1
|
Tranel J, Palm S, Feng FY, St. James S, Hope TA. Technical note: Errors introduced when using Dose Voxel Kernels for estimating absorbed dose from radiopharmaceutical therapies involving alpha emitters. Med Phys 2024; 51:5764-5772. [PMID: 38314904 PMCID: PMC11298574 DOI: 10.1002/mp.16970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In radiopharmaceutical therapies (RPT) involving beta emitters, absorbed dose (Dabs) calculations often employ the use of dose voxel kernels (DVK). Such methods are faster and easier to implement than Monte Carlo (MC) simulations. Using DVK methods implies a non-stochastic distribution of particles. This is a valid assumption for betas where thousands to tens of thousands of particles traversing the cell nucleus are required to achieve cell kill. However, alpha particles have linear energy transfers (LET) that are ∼500 times higher than LETs of betas. This results in a significant probability of killing a cell from even a single traversal through its nucleus. Consequently, the activity used for therapy involving alphas is very low, and the use of DVKs for estimating Dabs will generate results that may be erroneous. PURPOSE This work aims at illustrating how use of DVKs affect the resulting Dabs in small tumors when irradiated with clinically relevant amounts of beta- and alpha-emitters. The results are compared with those from using a Monte Carlo method where the energy deposition from individual tracks is simulated. METHODS To illustrate the issues associated with DVK for alpha radiopharmaceutical therapies at the microscale, a tumor cluster model was used to compare beta (177Lu) and alphas (211At, 225Ac, and 227Th) irradiations. We used 103 beta particles and 20 alpha particles per cell, which is within the range of the required number of particle traversals through its nucleus to sterilize a cell. Results from using both methods were presented with Dabs histograms, dose volume histograms, and Dabs error maps. RESULTS For beta-emitter (177Lu) irradiating the modeled tumor cluster, resulting Dabs was similar for both DVK and MC methods. For all alpha emitters, the use of DVK led to an overestimation of Dabs when compared to results generated using a MC approach. CONCLUSIONS Our results demonstrate that the use of DVK methods for alpha emitters can lead to an overestimation in the calculated Dabs. The use of DVKs for therapies involving alpha emitters may therefore not be appropriate when only referring to the mean Dabs metric.
Collapse
Affiliation(s)
- Jonathan Tranel
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Stig Palm
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Felix Y. Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Sara St. James
- Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Poignant F, Pariset E, Plante I, Ponomarev AL, Evain T, Viger L, Slaba TC, Blattnig SR, Costes SV. DNA break clustering as a predictor of cell death across various radiation qualities: influence of cell size, cell asymmetry, and beam orientation. Integr Biol (Camb) 2024; 16:zyae015. [PMID: 39299711 DOI: 10.1093/intbio/zyae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cosmic radiation, composed of high charge and energy (HZE) particles, causes cellular DNA damage that can result in cell death or mutation that can evolve into cancer. In this work, a cell death model is applied to several cell lines exposed to HZE ions spanning a broad range of linear energy transfer (LET) values. We hypothesize that chromatin movement leads to the clustering of multiple double strand breaks (DSB) within one radiation-induced foci (RIF). The survival probability of a cell population is determined by averaging the survival probabilities of individual cells, which is function of the number of pairwise DSB interactions within RIF. The simulation code RITCARD was used to compute DSB. Two clustering approaches were applied to determine the number of RIF per cell. RITCARD outputs were combined with experimental data from four normal human cell lines to derive the model parameters and expand its predictions in response to ions with LET ranging from ~0.2 keV/μm to ~3000 keV/μm. Spherical and ellipsoidal nuclear shapes and two ion beam orientations were modeled to assess the impact of geometrical properties on cell death. The calculated average number of RIF per cell reproduces the saturation trend for high doses and high-LET values that is usually experimentally observed. The cell survival model generates the recognizable bell shape of LET dependence for the relative biological effectiveness (RBE). At low LET, smaller nuclei have lower survival due to increased DNA density and DSB clustering. At high LET, nuclei with a smaller irradiation area-either because of a smaller size or a change in beam orientation-have a higher survival rate due to a change in the distribution of DSB/RIF per cell. If confirmed experimentally, the geometric characteristics of cells would become a significant factor in predicting radiation-induced biological effects. Insight Box: High-charge and energy (HZE) ions are characterized by dense linear energy transfer (LET) that induce unique spatial distributions of DNA damage in cell nuclei that result in a greater biological effect than sparsely ionizing radiation like X-rays. HZE ions are a prominent component of galactic cosmic ray exposure during human spaceflight and specific ions are being used for radiotherapy. Here, we model DNA damage clustering at sub-micrometer scale to predict cell survival. The model is in good agreement with experimental data for a broad range of LET. Notably, the model indicates that nuclear geometry and ion beam orientation affect DNA damage clustering, which reveals their possible role in mediating cell radiosensitivity.
