1
|
Clark NE, Katolik A, Gallant P, Welch A, Murphy E, Buerer L, Schorl C, Naik N, Naik MT, Holloway SP, Cano K, Weintraub ST, Howard KM, Hart PJ, Jogl G, Damha MJ, Fairbrother WG. Activation of human RNA lariat debranching enzyme Dbr1 by binding protein TTDN1 occurs though an intrinsically disordered C-terminal domain. J Biol Chem 2023; 299:105100. [PMID: 37507019 PMCID: PMC10470207 DOI: 10.1016/j.jbc.2023.105100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In eukaryotic cells, the introns are excised from pre-mRNA by the spliceosome. These introns typically have a lariat configuration due to the 2'-5' phosphodiester bond between an internal branched residue and the 5' terminus of the RNA. The only enzyme known to selectively hydrolyze the 2'-5' linkage of these lariats is the RNA lariat debranching enzyme Dbr1. In humans, Dbr1 is involved in processes such as class-switch recombination of immunoglobulin genes, and its dysfunction is implicated in viral encephalitis, HIV, ALS, and cancer. However, mechanistic details of precisely how Dbr1 affects these processes are missing. Here we show that human Dbr1 contains a disordered C-terminal domain through sequence analysis and nuclear magnetic resonance. This domain stabilizes Dbr1 in vitro by reducing aggregation but is dispensable for debranching activity. We establish that Dbr1 requires Fe2+ for efficient catalysis and demonstrate that the noncatalytic protein Drn1 and the uncharacterized protein trichothiodystrophy nonphotosensitive 1 directly bind to Dbr1. We demonstrate addition of trichothiodystrophy nonphotosensitive 1 to in vitro debranching reactions increases the catalytic efficiency of human Dbr1 19-fold but has no effect on the activity of Dbr1 from the amoeba Entamoeba histolytica, which lacks a disordered C-terminal domain. Finally, we systematically examine how the identity of the branchpoint nucleotide affects debranching rates. These findings describe new aspects of Dbr1 function in humans and further clarify how Dbr1 contributes to human health and disease.
Collapse
Affiliation(s)
- Nathaniel E Clark
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Pascal Gallant
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Anastasia Welch
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Eileen Murphy
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Luke Buerer
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Christoph Schorl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nandita Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mandar T Naik
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Stephen P Holloway
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Kristin Cano
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Katherine M Howard
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada-Las Vegas, Las Vegas, Nevada, USA
| | - P John Hart
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Gerwald Jogl
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| | - William G Fairbrother
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
2
|
Choi Y, Lee HH, Park J, Kim S, Choi S, Moon H, Shin J, Kim JE, Choi GJ, Seo YS, Son H. Intron turnover is essential to the development and pathogenicity of the plant pathogenic fungus Fusarium graminearum. Commun Biol 2022; 5:1129. [PMID: 36289323 PMCID: PMC9606315 DOI: 10.1038/s42003-022-04111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Intron lariats excised during the splicing process are rapidly degraded by RNA lariat debranching enzyme (Dbr1) and several exonucleases. Rapid turnover of lariat RNA is essential to cellular RNA homeostasis. However, the functions of Dbr1 have not been investigated in filamentous fungi. Here, we characterized the molecular functions of Dbr1 in Fusarium graminearum, a major fungal plant pathogen. Deletion of FgDBR1 resulted in pleiotropic defects in hyphal growth, conidiation, sexual reproduction, and virulence. Through transcriptome analysis, we revealed that the deletion mutant exhibited global accumulation of intron lariats and upregulation of ribosome-related genes. Excessive accumulation of lariat RNA led to reduced overall protein synthesis, causing various phenotypic defects in the absence of FgDBR1. The results of this study demonstrate that a compromised intron turnover process affects development and pathogenesis in this fungus and that Dbr1 function is critical to plant pathogenic fungi. RNA lariat debranching enzyme Dbr1 is required for intron turnover in the fungal plant pathogen <i>Fusarium graminearum <i > , and accumulation of lariat RNA affects its development and pathogenesis.
