1
|
Leivas FR, Fernandes HCM, Vainstein MH. Anomalous behavior of replicator dynamics for the prisoner's dilemma on diluted lattices. Phys Rev E 2025; 111:024123. [PMID: 40103028 DOI: 10.1103/physreve.111.024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
In diluted lattices, cooperation is often enhanced at specific densities, particularly near the percolation threshold for stochastic updating rules. However, the replicator rule, despite being probabilistic, does not follow this trend. We find that this anomalous behavior is caused by structures formed by holes and defectors, which prevent some agents from experiencing fluctuations, thereby restricting the free flow of information across the network. As a result, the system becomes trapped in a frozen state, though this can be disrupted by introducing perturbations. Finally, we provide a more quantitative analysis of the relationship between the percolation threshold and cooperation, tracking its development within clusters of varying sizes and demonstrating how the percolation threshold shapes the fundamental structures of the lattice.
Collapse
Affiliation(s)
- Fernanda R Leivas
- Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, 91501-970 Porto Alegre RS, Brazil
| | - Heitor C M Fernandes
- Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, 91501-970 Porto Alegre RS, Brazil
| | - Mendeli H Vainstein
- Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, 91501-970 Porto Alegre RS, Brazil
| |
Collapse
|
2
|
Chen K, Zhang Y, Luo M, Zhen X. Effects of higher-order interactions on the evolution of cooperative behavior in hyperbolic scale-free network. CHAOS (WOODBURY, N.Y.) 2025; 35:023129. [PMID: 39908562 DOI: 10.1063/5.0248208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
This study proposes an innovative hypergraph model to explore the effects of higher-order interactions on the evolution of cooperative behavior in a hyperbolic scale-free network. By adjusting the heterogeneity coefficient and clustering coefficient of the hyperbolic scale-free network, four distinct network structures with notable differences can be obtained. We then map pairwise and three-way interactions to 2-hyperedges and 3-hyperedges, constructing a hypergraph model with higher-order interactions. Our findings reveal that when the proportion of three-way interactions exceeds a critical threshold, cooperative tendencies exhibit explosive growth, leading to a bistable phenomenon of coexisting cooperation and defection. The system's average degree significantly influences the critical mass of initial cooperators needed to maintain stable cooperative behavior. The network structure shows complex, non-linear effects on cooperation. In low-conditions, increasing heterogeneity acts to suppress the appearance of bistable phenomena, while in high clustering conditions, it acts to promote. Increasing clustering tends to suppress the appearance of bistable phenomena in both low and high heterogeneity conditions. Furthermore, the effects of heterogeneity, clustering, and noise factors on cooperation are non-monotonic, exhibiting inverted U-shaped patterns with critical transition points. These findings provide new theoretical perspectives for understanding diverse cooperation patterns in real-world scenarios and suggest the need for dynamic, context-specific approaches when designing strategies to promote cooperation.
Collapse
Affiliation(s)
- Kenan Chen
- School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550025, People's Republic of China
| | - Yingqing Zhang
- School of Business Administration, Guizhou University of Finance and Economics, Guiyang 550025, People's Republic of China
| | - Ming Luo
- Economics and Management School, Guangxi Normal University, Guilin 541000, People's Republic of China
| | - Xiaojing Zhen
- School of Economic and Management Science, Weifang University of Science and Technology, Shouguang 262700, People's Republic of China
| |
Collapse
|
3
|
He Z, Wang X, Zhao Q, Shi L. Evolution of cooperation in heterogeneous populations with asymmetric payoff distribution. CHAOS (WOODBURY, N.Y.) 2024; 34:113132. [PMID: 39546275 DOI: 10.1063/5.0240668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The emergence and maintenance of cooperation is a complex and intriguing issue, especially in the context of widespread asymmetries in interactions that arise from individual differences in real-world scenarios. This study investigates how asymmetric payoff distribution affects cooperation in public goods games by considering a population composed of two types of individuals: strong and weak. The asymmetry is reflected in the fact that strong players receive a larger share of the public pool compared to weak players. Our results demonstrate that asymmetric payoff distribution can promote cooperation in well-mixed populations and trigger the co-evolution of cooperation between sub-populations of strong and weak players. In structured populations, however, the effect of asymmetric payoff distribution on cooperation is contingent on the proportion of strong players and the extent of their payoff share, which can either foster or inhibit cooperation. By adjusting the interaction probability between strong and weak players based on their spatial arrangement on lattice networks, we find that moderate interaction probabilities most effectively maintain cooperation. This study provides valuable insights into the dynamics of cooperation under asymmetric conditions, highlighting the complex role of asymmetrical interactions in the evolution of cooperation.
Collapse
Affiliation(s)
- Zhixue He
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China
| | - Xiaoyue Wang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China
| | - Qiwen Zhao
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China
- Interdisciplinary Research Institute of Data Science, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China
| |
Collapse
|
4
|
Flores LS, Vainstein MH, Fernandes HCM, Amaral MA. Heterogeneous contributions can jeopardize cooperation in the public goods game. Phys Rev E 2023; 108:024111. [PMID: 37723706 DOI: 10.1103/physreve.108.024111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023]
Abstract
When studying social dilemma games, a crucial question arises regarding the impact of general heterogeneity on cooperation, which has been shown to have positive effects in numerous studies. Here, we demonstrate that heterogeneity in the contribution value for the focal public goods game can jeopardize cooperation. We show that there is an optimal contribution value in the homogeneous case that most benefits cooperation depending on the lattice. In a heterogeneous scenario, where strategy and contribution coevolve, cooperators making contributions higher than the optimal value end up harming those who contribute less. This effect is notably detrimental to cooperation in the square lattice with von Neumann neighborhood, while it can have no impact in other lattices. Furthermore, in parameter regions where a higher-contributing cooperator cannot normally survive alone, the exploitation of lower-value contribution cooperators allows their survival, resembling a parasitic behavior. To obtain these results, we examined the effect of various distributions for the contribution values in the initial condition and we conducted Monte Carlo simulations.
Collapse
Affiliation(s)
- Lucas S Flores
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mendeli H Vainstein
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Heitor C M Fernandes
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco A Amaral
- Instituto de Humanidades, Artes e Ciências, Universidade Federal do Sul da Bahia, CEP 45638-000, Teixeira de Freitas, Bahia, Brazil
| |
Collapse
|
5
|
Lee HW, Cleveland C, Szolnoki A. When costly migration helps to improve cooperation. CHAOS (WOODBURY, N.Y.) 2022; 32:093103. [PMID: 36182382 DOI: 10.1063/5.0100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
Motion is a typical reaction among animals and humans trying to reach better conditions in a changing world. This aspect has been studied intensively in social dilemmas where competing players' individual and collective interests are in conflict. Starting from the traditional public goods game model, where players are locally fixed and unconditional cooperators or defectors are present, we introduce two additional strategies through which agents can change their positions of dependence on the local cooperation level. More importantly, these so-called sophisticated players should bear an extra cost to maintain their permanent capacity to evaluate their neighborhood and react accordingly. Hence, four strategies compete, and the most successful one can be imitated by its neighbors. Crucially, the introduction of costly movement has a highly biased consequence on the competing main strategies. In the majority of parameter space, it is harmful to defectors and provides a significantly higher cooperation level when the population is rare. At an intermediate population density, which would be otherwise optimal for a system of immobile players, the presence of mobile actors could be detrimental if the interaction pattern changes slightly, thereby blocking the optimal percolation of information flow. In this parameter space, sophisticated cooperators can also show the co-called Moor effect by first avoiding the harmful vicinity of defectors; they subsequently transform into an immobile cooperator state. Hence, paradoxically, the additional cost of movement could be advantageous to reach a higher general income, especially for a rare population when subgroups would be isolated otherwise.