Collapse
Affiliation(s)
- Floriane Poignant
- Analytical Mechanics Associates Inc., 21 Enterprise Parkway, Hampton, VA 23666, United States
| | - Eloise Pariset
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
- Universities Space Research Association, 615 National Avenue, Mountain View, CA 94043, United States
| | - Ianik Plante
- KBR, 2400 NASA Parkway, Houston, TX 77058, United States
| | | | - Trevor Evain
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Louise Viger
- Life Sciences Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94720, United States
| | - Tony C Slaba
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Steve R Blattnig
- NASA Langley Research Center, 1 Nasa Drive, Hampton, VA 23666, United States
| | - Sylvain V Costes
- NASA Ames Research Center, MS:288/2, Mountain View, CA 94035, United States
| |
Collapse
|
3
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
4
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
5
|
Salerno D, Howe A, Bhatavdekar O, Josefsson A, Pacheco‐Torres J, Bhujwalla ZM, Gabrielson KL, Sofou S. Two diverse carriers are better than one: A case study in α‐particle therapy for prostate specific membrane antigen‐expressing prostate cancers. Bioeng Transl Med 2021; 7:e10266. [PMID: 35600657 PMCID: PMC9115683 DOI: 10.1002/btm2.10266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 11/06/2022] Open
Abstract
Partial and/or heterogeneous irradiation of established (i.e., large, vascularized) tumors by α‐particles that exhibit only a 4–5 cell‐diameter range in tissue, limits the therapeutic effect, since regions not being hit by the high energy α‐particles are likely not to be killed. This study aims to mechanistically understand a delivery strategy to uniformly distribute α‐particles within established solid tumors by simultaneously delivering the same α‐particle emitter by two diverse carriers, each killing a different region of the tumor: (1) the cancer‐agnostic, but also tumor‐responsive, liposomes engineered to best irradiate tumor regions far from the vasculature, and (2) a separately administered, antibody, targeting any cancer‐cell's surface marker, to best irradiate the tumor perivascular regions. We demonstrate that on a prostate specific membrane antigen (PSMA)‐expressing prostate cancer xenograft mouse model, for the same total injected radioactivity of the α‐particle emitter Actinium‐225, any radioactivity split ratio between the two carriers resulted in better tumor growth inhibition compared to the tumor inhibition when the total radioactivity was delivered by any of the two carriers alone. This finding was due to more uniform tumor irradiation for the same total injected radioactivity. The killing efficacy was improved even though the tumor‐absorbed dose delivered by the combined carriers was lower than the tumor‐absorbed dose delivered by the antibody alone. Studies on spheroids with different receptor‐expression, used as surrogates of the tumors' avascular regions, demonstrated that our delivery strategy is valid even for as low as 1+ (ImmunoHistoChemistry score) PSMA‐levels. The findings presented herein may hold clinical promise for those established tumors not being effectively eradicated by current α‐particle radiotherapies.
