1
|
Cofre J. The first embryo, the origin of cancer and animal phylogeny. V. Cancer stem cells as the unifying biomechanical principle between embryology and oncology. MECHANOBIOLOGY IN MEDICINE 2025; 3:100110. [PMID: 40396136 PMCID: PMC12082149 DOI: 10.1016/j.mbm.2024.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 05/22/2025]
Abstract
The role of embryology in metazoan evolution is rooted deeply in the history of science. Viewing Neoplasia as an evolutionary engine provides a scientific basis for reexamining the disease cancer. Once the embryo is understood as a benign tumor with a pivotal role in the evolution of all animal forms, there will be an immediate paradigm shift in the search for cancer cure, potentially revealing insights that may be buried within the great developmental transitions of metazoans. This article discusses one of the unifying principles between embryology and oncology, namely cancer stem cells. Some considerations are also provided on the central role of physics and biomechanics in the assembly of the first embryo, which can be regarded as a differentiated benign tumor. Mechanical impregnation of the nucleus of a stem cell, culminating in a totipotent/multipotent cell, was a major event safeguarding the success of embryogenesis throughout evolution. Germ cells in the earliest ctenophore embryos underwent delayed differentiation, subsequent to the mechanical assembly of the embryo. Finally, a discussion is presented on the concept that cancer and embryogenesis (cancer and healthy stem cells) are two sides of the same coin, that is, of the same process. The only difference is that cancer stem cells reveal themselves in inappropriate contexts. Neoplasia is a free force, whereas cancer is a force contained by animal organization.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Federal University of Santa Catarina, Sala 313b, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
2
|
Cofre J, Saalfeld K. The first embryo, the origin of cancer and animal phylogeny. I. A presentation of the neoplastic process and its connection with cell fusion and germline formation. Front Cell Dev Biol 2023; 10:1067248. [PMID: 36684435 PMCID: PMC9846517 DOI: 10.3389/fcell.2022.1067248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 01/05/2023] Open
Abstract
The decisive role of Embryology in understanding the evolution of animal forms is founded and deeply rooted in the history of science. It is recognized that the emergence of multicellularity would not have been possible without the formation of the first embryo. We speculate that biophysical phenomena and the surrounding environment of the Ediacaran ocean were instrumental in co-opting a neoplastic functional module (NFM) within the nucleus of the first zygote. Thus, the neoplastic process, understood here as a biological phenomenon with profound embryologic implications, served as the evolutionary engine that favored the formation of the first embryo and cancerous diseases and allowed to coherently create and recreate body shapes in different animal groups during evolution. In this article, we provide a deep reflection on the Physics of the first embryogenesis and its contribution to the exaptation of additional NFM components, such as the extracellular matrix. Knowledge of NFM components, structure, dynamics, and origin advances our understanding of the numerous possibilities and different innovations that embryos have undergone to create animal forms via Neoplasia during evolutionary radiation. The developmental pathways of Neoplasia have their origins in ctenophores and were consolidated in mammals and other apical groups.
Collapse
Affiliation(s)
- Jaime Cofre
- Laboratório de Embriologia Molecular e Câncer, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil,*Correspondence: Jaime Cofre,
| | - Kay Saalfeld
- Laboratório de Filogenia Animal, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
3
|
Ma Z, Zhang F, Xiong J, Zhang H, Lin HK, Liu C. Activation of embryonic/germ cell-like axis links poor outcomes of gliomas. Cancer Cell Int 2022; 22:371. [DOI: 10.1186/s12935-022-02792-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
It is unclear which core events drive the malignant progression of gliomas. Earlier studies have revealed that the embryonic stem (ES) cell/early PGC state is associated with tumourigenicity. This study was designed to investigate the role of ES/PGC state in poor outcomes of gliomas.
Methods
Crispr-Cas9 technology, RT–PCR and animal experiments were used to investigate whether PGC-like cell formation play crucial roles in the tumorigenicity of human glioma cells. Bioinformatic analysis was used to address the link between ES/PGC developmental axis and glioma overall outcomes.