Collapse
Affiliation(s)
- Hsuan-Wei Lee
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | | | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
6
|
Computation of Polynomial Degree-Based Topological Descriptors of Indu-Bala Product of Two Paths. J CHEM-NY 2021. [DOI: 10.1155/2021/6281596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cheminformatics is entirely a newly coined term that encompasses a field that includes engineering computer sciences along with basic sciences. As we all know, vertices and edges form a network whereas vertex and its degrees contribute to joining edges. The degree of vertex is very much dependent on a reasonable proportion of network properties. There is no doubt that a network has to have a reliance of different kinds of hub buses, serials, and other connecting points to constitute a system that is the backbone of cheminformatics. The Indu-Bala product of two graphs
and
has a special notation as described in Section 2. The attainment of this product is very much due to related vertices at to different places of
. This study states we have found M-polynomial and degree-based topological indices for Indu-Bala product of two paths
and
for
. We also give some graphical representation of these indices and analyzed them graphically.
Collapse
|
7
|
Lütz AF, Amaral MA, Wardil L. Moderate immigration may promote a peak of cooperation among natives. Phys Rev E 2021; 104:014304. [PMID: 34412348 DOI: 10.1103/physreve.104.014304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/11/2021] [Indexed: 11/07/2022]
Abstract
In a world of hardening borders, nations may deprive themselves of enjoying the benefits of cooperative immigrants. Here we analyze the effect of efficient cooperative immigrants on a population playing public goods games. We considered a population structured on a square lattice with individuals playing public goods games with their neighbors. The demographics are determined by stochastic birth, death, and migration. The strategies spread through imitation dynamics. Our model shows that cooperation among natives can emerge due to social contagion of good role-model agents that can provide better quality public goods. Only a small fraction of efficient cooperators, among immigrants, is enough to trigger cooperation across the native population. We see that native cooperation achieves its peak at moderate values of immigration rate. Such efficient immigrant cooperators act as nucleation centers for the growth of cooperative clusters, which eventually dominate defection.
Collapse
Affiliation(s)
- Alessandra F Lütz
- Departamento de Física, Universidade de Minas Gerais, 31270-901, Belo Horizonte MG, Brazil
| | - Marco A Amaral
- Instituto de Humanidades, Artes e Ciências, Universidade Federal do Sul da Bahia, 45988-058, Teixeira de Freitas BA, Brazil
| | - Lucas Wardil
- Departamento de Física, Universidade de Minas Gerais, 31270-901, Belo Horizonte MG, Brazil
| |
Collapse
|
8
|
On Analysis and Computation of Degree-Based Topological Invariants for Cyclic Mesh Network. J CHEM-NY 2021. [DOI: 10.1155/2021/1290881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recently, there has been increasing attention on the system network due to its promising applications in parallel hanging architectures such as distributed computing (Day (2004), Day and Al-Ayyoub (2002)). Related networks differ in the circumstances of topology, and the descriptors were freshly examined by Hayat and Imran (2014) and Hayat et al. (2014). Distance-based descriptors, counting-related descriptors, and degree-based descriptors are all examples of topological descriptors. These topological characteristics are linked to chemical features of a substance, such as stability, strain energy, and boiling point. The specifications for the 1st Zagreb alpha, 1st Zagreb beta, 2nd Zagreb, sum-connectivity, geometric-arithmetic, Randic, harmonic, and atom-bond connectivity indices for mesh networks
based on VE and EV degree are discussed in this paper.
Collapse
|
9
|
Accounting for farmers' control decisions in a model of pathogen spread through animal trade. Sci Rep 2021; 11:9581. [PMID: 33953245 PMCID: PMC8100180 DOI: 10.1038/s41598-021-88471-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/12/2021] [Indexed: 02/03/2023] Open
Abstract
Accounting for individual decisions in mechanistic epidemiological models remains a challenge, especially for unregulated endemic animal diseases for which control is not compulsory. We propose a new integrative model by combining two sub-models. The first one for the dynamics of a livestock epidemic on a metapopulation network, grounded on demographic and animal trade data. The second one for farmers' behavior regarding the adoption of a control measure against the disease spread in their herd. The measure is specified as a protective vaccine with given economic implications, and the model is numerically studied through intensive simulations and sensitivity analyses. While each tested parameter of the model has an impact on the overall model behavior, the most important factor in farmers' decisions is their frequency, as this factor explained almost 30% of the variation in decision-related outputs of the model. Indeed, updating frequently local health information impacts positively vaccination, and limits strongly the propagation of the pathogen. Our study is relevant for the understanding of the interplay between decision-related human behavior and livestock epidemic dynamics. The model can be used for other structures of epidemic models or different interventions, by adapting its components.
Collapse
|
10
|
Fu Y, Zhang Y, Guo Y, Xie Y. Evolutionary dynamics of cooperation with the celebrity effect in complex networks. CHAOS (WOODBURY, N.Y.) 2021; 31:013130. [PMID: 33754779 DOI: 10.1063/5.0033335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
How long-term cooperation is maintained in a society is an important and interesting question. The evolutionary game theory is often used as the basic framework to study this topic. The social status of game participants has an important influence on individual decision-making. Enlightened by this thought, we present a classification imitation model where the mechanisms of the celebrity effect and incomplete egoism are presented. The celebrity effect is reflected in each strategy update process to probe how individual decision-making is dynamically adjusted by comparing the social status of both parties in the game. The incomplete egoism refers to the irrational imitation of celebrities while self-interest is ignored. With this model, the group cooperation decision-making mechanism led by celebrities is revealed. Large-scale Monte Carlo simulations show that the incomplete egoism of individuals cannot stimulate cooperation but guarantee the stable existence of cooperation. Furthermore, the scale-free and community structure of the network enables cooperation to spread widely and maintains long-term survival. Our conclusion might provide practically new insight into the understanding and controlling of cooperation in the complex social systems.
Collapse
Affiliation(s)
- Yanyu Fu
- School of Business, Tianjin University of Finance and Economics, Tianjin 300222, China
| | - Yan Zhang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Yu Guo
- Software Institute, Nanjing University, Nanjing 210093, China
| | - Yunya Xie
- Coordinated Innovation Center for Computable Modeling in Management Science, Tianjin University of Finance and Economics, Tianjin 300222, China
| |
Collapse
|
11
|
Abstract
Despite the accumulation of research on indirect reciprocity over the past 30 years and the publication of over 100,000 related papers, there are still many issues to be addressed. Here, we look back on the research that has been done on indirect reciprocity and identify the issues that have been resolved and the ones that remain to be resolved. This manuscript introduces indirect reciprocity in the context of the evolution of cooperation, basic models of social dilemma situations, the path taken in the elaboration of mathematical analysis using evolutionary game theory, the discovery of image scoring norms, and the breakthroughs brought about by the analysis of the evolutionary instability of the norms. Moreover, it presents key results obtained by refining the assessment function, resolving the punishment dilemma, and presenting a complete solution to the social dilemma problem. Finally, it discusses the application of indirect reciprocity in various disciplines.