Collapse
Affiliation(s)
- Dominick Salerno
- Chemical and Biomolecular Engineering (ChemBE) Institute for NanoBioTechnology (INBT) Johns Hopkins University Baltimore Maryland USA
| | - Alaina Howe
- Chemical and Biomolecular Engineering (ChemBE) Institute for NanoBioTechnology (INBT) Johns Hopkins University Baltimore Maryland USA
| | - Omkar Bhatavdekar
- Chemical and Biomolecular Engineering (ChemBE) Institute for NanoBioTechnology (INBT) Johns Hopkins University Baltimore Maryland USA
| | - Anders Josefsson
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University Baltimore Maryland USA
| | - Jesus Pacheco‐Torres
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University Baltimore Maryland USA
| | - Zaver M. Bhujwalla
- Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University Baltimore Maryland USA
| | | | - Stavroula Sofou
- Chemical and Biomolecular Engineering (ChemBE) Institute for NanoBioTechnology (INBT) Johns Hopkins University Baltimore Maryland USA
- Sidney Kimmel Comprehensive Cancer Center, Cancer Invasion & Metastasis Program, Department of Oncology Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
6
|
Pfuhl T, Friedrich T, Scholz M. Comprehensive comparison of local effect model IV predictions with the particle irradiation data ensemble. Med Phys 2021; 49:714-726. [PMID: 34766635 DOI: 10.1002/mp.15343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The increased relative biological effectiveness (RBE) of ions is one of the key benefits of ion radiotherapy compared to conventional radiotherapy with photons. To account for the increased RBE of ions during the process of ion radiotherapy treatment planning, a robust model for RBE predictions is indispensable. Currently, at several ion therapy centers the local effect model I (LEM I) is applied to predict the RBE, which varies with biological and physical impacting factors. After the introduction of LEM I, several model improvements were implemented, leading to the current version, LEM IV, which is systematically tested in this study. METHODS As a comprehensive RBE model should give consistent results for a large variety of ion species and energies, the particle irradiation data ensemble (PIDE) is used to systematically validate the LEM IV. The database covers over 1100 photon and ion survival experiments in form of their linear-quadratic parameters for a wide range of ion types and energies. This makes the database an optimal tool to challenge the systematic dependencies of the RBE model. After appropriate filtering of the database, 571 experiments were identified and used as test data. RESULTS The study confirms that the LEM IV reflects the RBE systematics observed in measurements well. It is able to reproduce the dependence of RBE on the linear energy transfer (LET) as well as on the αγ /βγ ratio for several ion species in a wide energy range. Additionally, the systematic quantitative analysis revealed precision capabilities and limits of the model. At lower LET values, the LEM IV tends to underestimate the RBE with an increasing underestimation with increasing atomic number of the ion. At higher LET values, the LEM IV overestimates the RBE for protons or helium ions, whereas the predictions for heavier ions match experimental data well. CONCLUSIONS The LEM IV is able to predict general RBE characteristics for several ion species in a broad energy range. The accuracy of the predictions is reasonable considering the small number of input parameters needed by the model. The detailed quantification of possible systematic deviations, however, enables to identify not only strengths but also limitations of the model. The gained knowledge can be used to develop model adjustments to further improve the model accuracy, which is on the way.
Collapse
Affiliation(s)
- Tabea Pfuhl
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Institute for Solid State Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Michael Scholz
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| |
Collapse
|
7
|
Perry CC, Ramos-Méndez J, Milligan JR. DNA Condensation with a Boron-Containing Cationic Peptide for Modeling Boron Neutron Capture Therapy. Radiat Phys Chem Oxf Engl 1993 2019; 166. [PMID: 32454570 DOI: 10.1016/j.radphyschem.2019.108521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The amino acid derivative 4-borono-L-phenylalanine (BPA) has been used in the radiation medicine technique boron neutron capture therapy (BNCT). Here we have characterized its interaction with DNA when incorporated into a positively charged hexa-L-arginine peptide. This ligand binds strongly to DNA and induces its condensation, an effect which is attenuated at higher ionic strengths. The use of an additional tetra-L-arginine ligand enables the preparation of a DNA condensate in the presence of a negligible concentration of unbound boron. Under these conditions, Monte Carlo simulation indicates that >85% of energy deposition events resulting from thermal neutron irradiation derive from boron fission. The combination of experimental model systems and simulations that we describe here provides a valuable tool for accurate track structure modeling of the DNA damage produced by the high LET particles involved in BNCT.