Collapse
Affiliation(s)
- Yejin Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun-Hee Lee
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Jiyeun Park
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Sieun Kim
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Soyoung Choi
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Heeji Moon
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jiyoung Shin
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jung-Eun Kim
- grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Gyung Ja Choi
- grid.29869.3c0000 0001 2296 8192Therapeutic & Biotechnology Division, Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, 34114 Republic of Korea
| | - Young-Su Seo
- grid.262229.f0000 0001 0719 8572Department of Integrated Biological Science, Pusan National University, Busan, 46247 Republic of Korea
| | - Hokyoung Son
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea ,grid.31501.360000 0004 0470 5905Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
3
|
Xu X, Yang X, Liu X, Bi Y, Kong P, Wang Y, Cheng X, Xi Y. The Role of DBR1 as a Candidate Prognosis Biomarker in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221083105. [PMID: 35244467 PMCID: PMC8902023 DOI: 10.1177/15330338221083105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022] Open
Abstract
Aims: Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent malignancies with unfavorable clinical outcomes and limited therapeutic methods. As a key enzyme in RNA metabolism, debranching RNA Lariats 1 (DBR1) is involved in intron turnover and biogenesis of noncoding RNA. Although cancer cells often show disorder of nucleic acid metabolism, it is unclear whether DBR1 has any effect on the carcinogenesis and progression of ESCC. Methods: Here we detected DBR1 expression in 112 ESCC samples by immunohistochemistry and analyzed its correlation with clinical parameters and survival. Results: DBR1 is mainly located in the nucleus of ESCC tissue. And DBR1 was associated with several malignant clinical features in patients, including tumor location (χ2 = 9.687, P = .021), pathologic T stage (χ2 = 5.771, P = .016), lymph node metastasis (χ2 = 8.215, P = .004) and N classification (χ2 = 10.066, P = .018). Moreover, Kaplan-Meier analysis showed that ESCC patients harboring lower DBR1 expression had a worse prognosis in comparison with those with higher DBR1 expression (P = .005). Univariate and multivariate Cox proportional hazards regression analyses indicated that decreased DBR1 might act as an independent predictor of poor prognosis for ESCC patients. Conclusion: Abnormal RNA metabolism might play a critical role in promoting the progression of ESCC, and DBR1 may be a promising potential biomarker for predicting the prognosis of ESCC patients.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Shanxi Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Xin Yang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xue Liu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yanghui Bi
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yanqiang Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yanfeng Xi
- Shanxi Cancer Hospital, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
4
|
Talross GJS, Deryusheva S, Gall JG. Stable lariats bearing a snoRNA (slb-snoRNA) in eukaryotic cells: A level of regulation for guide RNAs. Proc Natl Acad Sci U S A 2021; 118:e2114156118. [PMID: 34725166 PMCID: PMC8609340 DOI: 10.1073/pnas.2114156118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2021] [Indexed: 12/31/2022] Open
Abstract
Small nucleolar (sno)RNAs guide posttranscriptional modifications essential for the biogenesis and function of their target. The majority of snoRNAs in higher eukaryotes are encoded within introns. They are first released from nascent transcripts in the form of a lariat and rapidly targeted by the debranching enzyme and nuclear exonucleases for linearization and further trimming. In this study, we report that some snoRNAs are encoded within unusually stable intronic RNAs. These intronic sequences can escape the debranching enzyme and accumulate as lariats. Stable lariats bearing a snoRNA, or slb-snoRNA, are associated with snoRNA binding proteins but do not guide posttranscriptional modification. While most slb-snoRNAs accumulate in the nucleus, some can be exported to the cytoplasm. We find that this export competes with snoRNA maturation. Slb-snoRNAs provide a previously unknown layer of regulation to snoRNA and snoRNA binding proteins.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
5
|
Kataoka N, Matsumoto E, Masaki S. Mechanistic Insights of Aberrant Splicing with Splicing Factor Mutations Found in Myelodysplastic Syndromes. Int J Mol Sci 2021; 22:ijms22157789. [PMID: 34360561 PMCID: PMC8346168 DOI: 10.3390/ijms22157789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is an essential process for gene expression in higher eukaryotes, which requires a high order of accuracy. Mutations in splicing factors or regulatory elements in pre-mRNAs often result in many human diseases. Myelodysplastic syndrome (MDS) is a heterogeneous group of chronic myeloid neoplasms characterized by many symptoms and a high risk of progression to acute myeloid leukemia. Recent findings indicate that mutations in splicing factors represent a novel class of driver mutations in human cancers and affect about 50% of Myelodysplastic syndrome (MDS) patients. Somatic mutations in MDS patients are frequently found in genes SF3B1, SRSF2, U2AF1, and ZRSR2. Interestingly, they are involved in the recognition of 3' splice sites and exons. It has been reported that mutations in these splicing regulators result in aberrant splicing of many genes. In this review article, we first describe molecular mechanism of pre-mRNA splicing as an introduction and mainly focus on those four splicing factors to describe their mutations and their associated aberrant splicing patterns.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Correspondence: ; Tel.: +81-3-5841-5372; Fax: +81-3-5841-8014