Collapse
|
12
|
Husin MN, Ariffin A, Alaeiyan M. The neighbourhood polynomial of certain networks. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2020. [DOI: 10.1080/02522667.2020.1748275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mohamad Nazri Husin
- Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Kuala Terengganu, Malaysia
| | - Anamila Ariffin
- Department of Mathematical Sciences, Faculty of Science, University Technology Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mehdi Alaeiyan
- Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran
| |
Collapse
|
13
|
Autilio AR, Bechard MJ, Bildstein KL. Social scavenging by wintering striated caracaras (Phalcoboenus australis) in the Falkland Islands. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2638-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Social Closure and the Evolution of Cooperation via Indirect Reciprocity. Sci Rep 2018; 8:11149. [PMID: 30042391 PMCID: PMC6057955 DOI: 10.1038/s41598-018-29290-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/05/2018] [Indexed: 11/24/2022] Open
Abstract
Direct and indirect reciprocity are good candidates to explain the fundamental problem of evolution of cooperation. We explore the conditions under which different types of reciprocity gain dominance and their performances in sustaining cooperation in the PD played on simple networks. We confirm that direct reciprocity gains dominance over indirect reciprocity strategies also in larger populations, as long as it has no memory constraints. In the absence of direct reciprocity, or when its memory is flawed, different forms of indirect reciprocity strategies are able to dominate and to support cooperation. We show that indirect reciprocity relying on social capital inherent in closed triads is the best competitor among them, outperforming indirect reciprocity that uses information from any source. Results hold in a wide range of conditions with different evolutionary update rules, extent of evolutionary pressure, initial conditions, population size, and density.
Collapse
|
15
|
|
16
|
How costly punishment, diversity, and density of connectivity influence cooperation in a biological network. Sci Rep 2017; 7:17319. [PMID: 29229960 PMCID: PMC5725596 DOI: 10.1038/s41598-017-17481-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/24/2017] [Indexed: 11/09/2022] Open
Abstract
It has been an old unsolved puzzle to evolutionary theorists on which mechanisms would increase large-scale cooperation in human societies. Thus, how such mechanisms operate in a biological network is still not well understood. This study addresses these questions with empirical evidence from agent-based models designed to understand these network interactions. Repeated Prisoner’s Dilemma games were designed to study how costly punishment, diversity, and density of connectivity interact to influence cooperation in a biological network. There were 1000 rounds in each game made up of 18 players engaged in pairwise relationship with their neighbors. This study shows three important interactions. (1) Introducing diversity to costly punishment favors both cooperation and defection, but not vice versa. Introducing costly punishment to diversity disfavors defection but favors cooperation. (2) Costly Punishment, alone, disfavors defection but decreases average payoff. Decreasing the density of connectivity, Dc, when there is no costly punishment applied, increases average payoff. (3) A synergy of diversity and decreasing density of connectivity favors cooperation in a biological network. Furthermore, this study also suggests a likelihood from empirical findings that spatial structures may not be favoring cooperation, as is the widely-accepted notion, but rather disfavoring defection in the global scale.
Collapse
|
17
|
Amaral MA, Perc M, Wardil L, Szolnoki A, da Silva Júnior EJ, da Silva JKL. Role-separating ordering in social dilemmas controlled by topological frustration. Phys Rev E 2017; 95:032307. [PMID: 28415219 DOI: 10.1103/physreve.95.032307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 06/07/2023]
Abstract
''Three is a crowd" is an old proverb that applies as much to social interactions as it does to frustrated configurations in statistical physics models. Accordingly, social relations within a triangle deserve special attention. With this motivation, we explore the impact of topological frustration on the evolutionary dynamics of the snowdrift game on a triangular lattice. This topology provides an irreconcilable frustration, which prevents anticoordination of competing strategies that would be needed for an optimal outcome of the game. By using different strategy updating protocols, we observe complex spatial patterns in dependence on payoff values that are reminiscent to a honeycomb-like organization, which helps to minimize the negative consequence of the topological frustration. We relate the emergence of these patterns to the microscopic dynamics of the evolutionary process, both by means of mean-field approximations and Monte Carlo simulations. For comparison, we also consider the same evolutionary dynamics on the square lattice, where of course the topological frustration is absent. However, with the deletion of diagonal links of the triangular lattice, we can gradually bridge the gap to the square lattice. Interestingly, in this case the level of cooperation in the system is a direct indicator of the level of topological frustration, thus providing a method to determine frustration levels in an arbitrary interaction network.
Collapse
Affiliation(s)
- Marco A Amaral
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Lucas Wardil
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Post Office Box 49, H-1525 Budapest, Hungary
| | - Elton J da Silva Júnior
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| | - Jafferson K L da Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| |
Collapse
|
18
|
Amaral MA, Wardil L, Perc M, da Silva JKL. Stochastic win-stay-lose-shift strategy with dynamic aspirations in evolutionary social dilemmas. Phys Rev E 2016; 94:032317. [PMID: 27739792 DOI: 10.1103/physreve.94.032317] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 11/07/2022]
Abstract
In times of plenty expectations rise, just as in times of crisis they fall. This can be mathematically described as a win-stay-lose-shift strategy with dynamic aspiration levels, where individuals aspire to be as wealthy as their average neighbor. Here we investigate this model in the realm of evolutionary social dilemmas on the square lattice and scale-free networks. By using the master equation and Monte Carlo simulations, we find that cooperators coexist with defectors in the whole phase diagram, even at high temptations to defect. We study the microscopic mechanism that is responsible for the striking persistence of cooperative behavior and find that cooperation spreads through second-order neighbors, rather than by means of network reciprocity that dominates in imitation-based models. For the square lattice the master equation can be solved analytically in the large temperature limit of the Fermi function, while for other cases the resulting differential equations must be solved numerically. Either way, we find good qualitative agreement with the Monte Carlo simulation results. Our analysis also reveals that the evolutionary outcomes are to a large degree independent of the network topology, including the number of neighbors that are considered for payoff determination on lattices, which further corroborates the local character of the microscopic dynamics. Unlike large-scale spatial patterns that typically emerge due to network reciprocity, here local checkerboard-like patterns remain virtually unaffected by differences in the macroscopic properties of the interaction network.
Collapse
Affiliation(s)
- Marco A Amaral
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| | - Lucas Wardil
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto, CEP 35400-000 MG, Brazil
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia.,CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Jafferson K L da Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| |
Collapse
|
19
|
Chen X, Szolnoki A. Individual wealth-based selection supports cooperation in spatial public goods games. Sci Rep 2016; 6:32802. [PMID: 27597441 PMCID: PMC5011727 DOI: 10.1038/srep32802] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/15/2016] [Indexed: 11/09/2022] Open
Abstract
In a social dilemma game group members are allowed to decide if they contribute to the joint venture or not. As a consequence, defectors, who do not invest but only enjoy the mutual benefit, prevail and the system evolves onto the tragedy of the common state. This unfortunate scenario can be avoided if participation is not obligatory but only happens with a given probability. But what if we also consider a player’s individual wealth when to decide about participation? To address this issue we propose a model in which the probabilistic participation in the public goods game is combined with a conditional investment mode that is based on individual wealth: if a player’s wealth exceeds a threshold value then it is qualified and can participate in the joint venture. Otherwise, the participation is forbidden in the investment interactions. We show that if only probabilistic participation is considered, spatially structured populations cannot support cooperation better than well-mixed populations where full defection state can also be avoided for small participation probabilities. By adding the wealth-based criterion of participation, however, structured populations are capable to augment network reciprocity relevantly and allow cooperator strategy to dominate in a broader parameter interval.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
20
|
Amaral MA, Wardil L, Perc M, da Silva JKL. Evolutionary mixed games in structured populations: Cooperation and the benefits of heterogeneity. Phys Rev E 2016; 93:042304. [PMID: 27176309 DOI: 10.1103/physreve.93.042304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 06/05/2023]
Abstract
Evolutionary games on networks traditionally involve the same game at each interaction. Here we depart from this assumption by considering mixed games, where the game played at each interaction is drawn uniformly at random from a set of two different games. While in well-mixed populations the random mixture of the two games is always equivalent to the average single game, in structured populations this is not always the case. We show that the outcome is, in fact, strongly dependent on the distance of separation of the two games in the parameter space. Effectively, this distance introduces payoff heterogeneity, and the average game is returned only if the heterogeneity is small. For higher levels of heterogeneity the distance to the average game grows, which often involves the promotion of cooperation. The presented results support preceding research that highlights the favorable role of heterogeneity regardless of its origin, and they also emphasize the importance of the population structure in amplifying facilitators of cooperation.