Results
Here, our findings showed that germ cell-like cells were present in human gliomas and cultured glioma cells and that the formation of germ cell-like cells was essential for glioma tumours. Bioinformatic analysis showed that the mRNA levels of genes related to embryonic/germ cell development could be detected in most gliomas. Our findings showed that the activation of genes related to reprogramming or the germ cell-like state alone seemed to be insufficient to lead to a malignant prognosis, whereas increased mRNA levels of genes related to the activation of the embryonic/germ cell-like cycle (somatic PGC-EGC-like cycle and somatic parthenogenetic embryo-like cycle) were positively correlated with malignant prognoses and poor clinical outcomes of gliomas. Genes related to the embryonic/germ cell cycle alone or in combination with the WHO grade or 1p19q codeletion status could be used to subdivide gliomas with distinct clinical behaviours.
Conclusion
Together, our findings indicated that a crucial role of germ cell-like cell formation in glioma initiation as well as activation of genes related with the parthenogenetic embryo-like cycle and PGC-EGC-like cycle link to the malignant prognosis and poor outcomes of gliomas, which might provide a novel way to better understand the nature of and develop targeted therapies for gliomas as well as important markers for predicting clinical outcomes in gliomas.
Collapse
|
4
|
Liu C, Moten A, Ma Z, Lin HK. The foundational framework of tumors: Gametogenesis, p53, and cancer. Semin Cancer Biol 2022; 81:193-205. [PMID: 33940178 PMCID: PMC9382687 DOI: 10.1016/j.semcancer.2021.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
The completion-of-tumor hypothesis involved in the dynamic interplay between the initiating oncogenic event and progression is essential to better recognize the foundational framework of tumors. Here we review and extend the gametogenesis-related hypothesis of tumors, because high embryonic/germ cell traits are common in tumors. The century-old gametogenesis-related hypothesis of tumors postulated that tumors arise from displaced/activated trophoblasts, displaced (lost) germ cells, and the reprogramming/reactivation of gametogenic program in somatic cells. Early primordial germ cells (PGCs), embryonic stem (ES) cells, embryonic germ cells (EGCs), and pre-implantation embryos at the stage from two-cell stage to blastocysts originating from fertilization or parthenogenesis have the potential to develop teratomas/teratocarcinomas. In addition, the teratomas/teratocarcinomas/germ cells occur in gonads and extra-gonads. Undoubtedly, the findings provide strong support for the hypothesis. However, it was thought that these tumor types were an exception rather than verification. In fact, there are extensive similarities between somatic tumor types and embryonic/germ cell development, such as antigens, migration, invasion, and immune escape. It was documented that embryonic/germ cell genes play crucial roles in tumor behaviors, e.g. tumor initiation and metastasis. Of note, embryonic/germ cell-like tumor cells at different developmental stages including PGC and oocyte to the early embryo-like stage were identified in diverse tumor types by our group. These embryonic/germ cell-like cancer cells resemble the natural embryonic/germ cells in morphology, gene expression, the capability of teratoma formation, and the ability to undergo the process of oocyte maturation and parthenogenesis. These embryonic/germ cell-like cancer cells are derived from somatic cells and contribute to tumor formation, metastasis, and drug resistance, establishing asexual meiotic embryonic life cycle. p53 inhibits the reactivation of embryonic/germ cell state in somatic cells and oocyte-like cell maturation. Based on earlier and our recent studies, we propose a novel model to complete the gametogenesis-related hypothesis of tumors, which can be applied to certain somatic tumors. That is, tumors tend to establish a somatic asexual meiotic embryonic cycle through the activation of somatic female gametogenesis and parthenogenesis in somatic tumor cells during the tumor progression, thus passing on corresponding embryonic/germ cell traits leading to the malignant behaviors and enhancing the cells' independence. This concept may be instrumental to better understand the nature and evolution of tumors. We rationalize that targeting the key events of somatic pregnancy is likely a better therapeutic strategy for cancer treatment than directly targeting cell mitotic proliferation, especially for those tumors with p53 inactivation.
