1
|
Wu H, Ghaani MR, Futera Z, English NJ. Effects of Externally Applied Electric Fields on the Manipulation of Solvated-Chignolin Folding: Static- versus Alternating-Field Dichotomy at Play. J Phys Chem B 2022; 126:376-386. [PMID: 35001614 PMCID: PMC8785190 DOI: 10.1021/acs.jpcb.1c06857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Indexed: 12/20/2022]
Abstract
The interaction between a protein and external electric field (EF) can alter its structure and dynamical behavior, which has a potential impact on the biological function of proteins and cause uncertain health consequences. Conversely, the application of EFs of judiciously selected intensity and frequency can help to treat disease, and optimization of this requires a greater understanding of EF-induced effects underpinning basic protein biophysics. In the present study, chignolin─an artificial protein sufficiently small to undergo fast-folding events and transitions─was selected as an ideal prototype to investigate how, and to what extent, externally applied electric fields may manipulate or influence protein-folding phenomena. Nonequilibrium molecular dynamics (NEMD) simulations have been performed of solvated chignolin to determine the distribution of folding states and their underlying transition dynamics, in the absence and presence of externally applied electric fields (both static and alternating); a key focus has been to ascertain how folding pathways are altered in an athermal sense by external fields. Compared to zero-field conditions, a dramatically different─indeed, bifurcated─behavior of chignolin-folding processes emerges between static- and alternating-field scenarios, especially vis-à-vis incipient stages of hydrophobic-core formation: in alternating fields, fold-state populations diversified, with an attendant acceleration of state-hopping folding kinetics, featuring the concomitant emergence of a new, quasi-stable structure compared to the native structure, in field-shifted energy landscapes.
Collapse
Affiliation(s)
- HaoLun Wu
- School
of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mohammad Reza Ghaani
- School
of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zdeněk Futera
- Faculty
of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Niall J. English
- School
of Chemical & Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Hassan M, Coutsias EA. Kinematic Reconstruction of Cyclic Peptides and Protein Backbones from Partial Data. J Chem Inf Model 2021; 61:4975-5000. [PMID: 34570494 PMCID: PMC10129052 DOI: 10.1021/acs.jcim.1c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present an algorithm, QBKR (Quaternary Backbone Kinematic Reconstruction), a fast analytical method for an all-atom backbone reconstruction of proteins and linear or cyclic peptide chains from Cα coordinate traces. Unlike previous analytical methods for deriving all-atom representations from coarse-grained models that rely on canonical geometry with planar peptides in the trans conformation, our de novo kinematic model incorporates noncanonical, cis-trans, geometry naturally. Perturbations to this geometry can be effected with ease in our formulation, for example, to account for a continuous change from cis to trans geometry. A simple optimization of a spring-based objective function is employed for Cα-Cα distance variations that extend beyond the cis-trans limit. The kinematic construction produces a linked chain of peptide units, Cα-C-N-Cα, hinged at the Cα atoms spanning all possible planar and nonplanar peptide conformations. We have combined our method with a ring closure algorithm for the case of ring peptides and missing loops in a protein structure. Here, the reconstruction proceeding from both the N and C termini of the protein backbone (or in both directions from a starting position for rings) requires freedom in the position of one Cα atom (a capstone) to achieve a successful loop or ring closure. A salient feature of our reconstruction method is the ability to enrich conformational ensembles to produce alternative feasible conformations in which H-bond forming C-O or N-H pairs in the backbone can reverse orientations, thus addressing a well-known shortcoming in Cα-based RMSD structure comparison, wherein very close structures may lead to significantly different overall H-bond behavior. We apply the fixed Cα-based design to the reverse reconstruction from noisy Cryo-EM data, a posteriori to the optimization. Our method can be applied to speed up the process of an all-atom description from voluminous experimental data or subpar electron density maps.
Collapse
Affiliation(s)
- Mosavverul Hassan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States
| | - Evangelos A Coutsias
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794-5252, United States
| |
Collapse
|
3
|
Corlett A, Sani MA, Van Zuylekom J, Ang CS, von Guggenberg E, Cullinane C, Blyth B, Hicks RJ, Roselt PD, Thompson PE, Hutton CA, Haskali MB. A New Turn in Peptide-Based Imaging Agents: Foldamers Afford Improved Theranostics Targeting Cholecystokinin-2 Receptor-Positive Cancer. J Med Chem 2021; 64:4841-4856. [PMID: 33826325 DOI: 10.1021/acs.jmedchem.0c02213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins adopt unique folded secondary and tertiary structures that are responsible for their remarkable biological properties. This structural complexity is key in designing efficacious peptides that can mimic the three-dimensional structure needed for biological function. In this study, we employ different chemical strategies to induce and stabilize a β-hairpin fold of peptides targeting cholecystokinin-2 receptors for theranostic application (combination of a targeted therapeutic and a diagnostic companion). The newly developed peptides exhibited enhanced folding capacity as demonstrated by circular dichroism (CD) spectroscopy, ion-mobility spectrometry-mass spectrometry, and two-dimensional (2D) NMR experiments. Enhanced folding characteristics of the peptides led to increased biological potency, affording four optimal Ga-68 labeled radiotracers ([68Ga]Ga-4b, [68Ga]Ga-11b-13b) targeting CCK-2R. In particular, [68Ga]Ga-12b and [68Ga]Ga-13b presented improved metabolic stability, enhanced cell internalization, and up to 6 fold increase in tumor uptake. These peptides hold great promise as next-generation theranostic radiopharmaceuticals.