Collapse
Affiliation(s)
- Chris C Perry
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| | - Jose Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, 1600 Divisadero Street, San Francisco, CA 94115, USA
| | - Jamie R Milligan
- Department of Basic Sciences, School of Medicine, Loma Linda University, 11085 Campus Street, Loma Linda, CA 92350, USA
| |
Collapse
|
8
|
Shuryak I, Brenner DJ. MECHANISTIC MODELING PREDICTS NO SIGNIFICANT DOSE RATE EFFECT ON HEAVY-ION CARCINOGENESIS AT DOSE RATES RELEVANT FOR SPACE EXPLORATION. RADIATION PROTECTION DOSIMETRY 2019; 183:203-212. [PMID: 30535099 DOI: 10.1093/rpd/ncy223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heavy ion-induced carcinogenesis is a challenge for human space exploration, and mechanistically-motivated mathematical models are needed to predict space-relevant low dose-rate risks, which are difficult to measure experimentally, based on data at higher dose rates. We present such a model, which quantifies targeted and non-targeted radiation effects. We fitted it to lung carcinogenesis data in radon-exposed miners and rats, which provide valuable information on carcinogenesis from protracted exposure to densely-ionizing radiation. We generated model-based estimates for the dose-rate-effect, relative to acute exposures, on heavy ion-induced carcinogenesis at doses/dose rates expected during a Mars mission. A small and not statistically-significant dose-rate effect was predicted: 1.00 (95% CI: 0.54, 1.40) for human data and for combined human and rat data 0.93 (0.06, 1.49). Consequently, heavy ion carcinogenesis estimates from moderate/high dose-rate experimental data may be applicable to doses/dose rates relevant for space exploration.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Medical Center, New York, USA
| |
Collapse
|
9
|
Stewart RD, Carlson DJ, Butkus MP, Hawkins R, Friedrich T, Scholz M. A comparison of mechanism-inspired models for particle relative biological effectiveness (RBE). Med Phys 2018; 45:e925-e952. [PMID: 30421808 DOI: 10.1002/mp.13207] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND SIGNIFICANCE The application of heavy ion beams in cancer therapy must account for the increasing relative biological effectiveness (RBE) with increasing penetration depth when determining dose prescriptions and organ at risk (OAR) constraints in treatment planning. Because RBE depends in a complex manner on factors such as the ion type, energy, cell and tissue radiosensitivity, physical dose, biological endpoint, and position within and outside treatment fields, biophysical models reflecting these dependencies are required for the personalization and optimization of treatment plans. AIM To review and compare three mechanism-inspired models which predict the complexities of particle RBE for various ion types, energies, linear energy transfer (LET) values and tissue radiation sensitivities. METHODS The review of models and mechanisms focuses on the Local Effect Model (LEM), the Microdosimetric-Kinetic (MK) model, and the Repair-Misrepair-Fixation (RMF) model in combination with the Monte Carlo Damage Simulation (MCDS). These models relate the induction of potentially lethal double strand breaks (DSBs) to the subsequent interactions and biological processing of DSB into more lethal forms of damage. A key element to explain the increased biological effectiveness of high LET ions compared to MV x rays is the characterization of the number and local complexity (clustering) of the initial DSB produced within a cell. For high LET ions, the spatial density of DSB induction along an ion's trajectory is much greater than along the path of a low LET electron, such as the secondary electrons produced by the megavoltage (MV) x rays used in conventional radiation therapy. The main aspects of the three models are introduced and the conceptual similarities and differences are critiqued and highlighted. Model predictions are compared in terms of the RBE for DSB induction and for reproductive cell survival. RESULTS AND CONCLUSIONS Comparisons of the RBE for DSB induction and for cell survival are presented for proton (1 H), helium (4 He), and carbon (12 C) ions for the therapeutically most relevant range of ion beam energies. The reviewed models embody mechanisms of action acting over the spatial scales underlying the biological processing of potentially lethal DSB into more lethal forms of damage. Differences among the number and types of input parameters, relevant biological targets, and the computational approaches among the LEM, MK and RMF models are summarized and critiqued. Potential experiments to test some of the seemingly contradictory aspects of the models are discussed.