Collapse
Affiliation(s)
- Marco A Amaral
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| | - Lucas Wardil
- Departamento de Fisica, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000, MG, Brazil
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- CAMTP-Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Jafferson K L da Silva
- Departamento de Física, Universidade Federal de Minas Gerais, Caixa Postal 702, CEP 30161-970, Belo Horizonte-MG, Brazil
| |
Collapse
|
21
|
Han D, Sun M. An evolutionary vaccination game in the modified activity driven network by considering the closeness. PHYSICA A 2016; 443:49-57. [PMID: 32288095 PMCID: PMC7134395 DOI: 10.1016/j.physa.2015.09.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/07/2015] [Indexed: 06/11/2023]
Abstract
In this paper, we explore an evolutionary vaccination game in the modified activity driven network by considering the closeness. We set a closeness parameter p which is used to describe the way of connection between two individuals. The simulation results show that the closeness p may have an active role in weakening both the spreading of epidemic and the vaccination. Besides, when vaccination is not allowed, the final recovered density increases with the value of the ratio of the infection rate to the recovery rate λ / μ . However, when vaccination is allowed the final density of recovered individual first increases and then decreases with the value of λ / μ . Two variables are designed to identify the relation between the individuals' activities and their states. The results draw that both recovered and vaccinated frequency increase with the increase of the individuals' activities. Meanwhile, the immune fee has less impact on the individuals' vaccination than the closeness. While the λ / μ is in a certain range, with the increase of the value of λ / μ , the recovered frequency of the whole crowds reduces. Our results, therefore, reveal the fact that the best of intentions may lead to backfire.
Collapse
Affiliation(s)
- Dun Han
- Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu, PR China
- Levich Institute and Physics Department, City College of New York, New York, NY 10031, USA
| | - Mei Sun
- Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu, PR China
| |
Collapse
|
22
|
Choi W, Yook SH, Kim Y. Percolation in spatial evolutionary prisoner's dilemma game on two-dimensional lattices. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052140. [PMID: 26651679 DOI: 10.1103/physreve.92.052140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 06/05/2023]
Abstract
We study the spatial evolutionary prisoner's dilemma game with updates of imitation max on triangular, hexagonal, and square lattices. We use the weak prisoner's dilemma game with a single parameter b. Due to the competition between the temptation value b and the coordination number z of the base lattice, a greater variety of percolation properties is expected to occur on the lattice with the larger z. From the numerical analysis, we find six different regimes on the triangular lattice (z=6). Regardless of the initial densities of cooperators and defectors, cooperators always percolate in the steady state in two regimes for small b. In these two regimes, defectors do not percolate. In two regimes for the intermediate value of b, both cooperators and defectors undergo percolation transitions. The defector always percolates in two regimes for large b. On the hexagonal lattice (z=3), there exist two distinctive regimes. For small b, both the cooperators and the defectors undergo percolation transitions while only defectors always percolate for large b. On the square lattice (z=4), there exist three regimes. Combining with the finite-size scaling analyses, we show that all the observed percolation transitions belong to the universality class of the random percolation. We also show how the detailed growth mechanism of cooperator and defector clusters decides each regime.
Collapse
Affiliation(s)
- Woosik Choi
- Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea
| | - Soon-Hyung Yook
- Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea
| | - Yup Kim
- Department of Physics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
23
|
Perc M, Szolnoki A. A double-edged sword: Benefits and pitfalls of heterogeneous punishment in evolutionary inspection games. Sci Rep 2015; 5:11027. [PMID: 26046673 PMCID: PMC4457152 DOI: 10.1038/srep11027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
As a simple model for criminal behavior, the traditional two-strategy inspection game yields counterintuitive results that fail to describe empirical data. The latter shows that crime is often recurrent, and that crime rates do not respond linearly to mitigation attempts. A more apt model entails ordinary people who neither commit nor sanction crime as the third strategy besides the criminals and punishers. Since ordinary people free-ride on the sanctioning efforts of punishers, they may introduce cyclic dominance that enables the coexistence of all three competing strategies. In this setup ordinary individuals become the biggest impediment to crime abatement. We therefore also consider heterogeneous punisher strategies, which seek to reduce their investment into fighting crime in order to attain a more competitive payoff. We show that this diversity of punishment leads to an explosion of complexity in the system, where the benefits and pitfalls of criminal behavior are revealed in the most unexpected ways. Due to the raise and fall of different alliances no less than six consecutive phase transitions occur in dependence on solely the temptation to succumb to criminal behavior, leading the population from ordinary people-dominated across punisher-dominated to crime-dominated phases, yet always failing to abolish crime completely.
Collapse
Affiliation(s)
- Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- CAMTP – Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
24
|
Wang X, Chen X, Wang L. Evolutionary dynamics of fairness on graphs with migration. J Theor Biol 2015; 380:103-14. [PMID: 26004749 DOI: 10.1016/j.jtbi.2015.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022]
Abstract
Individual migration plays a crucial role in evolutionary dynamics of population on networks. In this paper, we generalize the networked ultimatum game by diluting population structures as well as endowing individuals with migration ability, and investigate evolutionary dynamics of fairness on graphs with migration in the ultimatum game. We first revisit the impact of node degree on the evolution of fairness. Interestingly, numerical simulations reveal that there exists an optimal value of node degree resulting in the maximal offer level of populations. Then we explore the effects of dilution and migration on the evolution of fairness, and find that both the dilution of population structures and the endowment of migration ability to individuals would lead to the drop of offer level, while the rise of acceptance level of populations. Notably, natural selection even favors the evolution of self-incompatible strategies, when either vacancy rate or migration rate exceeds a critical threshold. To confirm our simulation results, we also propose an analytical method to study the evolutionary dynamics of fairness on graphs with migration. This method can be applied to explore any games governed by pairwise interactions in finite populations.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Center for Complex Systems, Xidian University, Xi׳an 710071, China
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Long Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Universal scaling for the dilemma strength in evolutionary games. Phys Life Rev 2015; 14:1-30. [PMID: 25979121 DOI: 10.1016/j.plrev.2015.04.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.
Collapse
|
26
|
Huang K, Wang T, Cheng Y, Zheng X. Effect of heterogeneous investments on the evolution of cooperation in spatial public goods game. PLoS One 2015; 10:e0120317. [PMID: 25781345 PMCID: PMC4363493 DOI: 10.1371/journal.pone.0120317] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022] Open
Abstract
Understanding the emergence of cooperation in spatial public goods game remains a grand challenge across disciplines. In most previous studies, it is assumed that the investments of all the cooperators are identical, and often equal to 1. However, it is worth mentioning that players are diverse and heterogeneous when choosing actions in the rapidly developing modern society and researchers have shown more interest to the heterogeneity of players recently. For modeling the heterogeneous players without loss of generality, it is assumed in this work that the investment of a cooperator is a random variable with uniform distribution, the mean value of which is equal to 1. The results of extensive numerical simulations convincingly indicate that heterogeneous investments can promote cooperation. Specifically, a large value of the variance of the random variable can decrease the two critical values for the result of behavioral evolution effectively. Moreover, the larger the variance is, the better the promotion effect will be. In addition, this article has discussed the impact of heterogeneous investments when the coevolution of both strategy and investment is taken into account. Comparing the promotion effect of coevolution of strategy and investment with that of strategy imitation only, we can conclude that the coevolution of strategy and investment decreases the asymptotic fraction of cooperators by weakening the heterogeneity of investments, which further demonstrates that heterogeneous investments can promote cooperation in spatial public goods game.