Collapse
Affiliation(s)
- Alicia Corlett
- Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | | | - Jessica Van Zuylekom
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ching-Seng Ang
- The Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, Australia
| | | | - Carleen Cullinane
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Benjamin Blyth
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rodney J Hicks
- The Centre for Molecular Imaging and Translational Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Peter D Roselt
- The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University (Parkville Campus), Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville VIC 3052, Australia
| | | | - Mohammad B Haskali
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia.,The Radiopharmaceutical Research Laboratory, The Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Werner M, Petersen A, Kurniawan NA, Bouten CVC. Cell-Perceived Substrate Curvature Dynamically Coordinates the Direction, Speed, and Persistence of Stromal Cell Migration. ACTA ACUST UNITED AC 2019; 3:e1900080. [PMID: 32648723 DOI: 10.1002/adbi.201900080] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/16/2019] [Indexed: 01/02/2023]
Abstract
Adherent cells residing within tissues or biomaterials are presented with 3D geometrical cues from their environment, often in the form of local surface curvatures. While there is growing evidence that cellular decision-making is influenced by substrate curvature, the effect of physiologically relevant, cell-scale anisotropic curvatures remains poorly understood. This study systematically explores the migration behavior of human bone marrow stromal cells (hBMSCs) on a library of anisotropic curved structures. Analysis of cell trajectories reveals that, on convex cylindrical structures, hBMSC migration speed and persistence are strongly governed by the cellular orientation on the curved structure, while migration on concave cylindrical structures is characterized by fast but non-aligned and non-persistent migration. Concurrent presentation of concave and convex substrates on toroidal structures induces migration in the direction where hBMSCs can most effectively avoid cell bending. These distinct migration behaviors are found to be universally explained by the cell-perceived substrate curvature, which on anisotropic curved structures is dependent on both the temporally varying cell orientation and the 3D cellular morphology. This work demonstrates that cell migration is dynamically guided by the perceived curvature of the underlying substrate, providing an important biomaterial design parameter for instructing cell migration in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Maike Werner
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Ansgar Petersen
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, D-13353 , Berlin, Germany
| | - Nicholas A Kurniawan
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, 5612 AJ, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Investigating the Formation of Structural Elements in Proteins Using Local Sequence-Dependent Information and a Heuristic Search Algorithm. Molecules 2019; 24:molecules24061150. [PMID: 30909488 PMCID: PMC6471799 DOI: 10.3390/molecules24061150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/22/2022] Open
Abstract
Structural elements inserted in proteins are essential to define folding/unfolding mechanisms and partner recognition events governing signaling processes in living organisms. Here, we present an original approach to model the folding mechanism of these structural elements. Our approach is based on the exploitation of local, sequence-dependent structural information encoded in a database of three-residue fragments extracted from a large set of high-resolution experimentally determined protein structures. The computation of conformational transitions leading to the formation of the structural elements is formulated as a discrete path search problem using this database. To solve this problem, we propose a heuristically-guided depth-first search algorithm. The domain-dependent heuristic function aims at minimizing the length of the path in terms of angular distances, while maximizing the local density of the intermediate states, which is related to their probability of existence. We have applied the strategy to two small synthetic polypeptides mimicking two common structural motifs in proteins. The folding mechanisms extracted are very similar to those obtained when using traditional, computationally expensive approaches. These results show that the proposed approach, thanks to its simplicity and computational efficiency, is a promising research direction.
Collapse
|
6
|
Shao Q, Zhu W. Effective Conformational Sampling in Explicit Solvent with Gaussian Biased Accelerated Molecular Dynamics. J Chem Theory Comput 2017; 13:4240-4252. [DOI: 10.1021/acs.jctc.7b00242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qiang Shao
- Drug
Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi
Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiliang Zhu
- Drug
Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi
Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Shao Q, Shi J, Zhu W. Determining Protein Folding Pathway and Associated Energetics through Partitioned Integrated-Tempering-Sampling Simulation. J Chem Theory Comput 2017; 13:1229-1243. [DOI: 10.1021/acs.jctc.6b00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qiang Shao
- Drug
Discovery and Design Center, CAS Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jiye Shi
- UCB Biopharma
SPRL, Chemin du Foriest, 1420 Braine-l’Alleud, Belgium
| | - Weiliang Zhu
- Drug
Discovery and Design Center, CAS Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| |
Collapse
|
8
|
Makwana KM, Mahalakshmi R. Nature of aryl-tyrosine interactions contribute to β-hairpin scaffold stability: NMR evidence for alternate ring geometry. Phys Chem Chem Phys 2016; 17:4220-30. [PMID: 25569770 DOI: 10.1039/c4cp04991h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The specific contribution of the acidic-aromatic β-sheet favouring amino acid tyrosine to the stability of short octapeptide β-hairpin structures is presented here. Solution NMR analysis in near-apolar environments suggests the energetically favourable mode of interaction to be T-shaped face-to-edge (FtE) and that a Trp-Tyr interacting pair is the most stabilizing. Alternate aryl geometries also exist in solution, which readily equilibrate between a preferred π···π conformation to an aromatic-amide conformation, without any change in the backbone structure. While the phenolic ring is readily accommodated at the "edge" of FtE aryl interactions, it exhibits an overall lowered contribution to scaffold stability in the "face" orientation. Such differential tyrosine interactions are key to its dual nature in proteins.