Collapse
Affiliation(s)
- Robert D Stewart
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, WA, 98195, USA
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Michael P Butkus
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - Roland Hawkins
- Radiation Oncology Center, Ochsner Clinic Foundation, New Orleans, LA, 70121, USA
| | | | | |
Collapse
|
10
|
Almahwasi A, Jeynes J, Merchant M, Bradley D, Regan P. Delayed persistence of giant-nucleated cells induced by X-ray and proton irradiation in the progeny of replicating normal human f ibroblast cells. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting. Biomaterials 2017; 130:67-75. [DOI: 10.1016/j.biomaterials.2017.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
|
12
|
Stockert JC, Blázquez-Castro A. Establishing the subcellular localization of photodynamically-induced ROS using 3,3'-diaminobenzidine: A methodological proposal, with a proof-of-concept demonstration. Methods 2016; 109:175-179. [PMID: 27154745 DOI: 10.1016/j.ymeth.2016.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/24/2022] Open
Abstract
The critical involvement of reactive oxygen species (ROS) in both physiological and pathological processes in cell biology makes their detection and assessment a fundamental topic in biomedical research. Established methodologies to study ROS in cell biology take advantage of oxidation reactions between the ROS and a reduced probe. After reacting the probe reveals the presence of ROS either by the appearance of colour (chromogenic reaction) or fluorescence (fluorogenic reaction). However current methodologies rarely allow for a site-specific detection of ROS production. Here we propose a colorimetric reaction driven by the oxidation of 3,3'-diaminobenzidine (DAB) by photodynamically-produced ROS that allows for fine detection of the ROS production site. The introduced methodology is fast, easy to implement and permits cellular resolution at the submicrometric level. Although the basic protocol is proved in a photodynamic model of ROS generation, the principle is applicable to many different scenarios of intracellular ROS production. As a consequence this proposed methodology should greatly complement other techniques aiming at establishing a precise subcellular localization of ROS generation.
Collapse
Affiliation(s)
- Juan C Stockert
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Spain; Institute of Research and Technology in Animal Reproduction, Faculty of Veterinary Sciences, University of Buenos Aires, Argentina.
| | | |
Collapse
|
13
|
Ye F, Ning J, Liu X, Jin X, Wang T, Li Q. The influence of non-DNA-targeted effects on carbon ion-induced low-dose hyper-radiosensitivity in MRC-5 cells. JOURNAL OF RADIATION RESEARCH 2016; 57:103-109. [PMID: 26559335 PMCID: PMC4795944 DOI: 10.1093/jrr/rrv072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Low-dose hyper-radiosensitivity (LDHRS) is a hot topic in normal tissue radiation protection. However, the primary causes for LDHRS still remain unclear. In this study, the impact of non-DNA-targeted effects (NTEs) on high-LET radiation-induced LDHRS was investigated. Human normal lung fibroblast MRC-5 cells were irradiated with high-LET carbon ions, and low-dose biological effects (in terms of various bio-endpoints, including colony formation, DNA damage and micronuclei formation) were detected under conditions with and without gap junctional intercellular communication (GJIC) inhibition. LDHRS was observed when the radiation dose was <0.2 Gy for all bio-endpoints under investigation, but vanished when the GJIC was suppressed. Based on the probability of cells being hit and micro-dose per cell calculation, we deduced that the LDHRS phenomenon came from the combined action of direct hits and NTEs. We concluded that GJIC definitely plays an important role in cytotoxic substance spreading in high-LET carbon ion-induced LDHRS.