Collapse
Affiliation(s)
- Keke Huang
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Tao Wang
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Yuan Cheng
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoping Zheng
- Department of Automation, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
27
|
He JZ, Wang RW, Jensen CXJ, Li YT. Asymmetric interaction paired with a super-rational strategy might resolve the tragedy of the commons without requiring recognition or negotiation. Sci Rep 2015; 5:7715. [PMID: 25586876 PMCID: PMC4293599 DOI: 10.1038/srep07715] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022] Open
Abstract
Avoiding the tragedy of the commons requires that one or more individuals in a group or partnership “volunteer”, benefiting the group at a cost to themselves. Recognition and negotiation with social partners can maintain cooperation, but are often not possible. If recognition and negotiation are not always the mechanism by which cooperative partnerships avoid collective tragedies, what might explain the diverse social cooperation observed in nature? Assuming that individuals interact asymmetrically and that both “weak” and “strong” players employ a super-rational strategy, we find that tragedy of the commons can be avoided without requiring either recognition or negotiation. Whereas in the volunteer's dilemma game a rational “strong” player is less likely to volunteer to provide a common good in larger groups, we show that under a wide range of conditions a super-rational “strong” player is more likely to provide a common good. These results imply that the integration of super-rationality and asymmetric interaction might have the potential to resolve the tragedy of the commons. By illuminating the conditions under which players are likely to volunteer, we shed light on the patterns of volunteerism observed in variety of well-studied cooperative social systems, and explore how societies might avert social tragedies.
Collapse
Affiliation(s)
- Jun-Zhou He
- 1] State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, Yunnan, 650223, P.R. China [2] Statistics and Mathematics College, Yunnan University of Finance and Economics, Kunming, Yunnan, 650221, P.R. China [3] Yunnan Tongchuang Computing &Data Mining Center, Kunming, Yunnan, 650221, P.R. China
| | - Rui-Wu Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Science, Kunming, Yunnan, 650223, P.R. China
| | - Christopher X J Jensen
- Department of Mathematics and Science, School of Liberal Arts and Sciences, Pratt Institute, 200 Willoughby Avenue, Brooklyn, NY, USA
| | - Yao-Tang Li
- School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, 650091, P.R. China
| |
Collapse
|
28
|
Zhang W, Li YS, Du P, Xu C, Hui PM. Phase transitions in a coevolving snowdrift game with costly rewiring. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052819. [PMID: 25493846 DOI: 10.1103/physreve.90.052819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Indexed: 06/04/2023]
Abstract
We propose and study a dissatisfied adaptive snowdrift game with a payoff parameter r that incorporates a cost for rewiring a connection. An agent, facing adverse local environment, may switch action without a cost or rewire an existing link with a cost a so as to attain a better competing environment. Detailed numerical simulations reveal nontrivial and nonmonotonic dependence of the frequency of cooperation and the densities of different types of links on a and r. A theory that treats the cooperative and noncooperative agents separately and accounts for spatial correlation up to neighboring agents is formulated. The theory gives results that are in good agreement with simulations. The frequency of cooperation f_{C} is enhanced (suppressed) at high rewiring cost relative to that at low rewiring cost when r is small (large). For a given value of r, there exists a critical value of the rewiring cost below which the system evolves into a phase of frozen dynamics with isolated noncooperative agents segregated from a cluster of cooperative agents, and above which the system evolves into a connected population of mixed actions with continual dynamics. The phase boundary on the a-r phase space that separates the two phases with distinct structural, population and dynamical properties is mapped out. The phase diagram reveals that, as a general feature, for small r (small a), the disconnected and segregated phase can survive over a wider range of a(r).
Collapse
Affiliation(s)
- W Zhang
- Department of Electronics and Communication Engineering, Suzhou Institute of Industrial Technology, Suzhou, 215104, China
| | - Y S Li
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006, China
| | - P Du
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006, China
| | - C Xu
- College of Physics, Optoelectronics and Energy, Soochow University, Suzhou, 215006, China
| | - P M Hui
- Department of Physics and Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
29
|
Cardillo A, Petri G, Nicosia V, Sinatra R, Gómez-Gardeñes J, Latora V. Evolutionary dynamics of time-resolved social interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052825. [PMID: 25493851 DOI: 10.1103/physreve.90.052825] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Indexed: 06/04/2023]
Abstract
Cooperation among unrelated individuals is frequently observed in social groups when their members combine efforts and resources to obtain a shared benefit that is unachievable by an individual alone. However, understanding why cooperation arises despite the natural tendency of individuals toward selfish behavior is still an open problem and represents one of the most fascinating challenges in evolutionary dynamics. Recently, the structural characterization of the networks in which social interactions take place has shed some light on the mechanisms by which cooperative behavior emerges and eventually overcomes the natural temptation to defect. In particular, it has been found that the heterogeneity in the number of social ties and the presence of tightly knit communities lead to a significant increase in cooperation as compared with the unstructured and homogeneous connection patterns considered in classical evolutionary dynamics. Here, we investigate the role of social-ties dynamics for the emergence of cooperation in a family of social dilemmas. Social interactions are in fact intrinsically dynamic, fluctuating, and intermittent over time, and they can be represented by time-varying networks. By considering two experimental data sets of human interactions with detailed time information, we show that the temporal dynamics of social ties has a dramatic impact on the evolution of cooperation: the dynamics of pairwise interactions favors selfish behavior.
Collapse
Affiliation(s)
- Alessio Cardillo
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain and Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50018 Zaragoza, Spain
| | - Giovanni Petri
- Institute for Scientific Interchange (ISI), via Alassio 11/c, 10126 Torino, Italy
| | - Vincenzo Nicosia
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E14NS London, United Kingdom
| | - Roberta Sinatra
- Center for Complex Network Research and Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA and Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jesús Gómez-Gardeñes
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain and Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50018 Zaragoza, Spain
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E14NS London, United Kingdom and Dipartimento di Fisica e Astronomia, Università di Catania, and INFN, Via S. Sofia 64, I-95123 Catania, Italy
| |
Collapse
|
30
|
Wang X, Wu J, Shu G, Li Y. Punishment based on public benefit fund significantly promotes cooperation. PLoS One 2014; 9:e105126. [PMID: 25137051 PMCID: PMC4138163 DOI: 10.1371/journal.pone.0105126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
In prisoner's dilemma game (shortly, PD game), punishment is most frequently used to promote cooperation. However, outcome varies when different punishment approaches are applied. Here the PD game is studied on a square lattice when different punishment patterns are adopted. As is known to all, tax system, a common tool to adjust the temperature of the economy, is widely used in human society. Inspired by this philosophy, players in this study would pay corresponding taxes in accordance with their payoff level. In this way, public benefit fund is established consequently and it would be utilized to punish defectors. There are two main methods for punishing: slight intensity of punishment (shortly, SLP) and severe intensity of punishment (shortly, SEP). When the totaling of public benefit fund keeps relatively fixed, SLP extends further, which means more defectors would be punished; by contrast, SEP has a smaller coverage. It is of interest to verify whether these two measures can promote cooperation and which one is more efficient. Simulate results reveal that both of them can promote cooperation remarkably. Specifically speaking, SLP shows constant advantage from the point of view either of fractions of cooperation or average payoff.