| | - Eri Matsumoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - So Masaki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan;
| |
Collapse
|
6
|
Mohanta A, Chakrabarti K. Dbr1 functions in mRNA processing, intron turnover and human diseases. Biochimie 2020; 180:134-142. [PMID: 33038423 DOI: 10.1016/j.biochi.2020.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
Pre-mRNA processing and mRNA stability play direct roles in controlling protein abundance in a cell. Before the mRNA can be translated into a protein, the introns in the pre-mRNA transcripts need to be removed by splicing, such that exons can be ligated together and can code for a protein. In this process, the function of the RNA lariat debranching enzyme or Dbr1 provides a rate-limiting step in the intron turnover process and possibly regulating the production of translation competent mRNAs. Surprising new roles of Dbr1 are emerging in cellular metabolism which extends beyond intron turnover processes, ranging from splicing regulation to translational control. In this review, we highlight the importance of the Dbr1 enzyme, its structure and how anomalies in its function could relate to various human diseases.
Collapse
Affiliation(s)
- Arundhati Mohanta
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
7
|
Masaki S, Kabuto T, Suzuki K, Kataoka N. Multiple nuclear localization sequences in SRSF4 protein. Genes Cells 2020; 25:327-333. [PMID: 32050040 DOI: 10.1111/gtc.12756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022]
Abstract
SRSF4 is one of the members of serine-/arginine (SR)-rich protein family involved in both constitutive and alternative splicing. SRSF4 is localized in the nucleus with speckled pattern, but its nuclear localization signal was not determined. Here, we have identified nuclear localization signals (NLSs) of SRSF4 by using a pyruvate kinase fusion system. As expected, arginine-/serine (RS)-rich domain of SRSF4 confers nuclear localization activity when it is fused to PK protein. We then further delineated the minimum sequences for nuclear localization in RS domain of SRSF4. Surprisingly, RS-rich region does not always have a nuclear localization activity. In addition, basic amino acid stretches that resemble to classical-type NLSs were identified. These results strongly suggest that SRSF4 protein uses two different nuclear import pathways with multiple NLSs in RS domain.
Collapse
Affiliation(s)
- So Masaki
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Takafumi Kabuto
- Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan
| | - Kenji Suzuki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Laboratory of Anatomy and Developmental Biology, Kyoto University School of Medicine, Kyoto, Japan.,Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Valdés J, Ortuño-Pineda C, Saucedo-Cárdenas O, Mendoza-Figueroa MS. Unexplored Molecular Features of the Entamoeba histolytica RNA Lariat Debranching Enzyme Dbr 1 Expression Profile. Front Cell Infect Microbiol 2018; 8:228. [PMID: 30023353 PMCID: PMC6039765 DOI: 10.3389/fcimb.2018.00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
The RNA lariat debranching enzyme (Dbr1) has different functions in RNA metabolism, such as hydrolyzing the 2′-5′ linkage in intron lariats, positively influencing Ty1 and HIV-1 retrotransposition, and modulating snRNP recycling during splicing reactions. It seems that Dbr1 is one of the major players in RNA turnover. It is remarkable that of all the studies carried out to date with Dbr1, to our knowledge, none of them have evaluated the expression profile of the endogenous Dbr1 gene. In this work, we describe, for the first time, that Entamoeba histolytica EhDbr1 mRNA has a very short half-life (less than 30 min) and encodes a very stable protein that is present until trophozoite cultures die. We also show that the EhDbr1 protein is present in the nuclear periphery on the cytoplasmic basal side, contrary to the localization of human Dbr1. Comparing these results with previous hypotheses and with results from different organisms suggests that Dbr1 gene expression is finely tuned and conserved across eukaryotes. Experiments describing the aspects of Dbr1 gene expression and Dbr1 mRNA turnover as well as other functions of the protein need to be performed. Particularly, a special emphasis is needed on the protozoan parasite E. histolytica, the causative agent of amoebiasis, since even though it is a unicellular organism, it is an intron-rich eukaryote whose intron lariats seem to be open to avoid intron lariat accumulation and to process them in non-coding RNAs that might be involved in its virulence.