Collapse
Affiliation(s)
- Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Asad Moten
- Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | - Zhan Ma
- Department of Laboratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
5
|
Biocompatible indocyanine green loaded PLA nanofibers for in situ antimicrobial photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111068. [DOI: 10.1016/j.msec.2020.111068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/18/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022]
|
6
|
Liu C, Cai Z, Jin G, Peng D, Pan BS, Zhang X, Han F, Xu X, Lin HK. Abnormal gametogenesis induced by p53 deficiency promotes tumor progression and drug resistance. Cell Discov 2018; 4:54. [PMID: 30302273 PMCID: PMC6167385 DOI: 10.1038/s41421-018-0054-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/08/2018] [Accepted: 07/12/2018] [Indexed: 01/15/2023] Open
Abstract
The century-old embryonal/gametogenesis hypothesis of tumors could link diverse tumors' malignant features together likely representing the real "stemness" of tumors. However, the genetic evidence to validate abnormal gametogenesis in tumors remains lacking. Here we show that p53 deficiency elicits abnormal gametogenesis from primordial germ cell-like stage to late oocyte-like stage and subsequent parthenogenetic activation. The similar upregulation of abnormal gametogenesis by p53 deficiency is observed both in p53-/- mouse model and cultured cancer cells. Notably, germ cell-like cells isolated from distinct tumors from p53-/- mice and cancer cell lines display potent tumorigenicity potential. Abnormal oogenesis induced by p53 deficiency and then spontaneous parthenogenetic activation endow tumors with imitated embryonic development, life cycle, and therapeutic resistance. Our study establishes the genetic evidence to support embryonal/gametogenesis theory of tumors and reveals a pivotal role of p53 in restricting abnormal gametogenesis that may represent a novel aspect for p53's tumor suppression.
Collapse
Affiliation(s)
- Chunfang Liu
- 1Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040 China
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Zhen Cai
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Guoxiang Jin
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Danni Peng
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Bo-Syong Pan
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xian Zhang
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Fei Han
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xiaohong Xu
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Hui-Kuan Lin
- 2Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
- 3Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- 4Graduate Institute of Basic Medical Science, China Medical University, Taichung, 404 Taiwan
- 5Department of Biotechnology, Asia University, Taichung, 41354 Taiwan
| |
Collapse
|
7
|
Chalajour F, Siyahian A, Hanley FL. The Role of Microenvironment in Preserving the Potency of Adult Porcine Pulmonary Valve Stem Cells In Vitro. Int J Stem Cells 2018; 11:121-130. [PMID: 29843194 PMCID: PMC5984066 DOI: 10.15283/ijsc18020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 03/07/2018] [Accepted: 04/15/2018] [Indexed: 11/09/2022] Open
Abstract
Background and Objective The potency of tissue resident stem cells is regulated primarily by inputs from the local microenvironment. Isolation of stem cells through enzymatic digestion of tissue may affect epigenetic regulation of cell fate and performance. Here we employ a non-enzymatic method to harvest and investigate tissue resident stem cells from the adult porcine pulmonary valve. Methods and Results The presence of c-Kit+ stem cells within the valve tissue was confirmed by immunohistochemistry. An in vitro culture of minced valve leaflets was developed under the standard conditions (37°C with 5% CO2). The viability of the cellular outgrowths was evaluated over the subsequent 12 weeks. Under this culture condition, we identified a population of non-adherent c-Kit+ cells and multiple cellular structures mimicking the phenotype of embryonic stem cells at different stages of development. Formation of multinucleated cells through cell fusion provided an active niche area for homing and interaction of the non-adherent c-Kit+ cells. Expression of pluripotency markers Oct-4 and Nanog was detected in the newly formed multinucleated cells but not in mature colonies. Partial cell fusion was shown by fluorescent live-cell tracking, which confirmed intercellular molecular exchange between donor and recipient cells, resulting in altered cytoplasmic protein expression by the recipient cell. Conclusions These results suggest a role for the microenvironment in decrypting the potential of the valve somatic stem cells in vitro. In addition, our data provide evidence for cell fusion, which may play a critical role in reversing somatic cell fate and spontaneous cellular reprogramming.
