contents of the methanol and aqueous crude extracts of different parts of M. kauki ranged from 10.87 to 176.56 mg GAE (gallic acid equivalents) per gram of crude extract and 14.33 to 821.67 mg QE (quercetin equivalents) per gram of crude extract, resp. Leaves and stem barks exhibited higher total phenolic and flavonoid contents and antioxidant and anti-tyrosinase activities than fruits, seeds and woods. Stem barks were sequentially extracted with n-hexane, ethyl acetate, methanol and water and then the fractionated extracts were subjected to antioxidant and antityrosinase activities testing. The ethyl acetate and methanol extracts of stem barks exhibited higher total phenolic and flavonoid contents and antioxidant and antityrosinase activities than the n-hexane and aqueous extracts. Moreover, ethyl acetate extract of M. kauki stem exhibited the highest antityrosinase activity. It may be a potential source of tyrosinase inhibitors for pharmaceutical and cosmetic applications.
Collapse
|
2
|
Utzeri VJ, Ribani A, Schiavo G, Fontanesi L. Describing variability in the tyrosinase (TYR) gene, the albino coat colour locus, in domestic and wild European rabbits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1877574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Valerio Joe Utzeri
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Anisa Ribani
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Giuseppina Schiavo
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| | - Luca Fontanesi
- Dipartimento di Scienze e Tecnologie Agro-alimentari, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Morice-Picard F. [Genetics and dermatology]. Ann Dermatol Venereol 2019; 146:326-339. [PMID: 31006539 DOI: 10.1016/j.annder.2019.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many types of genodermatosis exist, with numerous modes of transmission. The development of molecular genetic methods, in particular the most recent sequencing techniques, can be used to identify an increasing number of genes involved in these forms of genodermatosis while providing confirmation or more details regarding clinical diagnosis. Thanks to this approach, it is possible to determine risk of recurrence and to formulate an antenatal strategy. These technologies have led to improved molecular definition and to a better understanding of the physiopathological mechanisms involved in different genodermatoses such as bullous epidermolysis, keratinisation disorders, pigmentation disorders, potentially tumoral conditions, and epidermal and pilar dysplasia. The large amount of information provided by high-throughput sequencing makes it possible to study modifying genes as well as genotype-phenotype correlations. However, this genetic information in its turn poses problems of interpretation and of control of the resulting data. The use of genetics in dermatology for the purposes of diagnosis or research requires a consultation to provide patients with information regarding the genetic tests involved and the potential consequences thereof for them and their families. Furthermore, with pangenomic approaches there is a higher probability of fortuitous discovery of abnormalities such as variants associated with risks predisposing to cancer or neurodegenerative disease. Collaboration between dermatologists and geneticists enables optimisation of patient management in terms of diagnosis and genetic counselling in the event of such rare diseases. Therapeutic applications are beginning to be developed. The scope of therapeutic application includes gene therapy, replacement therapy (enzyme therapy) and targeted therapy.
Collapse
Affiliation(s)
- F Morice-Picard
- Service de dermatologie pédiatrique et dermatologie, Centre de référence des maladies rares de la peau, Hôpital pédiatrique, Groupe hospitalier Pellegrin, Centre hospitalier universitaire de Bordeaux, place Amélie-Raba-Léon, 33076 Bordeaux cedex, France.
| |
Collapse
|
5
|
Nasti TH, Timares L. MC1R, eumelanin and pheomelanin: their role in determining the susceptibility to skin cancer. Photochem Photobiol 2014; 91:188-200. [PMID: 25155575 DOI: 10.1111/php.12335] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/17/2014] [Indexed: 12/16/2022]
Abstract
Skin pigmentation is due to the accumulation of two types of melanin granules in the keratinocytes. Besides being the most potent blocker of ultraviolet radiation, the role of melanin in photoprotection is complex. This is because one type of melanin called eumelanin is UV absorbent, whereas the other, pheomelanin, is photounstable and may even promote carcinogenesis. Skin hyperpigmentation may be caused by stress or exposure to sunlight, which stimulates the release of α-melanocyte stimulating hormone (α-MSH) from damaged keratinocytes. Melanocortin 1 receptor (MC1R) is a key signaling molecule on melanocytes that responds to α-MSH by inducing expression of enzymes responsible for eumelanin synthesis. Persons with red hair have mutations in the MC1R causing its inactivation; this leads to a paucity of eumelanin production and makes red-heads more susceptible to skin cancer. Apart from its effects on melanin production, the α-MSH/MC1R signaling is also a potent anti-inflammatory pathway and has been shown to promote antimelanoma immunity. This review will focus on the role of MC1R in terms of its regulation of melanogenesis and influence on the immune system with respect to skin cancer susceptibility.
Collapse
Affiliation(s)
- Tahseen H Nasti
- The Department of Dermatology, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | | |
Collapse
|
6
|
Luo C, Qu H, Wang J, Wang Y, Ma J, Li C, Yang C, Hu X, Li N, Shu D. Genetic parameters and genome-wide association study of hyperpigmentation of the visceral peritoneum in chickens. BMC Genomics 2013; 14:334. [PMID: 23679099 PMCID: PMC3663821 DOI: 10.1186/1471-2164-14-334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hyperpigmentation of the visceral peritoneum (HVP) has recently garnered much attention in the poultry industry because of the possible risk to the health of affected animals and the damage it causes to the appearance of commercial chicken carcasses. However, the heritable characters of HVP remain unclear. The objective of this study was to investigate the genetic parameters of HVP by genome-wide association study (GWAS) in chickens. RESULTS HVP was found to be influenced by genetic factors, with a heritability score of 0.33. HVP had positive genetic correlations with growth and carcass traits, such as leg muscle weight (rg = 0.34), but had negative genetic correlations with immune traits, such as the antibody response to Newcastle disease virus (rg = -0.42). The GWAS for HVP using 39,833 single nucleotide polymorphisms indicated the genetic factors associated with HVP displayed an additive effect rather than a dominance effect. In addition, we determined that three genomic regions, involving the 50.5-54.0 Mb region of chicken (Gallus gallus) chromosome 1 (GGA1), the 58.5-60.5 Mb region of GGA1, and the 10.5-12.0 Mb region of GGA20, were strongly associated (P < 6.28 × 10-7) with HVP in chickens. Variants in these regions explained >50% of additive genetic variance for HVP. This study also confirmed that expression of BMP7, which codes for a bone morphogenetic protein and is located in one of the candidate regions, was significantly higher in the visceral peritoneum of Huiyang Beard chickens with HVP than in that of chickens without pigmentation (P < 0.05). CONCLUSIONS HVP is a quantitative trait with moderate heritability. Genomic variants resulting in HVP were identified on GGA1 and GGA20, and expression of the BMP7 gene appears to be upregulated in HVP-affected chickens. Findings from this study should be used as a basis for further functional validation of candidate genes involved in HVP.
Collapse
Affiliation(s)
- Chenglong Luo
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Hao Qu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Jie Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Yan Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Jie Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Chunyu Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Chunfen Yang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| | - Xiaoxiang Hu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Li
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Dingming Shu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangzhou, Guangdong, 510640, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510640, China
| |
Collapse
|