Collapse
Affiliation(s)
- Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Carlos Ortuño-Pineda
- Unidad Académica de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Odila Saucedo-Cárdenas
- Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico.,División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Mexico
| | - María S Mendoza-Figueroa
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.,Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| |
Collapse
|
9
|
Human DBR1 modulates the recycling of snRNPs to affect alternative RNA splicing and contributes to the suppression of cancer development. Oncogene 2017; 36:5382-5391. [PMID: 28504715 PMCID: PMC5608638 DOI: 10.1038/onc.2017.150] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/14/2017] [Indexed: 12/16/2022]
Abstract
The contribution of RNA processing to tumorigenesis is understudied. Here, we report that the human RNA debranching enzyme (hDBR1), when inappropriately regulated, induces oncogenesis by causing RNA processing defects, for example, splicing defects. We found that wild-type p53 and hypoxia-inducible factor 1 co-regulate hDBR1 expression, and insufficient hDBR1 leads to a higher rate of exon skipping. Transcriptomic sequencing confirmed the effect of hDBR1 on RNA splicing, and metabolite profiling supported the observation that neoplasm is triggered by a decrease in hDBR1 expression both in vitro and in vivo. Most importantly, when modulating the expression of hDBR1, which was found to be generally low in malignant human tissues, higher expression of hDBR1 only affected exon-skipping activity in malignant cells. Together, our findings demonstrate previously unrecognized regulation and functions of hDBR1, with immediate clinical implications regarding the regulation of hDBR1 as an effective strategy for combating human cancer.
Collapse
|
10
|
Huang JH, Ku WC, Chen YC, Chang YL, Chu CY. Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Sci Rep 2017; 7:42853. [PMID: 28216671 PMCID: PMC5316971 DOI: 10.1038/srep42853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
DDX6 is a conserved DEAD-box protein (DBP) that plays central roles in cytoplasmic RNA regulation, including processing body (P-body) assembly, mRNA decapping, and translational repression. Beyond its cytoplasmic functions, DDX6 may also have nuclear functions because its orthologues are known to localize to nuclei in several biological contexts. However, it is unclear whether DDX6 is generally present in human cell nuclei, and the molecular mechanism underlying DDX6 subcellular distribution remains elusive. In this study, we showed that DDX6 is commonly present in the nuclei of human-derived cells. Our structural and molecular analyses deviate from the current model that the shuttling of DDX6 is directly mediated by the canonical nuclear localization signal (NLS) and nuclear export signal (NES), which are recognized and transported by Importin-α/β and CRM1, respectively. Instead, we show that DDX6 can be transported by 4E-T in a piggyback manner. Furthermore, we provide evidence for a novel nuclear targeting mechanism in which DDX6 enters the newly formed nuclei by "hitch-hiking" on mitotic chromosomes with its C-terminal domain during M phase progression. Together, our results indicate that the nucleocytoplasmic localization of DDX6 is regulated by these dual mechanisms.