Collapse
Affiliation(s)
- Xiuling Wang
- School of Computer and Information Science, Southwest University, Chongqing, China
| | - Jie Wu
- School of Computer and Information Science, Southwest University, Chongqing, China
| | - Gang Shu
- School of Physical Science and Technology, Southwest University, Chongqing, China
| | - Ya Li
- School of Computer and Information Science, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
31
|
Vainstein MH, Brito C, Arenzon JJ. Percolation and cooperation with mobile agents: geometric and strategy clusters. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022132. [PMID: 25215713 DOI: 10.1103/physreve.90.022132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 06/03/2023]
Abstract
We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius r(P), which accounts for the population viscosity, and an interaction radius r(int), which defines the instantaneous contact network for the game dynamics. We show that, differently from the r(P)=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size.
Collapse
Affiliation(s)
- Mendeli H Vainstein
- Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre RS, Brazil
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre RS, Brazil
| | - Jeferson J Arenzon
- Instituto de Física, Universidade Federal do Rio Grande do Sul, C.P. 15051, 91501-970 Porto Alegre RS, Brazil
| |
Collapse
|
32
|
Zou Y, Zhan W, Shao Y. Evolution with reinforcement learning in negotiation. PLoS One 2014; 9:e102840. [PMID: 25048108 PMCID: PMC4105407 DOI: 10.1371/journal.pone.0102840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/23/2014] [Indexed: 12/01/2022] Open
Abstract
Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm.
Collapse
Affiliation(s)
- Yi Zou
- School of Management, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wenjie Zhan
- School of Management, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuan Shao
- School of Management, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
33
|
Influences of agents with a self-reputation awareness component in an evolutionary spatial IPD game. PLoS One 2014; 9:e99841. [PMID: 24945966 PMCID: PMC4063756 DOI: 10.1371/journal.pone.0099841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/17/2014] [Indexed: 11/19/2022] Open
Abstract
Iterated prisoner's dilemma (IPD) researchers have shown that strong positive reputations plus an efficient reputation evaluation system encourages both sides to pursue long-term collaboration and to avoid falling into mutual defection cycles. In agent-based environments with reliable reputation rating systems, agents interested in maximizing their private interests must show concern for other agents as well as their own self-reputations--an important capability that standard IPD game agents lack. Here we present a novel learning agent model possessing self-reputation awareness. Agents in our proposed model are capable of evaluating self-behaviors based on a mix of public and private interest considerations, and of testing various solutions aimed at meeting social standards. Simulation results indicate multiple outcomes from the addition of a small percentage of self-reputation awareness agents: faster cooperation, faster movement toward stability in an agent society, a higher level of public interest in the agent society, the resolution of common conflicts between public and private interests, and a lower potential for rational individual behavior to transform into irrational group behavior.
Collapse
|
34
|
Duan H, Sun C. Swarm intelligence inspired shills and the evolution of cooperation. Sci Rep 2014; 4:5210. [PMID: 24909519 PMCID: PMC4049027 DOI: 10.1038/srep05210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/02/2014] [Indexed: 11/17/2022] Open
Abstract
Many hostile scenarios exist in real-life situations, where cooperation is disfavored and the collective behavior needs intervention for system efficiency improvement. Towards this end, the framework of soft control provides a powerful tool by introducing controllable agents called shills, who are allowed to follow well-designed updating rules for varying missions. Inspired by swarm intelligence emerging from flocks of birds, we explore here the dependence of the evolution of cooperation on soft control by an evolutionary iterated prisoner's dilemma (IPD) game staged on square lattices, where the shills adopt a particle swarm optimization (PSO) mechanism for strategy updating. We demonstrate that not only can cooperation be promoted by shills effectively seeking for potentially better strategies and spreading them to others, but also the frequency of cooperation could be arbitrarily controlled by choosing appropriate parameter settings. Moreover, we show that adding more shills does not contribute to further cooperation promotion, while assigning higher weights to the collective knowledge for strategy updating proves a efficient way to induce cooperative behavior. Our research provides insights into cooperation evolution in the presence of PSO-inspired shills and we hope it will be inspirational for future studies focusing on swarm intelligence based soft control.
Collapse
Affiliation(s)
- Haibin Duan
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, P. R. China
- Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electronic Engineering, Beihang University, Beijing 100191, P. R. China
| | - Changhao Sun
- State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, P. R. China
- Science and Technology on Aircraft Control Laboratory, School of Automation Science and Electronic Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
35
|
Buesser P, Tomassini M. The role of opportunistic migration in cyclic games. PLoS One 2014; 9:e98190. [PMID: 24892660 PMCID: PMC4043639 DOI: 10.1371/journal.pone.0098190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/25/2014] [Indexed: 11/18/2022] Open
Abstract
We study cyclic evolutionary games in a spatial diluted grid environment in which agents strategically interact locally but can also opportunistically move to other positions within a given migration radius. We find that opportunistic migration can inverse the cyclic prevalence between the strategies when the frequency of random imitation is large enough compared to the payoff-driven imitation. At the transition the average size of the patterns diverges and this threatens diversity of strategies.
Collapse
Affiliation(s)
- Pierre Buesser
- Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Marco Tomassini
- Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Characterizing the effect of population heterogeneity on evolutionary dynamics on complex networks. Sci Rep 2014; 4:5034. [PMID: 24849192 PMCID: PMC4030255 DOI: 10.1038/srep05034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/02/2014] [Indexed: 11/09/2022] Open
Abstract
Recently, the impact of network structure on evolutionary dynamics has been at the center of attention when studying the evolutionary process of structured populations. This paper aims at finding out the key structural feature of network to capture its impact on evolutionary dynamics. To this end, a novel concept called heat heterogeneity is introduced to characterize the structural heterogeneity of network, and the correlation between heat heterogeneity of structure and outcome of evolutionary dynamics is further investigated on various networks. It is found that the heat heterogeneity mainly determines the impact of network structure on evolutionary dynamics on complex networks. In detail, the heat heterogeneity readjusts the selection effect on evolutionary dynamics. Networks with high heat heterogeneity amplify the selection effect on the birth-death process and suppress the selection effect on the death-birth process. Based on the above results, an effective algorithm is proposed to generate selection adjusters with desired size and average degree.
Collapse
|
37
|
Wang Z, Szolnoki A, Perc M. Rewarding evolutionary fitness with links between populations promotes cooperation. J Theor Biol 2014; 349:50-6. [DOI: 10.1016/j.jtbi.2014.01.037] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 11/29/2022]
|
38
|
Role of investment heterogeneity in the cooperation on spatial public goods game. PLoS One 2014; 9:e91012. [PMID: 24632779 PMCID: PMC3954582 DOI: 10.1371/journal.pone.0091012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022] Open
Abstract
Public cooperation plays a significant role in the survival and maintenance of biological species, to elucidate its origin thus becomes an interesting question from various disciplines. Through long-term development, the public goods game has proven to be a useful tool, where cooperator making contribution can beat again the free-rides. Differentiating from the traditional homogeneous investment, individual trend of making contribution is more likely affected by the investment level of his neighborhood. Based on this fact, we here investigate the impact of heterogeneous investment on public cooperation, where the investment sum is mapped to the proportion of cooperators determined by parameter α. Interestingly, we find, irrespective of interaction networks, that the increment of α (increment of heterogeneous investment) is beneficial for promoting cooperation and even guarantees the complete cooperation dominance under weak replication factor. While this promotion effect can be attributed to the formation of more robust cooperator clusters and shortening END period. Moreover, we find that this simple mechanism can change the potential interaction network, which results in the change of phase diagrams. We hope that our work may shed light on the understanding of the cooperative behavior in other social dilemmas.