Collapse
Affiliation(s)
- Fei Ye
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Department of Modern Physics, Lanzhou University, Lanzhou 730000, China University of Chinese Academy of Sciences, Beijing 100049, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing Ning
- Gansu Provincial People's Hospital, Lanzhou 730000, China
| | - Xinguo Liu
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaodong Jin
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tieshan Wang
- Department of Modern Physics, Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- Medical Physics Division, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
14
|
Georgantzoglou A, Merchant MJ, Jeynes JCG, Mayhead N, Punia N, Butler RE, Jena R. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams. Front Oncol 2016; 5:305. [PMID: 26835414 PMCID: PMC4724960 DOI: 10.3389/fonc.2015.00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.
Collapse
Affiliation(s)
| | - Michael J. Merchant
- Manchester Academic Health Science Centre, Institute of Cancer Sciences, University of Manchester, The Christie NHS Foundations Trust, Manchester, UK
| | | | | | - Natasha Punia
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, UK
| | - Rachel E. Butler
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford, UK
| | - Rajesh Jena
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Barberet P, Seznec H. Advances in microbeam technologies and applications to radiation biology. RADIATION PROTECTION DOSIMETRY 2015; 166:182-187. [PMID: 25911406 DOI: 10.1093/rpd/ncv192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Charged-particle microbeams (CPMs) allow the targeting of sub-cellular compartments with a counted number of energetic ions. While initially developed in the late 1990s to overcome the statistical fluctuation on the number of traversals per cell inevitably associated with broad beam irradiations, CPMs have generated a growing interest and are now used in a wide range of radiation biology studies. Besides the study of the low-dose cellular response that has prevailed in the applications of these facilities for many years, several new topics have appeared recently. By combining their ability to generate highly clustered damages in a micrometric volume with immunostaining or live-cell GFP labelling, a huge potential for monitoring radiation-induced DNA damage and repair has been introduced. This type of studies has pushed end-stations towards advanced fluorescence microscopy techniques, and several microbeam lines are currently equipped with the state-of-the-art time-lapse fluorescence imaging microscopes. In addition, CPMs are nowadays also used to irradiate multicellular models in a highly controlled way. This review presents the latest developments and applications of charged-particle microbeams to radiation biology.
Collapse
Affiliation(s)
- P Barberet
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| | - H Seznec
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| |
Collapse
|
16
|
Kraft D, Ritter S, Durante M, Seifried E, Fournier C, Tonn T. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure. Mutat Res 2015; 777:43-51. [PMID: 25938904 DOI: 10.1016/j.mrfmmm.2015.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/18/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022]
Abstract
In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34(+) cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60-85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤ 0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼ 30-35% apoptotic cells for 2 Gy carbon ions compared to ∼ 25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼ 70% and ∼ 40% for 1 Gy of carbon ions and X-rays, respectively), with a higher fraction of non-transmissible aberrations. In contrast, for both radiation qualities the percentage of clones with chromosomal abnormalities was similar (40%). Using the frequency of colonies with clonal aberrations as a surrogate marker for the leukemia risk following radiotherapy of solid tumors, charged particle therapy is not expected to lead to an increased risk of leukemia in patients.
Collapse
Affiliation(s)
- Daniela Kraft
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany; Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany.
| | - Sylvia Ritter
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany.
| | - Marco Durante
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany; Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt, Germany.
| | - Erhard Seifried
- Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany.
| | - Claudia Fournier
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany.
| | - Torsten Tonn
- Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany; Technische Universität Dresden, Med. Fakultät Carl Gustav Carus; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden, Germany.