Collapse
Affiliation(s)
- Jo-Hsi Huang
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Yen-Chun Chen
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ling Chang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Chia-Ying Chu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Center for Systems Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Intron Lariat RNA Inhibits MicroRNA Biogenesis by Sequestering the Dicing Complex in Arabidopsis. PLoS Genet 2016; 12:e1006422. [PMID: 27870853 PMCID: PMC5147768 DOI: 10.1371/journal.pgen.1006422] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 10/12/2016] [Indexed: 11/19/2022] Open
Abstract
Lariat RNAs formed as by-products of splicing are quickly degraded by the RNA debranching enzyme 1 (DBR1), leading to their turnover. Null dbr1 mutants in both animals and plants are embryo lethal, but the mechanism underlying the lethality remains unclear. Here we characterized a weak mutant allele of DBR1 in Arabidopsis, dbr1-2, and showed that a global increase in lariat RNAs was unexpectedly accompanied by a genome-wide reduction in miRNA accumulation. The dbr1-2 mutation had no effects on expression of miRNA biogenesis genes or primary miRNAs (pri-miRNAs), but the association of pri-miRNAs with the DCL1/HYL1 dicing complex was impaired. Lariat RNAs were associated with the DCL1/HYL1 dicing complex in vivo and competitively inhibited the binding of HYL1 with pri-miRNA. Consistent with the impacts of lariat RNAs on miRNA biogenesis, over-expression of lariat RNAs reduced miRNA accumulation. Lariat RNAs localized in nuclear bodies, and partially co-localize with HYL1, and both DCL1 and HYL1 were mis-localized in dbr1-2. Together with our findings that nearly four hundred lariat RNAs exist in wild type plants and that these lariat RNAs also associate with the DCL1/HYL1 dicing complex in vivo, we thus propose that lariat RNAs, as decoys, inhibit miRNA processing, suggesting a hitherto unknown layer of regulation in miRNA biogenesis. It is known that lariat RNAs formed during pre-mRNA splicing are debranched by DBR1 (RNA debranching enzyme 1). Loss of function of DBR1 causes embryo lethality in both animals and plants. In animals, some debranched lariat RNAs could be further processed into mirtron miRNAs, a class of nonconventional miRNAs that bypass the microprocessor for their biogenesis. However, no mirtron has been functionally validated in plants, and how the accumulation of lariat RNA in dbr1 results in embryo lethality remains unclear. Here, we show that DBR1 is necessary for the regulation of genome-wide miRNA biogenesis in plants. By investigating the correlation between lariat RNA accumulation and miRNA processing, we showed that the DBR1-mediated lariat RNA debranching process provides a safeguard role for the binding of the dicing complex with miRNA precursors. As both the DBR1-mediated lariat RNA debranching process and miRNA biogenesis are common features in higher eukaryotes, the finding that lariat RNAs sequester the dicing complex in plants may have a broad implications for the non-coding RNA field.
Collapse
|
12
|
Kock KH, Kong KW, Hoon S, Seow Y. Functional VEGFA knockdown with artificial 3'-tailed mirtrons defined by 5' splice site and branch point. Nucleic Acids Res 2015; 43:6568-78. [PMID: 26089392 PMCID: PMC4513878 DOI: 10.1093/nar/gkv617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 11/28/2022] Open
Abstract
Mirtrons are introns that form pre-miRNA hairpins after splicing to produce RNA interference (RNAi) effectors distinct from Drosha-dependent intronic miRNAs, and will be especially useful for co-delivery of coding genes and RNAi. A specific family of mirtrons – 3′-tailed mirtrons – has hairpins precisely defined on the 5′ end by the 5′ splice site and 3′ end by the branch point. Here, we present design principles for artificial 3′-tailed mirtrons and demonstrate, for the first time, efficient gene knockdown with tailed mirtrons within eGFP coding region. These artificial tailed mirtrons, unlike canonical mirtrons, have very few sequence design restrictions. Tailed mirtrons targeted against VEGFA mRNA, the misregulation of which is causative of several disorders including cancer, achieved significant levels of gene knockdown. Tailed mirtron-mediated knockdown was further shown to be splicing-dependent, and at least as effective as equivalent artificial intronic miRNAs, with the added advantage of very defined cleavage sites for generation of mature miRNA guide strands. Further development and exploitation of this unique mirtron biogenesis pathway for therapeutic RNAi coupled into protein-expressing genes can potentially enable the development of precisely controlled combinatorial gene therapy.
Collapse
Affiliation(s)
- Kian Hong Kock
- Molecular Engineering Laboratory, Biomedical Medical Sciences Institutes, 61 Biopolis Drive Proteos #03-13 Singapore 138673
| | - Kiat Whye Kong
- Molecular Engineering Laboratory, Biomedical Medical Sciences Institutes, 61 Biopolis Drive Proteos #03-13 Singapore 138673
| | - Shawn Hoon
- Molecular Engineering Laboratory, Biomedical Medical Sciences Institutes, 61 Biopolis Drive Proteos #03-13 Singapore 138673 School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Medical Sciences Institutes, 61 Biopolis Drive Proteos #03-13 Singapore 138673
| |
Collapse
|
13
|
Masaki S, Yoshimoto R, Kaida D, Hata A, Satoh T, Ohno M, Kataoka N. Identification of the specific interactors of the human lariat RNA debranching enzyme 1 protein. Int J Mol Sci 2015; 16:3705-21. [PMID: 25671812 PMCID: PMC4346921 DOI: 10.3390/ijms16023705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/04/2015] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, pre-mRNA splicing is an essential step for gene expression. We have been analyzing post-splicing intron turnover steps in higher eukaryotes. Here, we report protein interaction between human Debranching enzyme 1 (hDbr1) and several factors found in the Intron Large (IL) complex, which is an intermediate complex of the intron degradation pathway. The hDbr1 protein specifically interacts with xeroderma pigmentosum, complementeation group A (XPA)-binding protein 2 (Xab2). We also attempted to identify specific interactors of hDbr1. Co-immunoprecipitation experiments followed by mass spectrometry analysis identified a novel protein as one of the specific interactors of hDbr1. This protein is well conserved among many species and shows the highest similarity to yeast Drn1, so it is designated as human Dbr1 associated ribonuclease 1 (hDrn1). hDrn1 directly interacts with hDbr1 through protein–protein interaction. Furthermore, hDrn1 shuttles between the nucleus and the cytoplasm, as hDbr1 protein does. These findings suggest that hDrn1 has roles in both the nucleus and the cytoplasm, which are highly likely to involve hDbr1.