Collapse
|
39
|
Ichinose G, Saito M, Sayama H, Wilson DS. Adaptive long-range migration promotes cooperation under tempting conditions. Sci Rep 2014; 3:2509. [PMID: 23974519 PMCID: PMC3752612 DOI: 10.1038/srep02509] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/08/2013] [Indexed: 11/30/2022] Open
Abstract
Migration is a fundamental trait in humans and animals. Recent studies investigated the effect of migration on the evolution of cooperation, showing that contingent migration favors cooperation in spatial structures. In those studies, only local migration to immediate neighbors was considered, while long-range migration has not been considered yet, partly because the long-range migration has been generally regarded as harmful for cooperation as it would bring the population to a well-mixed state that favors defection. Here, we studied the effects of adaptive long-range migration on the evolution of cooperation through agent-based simulations of a spatial Prisoner's Dilemma game where individuals can jump to a farther site if they are surrounded by more defectors. Our results show that adaptive long-range migration strongly promotes cooperation, especially under conditions where the temptation to defect is considerably high. These findings demonstrate the significance of adaptive long-range migration for the evolution of cooperation.
Collapse
Affiliation(s)
- Genki Ichinose
- Anan National College of Technology 265 Aoki Minobayashi, Anan, Tokushima 774-0017, Japan
| | | | | | | |
Collapse
|
40
|
Halu A, Mukherjee S, Bianconi G. Emergence of overlap in ensembles of spatial multiplexes and statistical mechanics of spatial interacting network ensembles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012806. [PMID: 24580280 DOI: 10.1103/physreve.89.012806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Indexed: 05/09/2023]
Abstract
Spatial networks range from the brain networks, to transportation networks and infrastructures. Recently interacting and multiplex networks are attracting great attention because their dynamics and robustness cannot be understood without treating at the same time several networks. Here we present maximal entropy ensembles of spatial multiplex and spatial interacting networks that can be used in order to model spatial multilayer network structures and to build null models of real data sets. We show that spatial multiplexes naturally develop a significant overlap of the links, a noticeable property of many multiplexes that can affect significantly the dynamics taking place on them. Additionally, we characterize ensembles of spatial interacting networks and we analyze the structure of interacting airport and railway networks in India, showing the effect of space in determining the link probability.
Collapse
Affiliation(s)
- Arda Halu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Satyam Mukherjee
- Kellogg School of Management, Northwestern University, Evanston, Illinois 60208, USA
| | - Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
41
|
Assaf M, Mobilia M, Roberts E. Cooperation dilemma in finite populations under fluctuating environments. PHYSICAL REVIEW LETTERS 2013; 111:238101. [PMID: 24476306 DOI: 10.1103/physrevlett.111.238101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Indexed: 06/03/2023]
Abstract
We present a novel approach allowing the study of rare events like fixation under fluctuating environments, modeled as extrinsic noise, in evolutionary processes characterized by the dominance of one species. Our treatment consists of mapping the system onto an auxiliary model, exhibiting metastable species coexistence, that can be analyzed semiclassically. This approach enables us to study the interplay between extrinsic and demographic noise on the statistics of interest. We illustrate our theory by considering the paradigmatic prisoner's dilemma game, whose evolution is described by the probability that cooperators fixate the population and replace all defectors. We analytically and numerically demonstrate that extrinsic noise may drastically enhance the cooperation fixation probability and even change its functional dependence on the population size. These results, which generalize earlier works in population genetics, indicate that extrinsic noise may help sustain and promote a much higher level of cooperation than static settings.
Collapse
Affiliation(s)
- Michael Assaf
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
42
|
Miyaji K, Tanimoto J, Hagishima A, Ikegaya N. Influence of stochastic perturbation of both action updating and strategy updating in mixed-strategy 2×2 games on evolution of cooperation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062149. [PMID: 24483427 DOI: 10.1103/physreve.88.062149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Indexed: 06/03/2023]
Abstract
In a mixed-strategy game framework, each agent's strategy is defined by a real number; on the other hand, in a discrete strategy game framework, only binary strategies, either cooperation or defection, are allowed. In a spatial mixed-strategy game, with respect to the process for updating action (offer), either a synchronous or an asynchronous strategy update should be presumed. This study elucidates how stochastic perturbation that results from a synchronous or an asynchronous process for updating action significantly affects the enhancement of cooperation in an evolutionary process. Especially, when a synchronous process for updating action is assumed, the extent of cooperation increases with an increase in degree.
Collapse
Affiliation(s)
- Kohei Miyaji
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Tanimoto
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Aya Hagishima
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Ikegaya
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
43
|
Effect of initial fraction of cooperators on cooperative behavior in evolutionary prisoner's dilemma game. PLoS One 2013; 8:e76942. [PMID: 24244270 PMCID: PMC3820665 DOI: 10.1371/journal.pone.0076942] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022] Open
Abstract
We investigate the influence of initial fraction of cooperators on the evolution of cooperation in spatial prisoner's dilemma games. Compared with the results of heterogeneous networks, we find that there is a relatively low initial fraction of cooperators to guarantee higher equilibrium cooperative level. While this interesting phenomenon is contrary to the commonly shared knowledge that higher initial fraction of cooperators can provide better environment for the evolution of cooperation. To support our outcome, we explore the time courses of cooperation and find that the whole course can be divided into two sequent stages: enduring (END) and expanding (EXP) periods. At the end of END period, thought there is a limited number of cooperator clusters left for the case of low initial setup, these clusters can smoothly expand to hold the whole system in the EXP period. However, for high initial fraction of cooperators, superfluous cooperator clusters hinder their effective expansion, which induces many remaining defectors surrounding the cooperator clusters. Moreover, through intensive analysis, we also demonstrate that when the tendency of three cooperation cluster characteristics (cluster size, cluster number and cluster shape) are consistent within END and EXP periods, the state that maximizes cooperation can be favored.
Collapse
|
44
|
Sempo G, Canonge S, Deneubourg JL. From aggregation to dispersion: how habitat fragmentation prevents the emergence of consensual decision making in a group. PLoS One 2013; 8:e78951. [PMID: 24244392 PMCID: PMC3823946 DOI: 10.1371/journal.pone.0078951] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/26/2013] [Indexed: 11/26/2022] Open
Abstract
In fragmented landscape, individuals have to cope with the fragmentation level in order to aggregate in the same patch and take advantage of group-living. Aggregation results from responses to environmental heterogeneities and/or positive influence of the presence of congeners. In this context, the fragmentation of resting sites highlights how individuals make a compromise between two individual preferences: (1) being aggregated with conspecifics and (2) having access to these resting sites. As in previous studies, when the carrying capacity of available resting sites is large enough to contain the entire group, a single aggregation site is collectively selected. In this study, we have uncoupled fragmentation and habitat loss: the population size and total surface of the resting sites are maintained at a constant value, an increase in fragmentation implies a decrease in the carrying capacity of each shelter. For our model organism, Blattella germanica, our experimental and theoretical approach shows that, for low fragmentation level, a single resting site is collectively selected. However, for higher level of fragmentation, individuals are randomly distributed between fragments and the total sheltered population decreases. In the latter case, social amplification process is not activated and consequently, consensual decision making cannot emerge and the distribution of individuals among sites is only driven by their individual propensity to find a site. This intimate relation between aggregation pattern and landscape patchiness described in our theoretical model is generic for several gregarious species. We expect that any group-living species showing the same structure of interactions should present the same type of dispersion-aggregation response to fragmentation regardless of their level of social complexity.