| |
Collapse
|
17
|
Dettmering T, Zahnreich S, Colindres-Rojas M, Durante M, Taucher-Scholz G, Fournier C. Increased effectiveness of carbon ions in the production of reactive oxygen species in normal human fibroblasts. JOURNAL OF RADIATION RESEARCH 2015; 56:67-76. [PMID: 25304329 PMCID: PMC4572590 DOI: 10.1093/jrr/rru083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 08/25/2014] [Accepted: 08/28/2014] [Indexed: 05/25/2023]
Abstract
The production of reactive oxygen species (ROS), especially superoxide anions (O2 (·-)), is enhanced in many normal and tumor cell types in response to ionizing radiation. The influence of ionizing radiation on the regulation of ROS production is considered as an important factor in the long-term effects of irradiation (such as genomic instability) that might contribute to the development of secondary cancers. In view of the increasing application of carbon ions in radiation therapy, we aimed to study the potential impact of ionizing density on the intracellular production of ROS, comparing photons (X-rays) with carbon ions. For this purpose, we used normal human cells as a model for irradiated tissue surrounding a tumor. By quantifying the oxidization of Dihydroethidium (DHE), a fluorescent probe sensitive to superoxide anions, we assessed the intracellular ROS status after radiation exposure in normal human fibroblasts, which do not show radiation-induced chromosomal instability. After 3-5 days post exposure to X-rays and carbon ions, the level of ROS increased to a maximum that was dose dependent. The maximum ROS level reached after irradiation was specific for the fibroblast type. However, carbon ions induced this maximum level at a lower dose compared with X-rays. Within ∼1 week, ROS decreased to control levels. The time-course of decreasing ROS coincides with an increase in cell number and decreasing p21 protein levels, indicating a release from radiation-induced growth arrest. Interestingly, radiation did not act as a trigger for chronically enhanced levels of ROS months after radiation exposure.
Collapse
Affiliation(s)
- Till Dettmering
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Sebastian Zahnreich
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Miriam Colindres-Rojas
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstraße 6-8, 64289 Darmstadt, Germany
| | - Gisela Taucher-Scholz
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| | - Claudia Fournier
- GSI Helmholtz Centre for Heavy Ion Research, Biophysics, Planckstraße 1, 64291 Darmstadt, Germany
| |
Collapse
|
18
|
Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL. Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One 2014; 9:e104819. [PMID: 25126721 PMCID: PMC4134239 DOI: 10.1371/journal.pone.0104819] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022] Open
Abstract
Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.1, 0.2, 0.4, or 1 Gy of 300 MeV/n 28Si ions, 600 MeV/n 56Fe ions or 1 or 2 Gy of protons simulating the 1972 solar particle event (1972SPE) at the NASA Space Radiation Laboratory. Additional mice were irradiated with 137Cs gamma rays at doses of 1, 2, or 3 Gy. All groups were followed until they were moribund or reached 800 days of age. We found that 28Si or 56Fe ions do not appear to be substantially more effective than gamma rays for the induction of acute myeloid leukemia. However, 28Si or 56Fe ion irradiated mice had a much higher incidence of hepatocellular carcinoma than gamma ray irradiated or proton irradiated mice. These data demonstrate a clear difference in the effects of these HZE ions on the induction of leukemia compared to solid tumors, suggesting potentially different mechanisms of tumorigenesis. Also seen in this study was an increase in metastatic hepatocellular carcinoma in the 28Si and 56Fe ion irradiated mice compared with those exposed to gamma rays or 1972SPE protons, a finding with important implications for setting radiation exposure limits for space-flight crew members.
Collapse
Affiliation(s)
- Michael M Weil
- Colorado State University, Fort Collins, Colorado, United States of America
| | - F Andrew Ray
- Colorado State University, Fort Collins, Colorado, United States of America
| | - Paula C Genik
- Colorado State University, Fort Collins, Colorado, United States of America
| | - Yongjia Yu
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maureen McCarthy
- University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Robert L Ullrich
- University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
19
|
Abstract
Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space.
Collapse
Affiliation(s)
- M Durante
- GSI Helmholtz Center for Heavy Ion Research, Biophysics Department, Darmstadt, Germany
| |
Collapse
|
20
|
Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00002-7. [PMID: 24486376 PMCID: PMC4119099 DOI: 10.1016/j.mrrev.2014.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/06/2023]
Abstract
It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis.
Collapse
|