Collapse
Affiliation(s)
- Fariba Chalajour
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiovascular Surgery, Stanford University, California, USA
| | - Arpi Siyahian
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiovascular Surgery, Stanford University, California, USA
| | - Frank L Hanley
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiovascular Surgery, Stanford University, California, USA
| |
Collapse
|
8
|
Ranaei Pirmardan E, Soheili ZS, Samiei S, Ahmadieh H, Mowla SJ, Ezzati R, Naseri M. Characterization of a spontaneously generated murine retinal pigmented epithelium cell line; a model for in vitro experiments. Exp Cell Res 2016; 347:332-8. [DOI: 10.1016/j.yexcr.2016.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 08/02/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
|
9
|
Liu C, Ma Z, Xu S, Hou J, Hu Y, Yu Y, Liu R, Chen Z, Lu Y. Activation of the germ-cell potential of human bone marrow-derived cells by a chemical carcinogen. Sci Rep 2014; 4:5564. [PMID: 24998261 PMCID: PMC4083294 DOI: 10.1038/srep05564] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/17/2014] [Indexed: 01/06/2023] Open
Abstract
Embryonic/germ cell traits are common in malignant tumors and are thought to be involved in malignant tumor behaviors. The reasons why tumors show strong embryonic/germline traits (displaced germ cells or gametogenic programming reactivation) are controversial. Here, we show that a chemical carcinogen, 3-methyl-cholanthrene (3-MCA), can trigger the germ-cell potential of human bone marrow-derived cells (hBMDCs). 3-MCA promoted the generation of germ cell-like cells from induced hBMDCs that had undergone malignant transformation, whereas similar results were not observed in the parallel hBMDC culture at the same time point. The malignant transformed hBMDCs spontaneously and more efficiently generated into germ cell-like cells even at the single-cell level. The germ cell-like cells from induced hBMDCs were similar to natural germ cells in many aspects, including morphology, gene expression, proliferation, migration, further development, and teratocarcinoma formation. Therefore, our results demonstrate that a chemical carcinogen can reactivate the germline phenotypes of human somatic tissue-derived cells, which might provide a novel idea to tumor biology and therapy.
Collapse
Affiliation(s)
- Chunfang Liu
- 1] Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China [2]
| | - Zhan Ma
- 1] Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China [2] Department of Laboratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China [3]
| | - Songtao Xu
- 1] Department of Thoracic Surgery, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China [2]
| | - Jun Hou
- Department of Pathology, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Yinglu Yu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Ruilai Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | - Zhihong Chen
- Department of Pulmonary Medicine, Research Institute of Respiratory Disease, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuan Lu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| |
Collapse
|
10
|
Feichtinger J, Larcombe L, McFarlane RJ. Meta-analysis of expression of l(3)mbt tumor-associated germline genes supports the model that a soma-to-germline transition is a hallmark of human cancers. Int J Cancer 2014; 134:2359-65. [PMID: 24243547 PMCID: PMC4166677 DOI: 10.1002/ijc.28577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/27/2013] [Accepted: 10/18/2013] [Indexed: 12/14/2022]
Abstract
Evidence is starting to emerge indicating that tumorigenesis in metazoans involves a soma-to-germline transition, which may contribute to the acquisition of neoplastic characteristics. Here, we have meta-analyzed gene expression profiles of the human orthologs of Drosophila melanogaster germline genes that are ectopically expressed in l(3)mbt brain tumors using gene expression datasets derived from a large cohort of human tumors. We find these germline genes, some of which drive oncogenesis in D. melanogaster, are similarly ectopically activated in a wide range of human cancers. Some of these genes normally have expression restricted to the germline, making them of particular clinical interest. Importantly, these analyses provide additional support to the emerging model that proposes a soma-to-germline transition is a general hallmark of a wide range of human tumors. This has implications for our understanding of human oncogenesis and the development of new therapeutic and biomarker targets with clinical potential.
Collapse
Affiliation(s)
- Julia Feichtinger
- North West Cancer Research Institute, Bangor University, Brambell Building, Bangor, Gwynedd, United Kingdom; Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | | | | |
Collapse
|
11
|
Liu C, Ma Z, Hou J, Zhang H, Liu R, Wu W, Liu W, Lu Y. Germline traits of human hepatoblastoma cells associated with growth and metastasis. Biochem Biophys Res Commun 2013; 437:120-6. [PMID: 23800414 DOI: 10.1016/j.bbrc.2013.06.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/16/2013] [Indexed: 12/15/2022]
Abstract
Genes that are specific to germline and embryonic development can be activated in many tumors. Here, we show that germline traits that are present in human hepatoblastoma cells might be associated with the malignant behaviors of these tumor cells. In culture, single human hepatoblastoma cells differentiated into germ cell-like cells, which further developed into oocyte-like cells and formed parthenogenetic blastocyst-like structures. The germ cell-like cells and their embryonic derivatives from hepatoblastoma cells may favorably give rise to xenograft tumors with embryonal/germline traits and intrahepatic metastasis. These findings suggest that germline potential can be spontaneously activated in human hepatoblastoma cells and it might be important for tumor formation and metastasis.
Collapse
Affiliation(s)
- Chunfang Liu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | | | | | | | | | | | | | | |
Collapse
|