Collapse
Affiliation(s)
- Grégory Sempo
- Unit of Social Ecology, Université libre de Bruxelles, Brussels, Belgium
- * E-mail:
| | - Stéphane Canonge
- Unit of Social Ecology, Université libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
45
|
Ichinose G, Tenguishi Y, Tanizawa T. Robustness of cooperation on scale-free networks under continuous topological change. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052808. [PMID: 24329319 DOI: 10.1103/physreve.88.052808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Indexed: 06/03/2023]
Abstract
In this paper, we numerically investigate the robustness of cooperation clusters in prisoner's dilemma played on scale-free networks, where the network topologies change by continuous removal and addition of nodes. Each removal and addition can be either random or intentional. We therefore have four different strategies in changing network topology: random removal and random addition (RR), random removal and preferential addition (RP), targeted removal and random addition (TR), and targeted removal and preferential addition (TP). We find that cooperation clusters are most fragile against TR, while they are most robust against RP, even for large values of the temptation coefficient for defection. The effect of the degree mixing pattern of the network is not the primary factor for the robustness of cooperation under continuous change in network topology, which is quite different from the cases observed in static networks. Cooperation clusters become more robust as the number of links of hubs occupied by cooperators increase. Our results might infer the fact that a huge variety of individuals is needed for maintaining global cooperation in social networks in the real world where each node representing an individual is constantly removed and added.
Collapse
Affiliation(s)
- Genki Ichinose
- Department of Systems and Control Engineering, Anan National College of Technology, 265 Aoki Minobayashi, Anan, Tokushima 774-0017, Japan
| | - Yuto Tenguishi
- Department of Systems and Control Engineering, Anan National College of Technology, 265 Aoki Minobayashi, Anan, Tokushima 774-0017, Japan
| | - Toshihiro Tanizawa
- Department of Electrical Engineering and Information Science, Kochi National College of Technology, 200-1 Monobe-Otsu, Nankoku, Kochi 783-8508, Japan
| |
Collapse
|
46
|
Impact of social punishment on cooperative behavior in complex networks. Sci Rep 2013; 3:3055. [PMID: 24162105 PMCID: PMC3808815 DOI: 10.1038/srep03055] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/30/2013] [Indexed: 11/08/2022] Open
Abstract
Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems.
Collapse
|
47
|
Wang Z, Kokubo S, Tanimoto J, Fukuda E, Shigaki K. Insight into the so-called spatial reciprocity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042145. [PMID: 24229153 DOI: 10.1103/physreve.88.042145] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Indexed: 06/02/2023]
Abstract
Up to now, there have been a great number of studies that demonstrate the effect of spatial topology on the promotion of cooperation dynamics (namely, the so-called "spatial reciprocity"). However, most researchers probably attribute it to the positive assortment of strategies supported by spatial arrangement. In this paper, we analyze the time course of cooperation evolution under different evolution rules. Interestingly, a typical evolution process can be divided into two evident periods: the enduring (END) period and the expanding (EXP) period where the former features that cooperators try to endure defectors' invasion and the latter shows that perfect C clusters fast expand their area. We find that the final cooperation level relies on two key factors: the formation of the perfect C cluster at the end of the END period and the expanding fashion of the perfect C cluster during the EXP period. For deterministic rule, the smooth expansion of C cluster boundaries enables cooperators to reach a dominant state, whereas, the rough boundaries for stochastic rule cannot provide a sufficient beneficial environment for the evolution of cooperation. Moreover, we show that expansion of the perfect C cluster is closely related to the cluster coefficient of interaction topology. To some extent, we present a viable method for understanding the spatial reciprocity mechanism in nature and hope that it will inspire further studies to resolve social dilemmas.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong and Center for Nonlinear Studies, the Beijing-Hong Kong-Singapore Joint Center for Nonlinear and Complex Systems (Hong Kong), Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | |
Collapse
|
48
|
Buesser P, Tomassini M, Antonioni A. Opportunistic migration in spatial evolutionary games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042806. [PMID: 24229225 DOI: 10.1103/physreve.88.042806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Indexed: 06/02/2023]
Abstract
We study evolutionary games in a spatial diluted grid environment in which agents strategically interact locally but can also opportunistically move to other positions within a given migration radius. Using the imitation of the best rule for strategy revision, it is shown that cooperation may evolve and be stable in the Prisoner's Dilemma game space for several migration distances but only for small game interaction radius while the Stag Hunt class of games become fully cooperative. We also show that only a few trials are needed for cooperation to evolve, i.e., searching costs are not an issue. When the stochastic Fermi strategy update protocol is used cooperation cannot evolve in the Prisoner's Dilemma if the selection intensity is high in spite of opportunistic migration. However, when imitation becomes more random, fully or partially cooperative states are reached in all games for all migration distances tested and for short to intermediate interaction radii.
Collapse
Affiliation(s)
- Pierre Buesser
- Information Systems Institute, HEC, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
49
|
Direct reciprocity in spatial populations enhances R-reciprocity as well as ST-reciprocity. PLoS One 2013; 8:e71961. [PMID: 23951272 PMCID: PMC3737211 DOI: 10.1371/journal.pone.0071961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/06/2013] [Indexed: 11/19/2022] Open
Abstract
As is well-known, spatial reciprocity plays an important role in facilitating the emergence of cooperative traits, and the effect of direct reciprocity is also obvious for explaining the cooperation dynamics. However, how the combination of these two scenarios influences cooperation is still unclear. In the present work, we study the evolution of cooperation in 2×2 games via considering both spatial structured populations and direct reciprocity driven by the strategy with 1-memory length. Our results show that cooperation can be significantly facilitated on the whole parameter plane. For prisoner's dilemma game, cooperation dominates the system even at strong dilemma, where maximal social payoff is still realized. In this sense, R-reciprocity forms and it is robust to the extremely strong dilemma. Interestingly, when turning to chicken game, we find that ST-reciprocity is also guaranteed, through which social average payoff and cooperation is greatly enhanced. This reciprocity mechanism is supported by mean-field analysis and different interaction topologies. Thus, our study indicates that direct reciprocity in structured populations can be regarded as a more powerful factor for the sustainability of cooperation.
Collapse
|
50
|
Ichinose G, Saito M, Suzuki S. Collective chasing behavior between cooperators and defectors in the spatial prisoner's dilemma. PLoS One 2013; 8:e67702. [PMID: 23861786 PMCID: PMC3702560 DOI: 10.1371/journal.pone.0067702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 05/23/2013] [Indexed: 11/18/2022] Open
Abstract
Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals' cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner's dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.
Collapse
Affiliation(s)
- Genki Ichinose
- Systems and Control Engineering, Anan National College of Technology, Anan, Tokushima, Japan
| | - Masaya Saito
- Systems and Control Engineering, Anan National College of Technology, Anan, Tokushima, Japan
| | - Shinsuke Suzuki
- JSPS fellow, Graduate School of Letters, Hokkaido University, Sapporo, Hokkaido, Japan
- Laboratory for Integrated Theoretical Neuroscience, Riken Brain Science Institute, Wako, Saitama, Japan
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|