Collapse
Affiliation(s)
- Kamlesh Madhusudan Makwana
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462023, India.
| | | |
Collapse
|
9
|
Miao Y, Feher VA, McCammon JA. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J Chem Theory Comput 2015; 11:3584-3595. [PMID: 26300708 PMCID: PMC4535365 DOI: 10.1021/acs.jctc.5b00436] [Citation(s) in RCA: 568] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 12/20/2022]
Abstract
A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively.
Collapse
Affiliation(s)
- Yinglong Miao
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California at San Diego , La Jolla, California 92093, United States
| | - Victoria A Feher
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California at San Diego , La Jolla, California 92093, United States
| | - J Andrew McCammon
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, and Department of Pharmacology, University of California at San Diego , La Jolla, California 92093, United States
| |
Collapse
|
10
|
Miao Y, Feixas F, Eun C, McCammon JA. Accelerated molecular dynamics simulations of protein folding. J Comput Chem 2015; 36:1536-49. [PMID: 26096263 DOI: 10.1002/jcc.23964] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/11/2015] [Accepted: 05/19/2015] [Indexed: 02/02/2023]
Abstract
Folding of four fast-folding proteins, including chignolin, Trp-cage, villin headpiece and WW domain, was simulated via accelerated molecular dynamics (aMD). In comparison with hundred-of-microsecond timescale conventional molecular dynamics (cMD) simulations performed on the Anton supercomputer, aMD captured complete folding of the four proteins in significantly shorter simulation time. The folded protein conformations were found within 0.2-2.1 Å of the native NMR or X-ray crystal structures. Free energy profiles calculated through improved reweighting of the aMD simulations using cumulant expansion to the second-order are in good agreement with those obtained from cMD simulations. This allows us to identify distinct conformational states (e.g., unfolded and intermediate) other than the native structure and the protein folding energy barriers. Detailed analysis of protein secondary structures and local key residue interactions provided important insights into the protein folding pathways. Furthermore, the selections of force fields and aMD simulation parameters are discussed in detail. Our work shows usefulness and accuracy of aMD in studying protein folding, providing basic references in using aMD in future protein-folding studies.
Collapse
Affiliation(s)
- Yinglong Miao
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California
| | - Ferran Feixas
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California.,Department of Pharmacology, University of California at San Diego, La Jolla, California
| | - Changsun Eun
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California
| | - J Andrew McCammon
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California.,Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California.,Department of Pharmacology, University of California at San Diego, La Jolla, California
| |
Collapse
|
11
|
Narayanan C, Dias CL. Exploring the free energy landscape of a model β-hairpin peptide and its isoform. Proteins 2014; 82:2394-402. [PMID: 24825659 DOI: 10.1002/prot.24601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 12/16/2022]
Abstract
Secondary structural transitions from α-helix to β-sheet conformations are observed in several misfolding diseases including Alzheimer's and Parkinson's. Determining factors contributing favorably to the formation of each of these secondary structures is therefore essential to better understand these disease states. β-hairpin peptides form basic components of anti-parallel β-sheets and are suitable model systems for characterizing the fundamental forces stabilizing β-sheets in fibrillar structures. In this study, we explore the free energy landscape of the model β-hairpin peptide GB1 and its E2 isoform that preferentially adopts α-helical conformations at ambient conditions. Umbrella sampling simulations using all-atom models and explicit solvent are performed over a large range of end-to-end distances. Our results show the strong preference of GB1 and the E2 isoform for β-hairpin and α-helical conformations, respectively, consistent with previous studies. We show that the unfolded states of GB1 are largely populated by misfolded β-hairpin structures which differ from each other in the position of the β-turn. We discuss the energetic factors contributing favorably to the formation of α-helix and β-hairpin conformations in these peptides and highlight the energetic role of hydrogen bonds and non-bonded interactions.
Collapse
Affiliation(s)
- Chitra Narayanan
- Department of Physics, New Jersey Institute of Technology, University Heights, Newark, New Jersey, 07102-1982
| | | |
Collapse
|