Collapse
Affiliation(s)
- So Masaki
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Rei Yoshimoto
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Daisuke Kaida
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Asuka Hata
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takayuki Satoh
- Frontier Research Core for Life Sciences, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 930-0194, Japan.
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Naoyuki Kataoka
- Medical Innovation Center, Laboratory for Malignancy Control Research, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
- Medical Top Track Program, Medical Research Institute, Tokyo Dental and Medical University, Tokyo 113-8510, Japan.
| |
Collapse
|
14
|
Garrey SM, Katolik A, Prekeris M, Li X, York K, Bernards S, Fields S, Zhao R, Damha MJ, Hesselberth JR. A homolog of lariat-debranching enzyme modulates turnover of branched RNA. RNA (NEW YORK, N.Y.) 2014; 20:1337-48. [PMID: 24919400 PMCID: PMC4105757 DOI: 10.1261/rna.044602.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Turnover of the branched RNA intermediates and products of pre-mRNA splicing is mediated by the lariat-debranching enzyme Dbr1. We characterized a homolog of Dbr1 from Saccharomyces cerevisiae, Drn1/Ygr093w, that has a pseudo-metallophosphodiesterase domain with primary sequence homology to Dbr1 but lacks essential active site residues found in Dbr1. Whereas loss of Dbr1 results in lariat-introns failing broadly to turnover, loss of Drn1 causes low levels of lariat-intron accumulation. Conserved residues in the Drn1 C-terminal CwfJ domains, which are not present in Dbr1, are required for efficient intron turnover. Drn1 interacts with Dbr1, components of the Nineteen Complex, U2 snRNA, branched intermediates, and products of splicing. Drn1 enhances debranching catalyzed by Dbr1 in vitro, but does so without significantly improving the affinity of Dbr1 for branched RNA. Splicing carried out in in vitro extracts in the absence of Drn1 results in an accumulation of branched splicing intermediates and products released from the spliceosome, likely due to less active debranching, as well as the promiscuous release of cleaved 5'-exon. Drn1 enhances Dbr1-mediated turnover of lariat-intermediates and lariat-intron products, indicating that branched RNA turnover is regulated at multiple steps during splicing.
Collapse
Affiliation(s)
- Stephen M Garrey
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Mantas Prekeris
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Kerri York
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Sarah Bernards
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
15
|
Yoshimoto R, Okawa K, Yoshida M, Ohno M, Kataoka N. Identification of a novel component C2ORF3 in the lariat-intron complex: lack of C2ORF3 interferes with pre-mRNA splicing via intron turnover pathway. Genes Cells 2013; 19:78-87. [DOI: 10.1111/gtc.12114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/14/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Rei Yoshimoto
- Chemical Genetics Laboratory; RIKEN Advanced Science Institute; Wako Saitama 351-0198 Japan
- Institute for Virus Research; Kyoto University; Sakyo-ku Kyoto 606-8507 Japan
| | - Katsuya Okawa
- Drug Research Laboratories; Kyowa Hakko Kirin Co., Ltd; Nagaizumi Shizuoka 411-8731 Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory; RIKEN Advanced Science Institute; Wako Saitama 351-0198 Japan
| | - Mutsuhito Ohno
- Institute for Virus Research; Kyoto University; Sakyo-ku Kyoto 606-8507 Japan
| | - Naoyuki Kataoka
- Laboratory for Malignancy Control Research; Medical Innovation Center; Kyoto University Graduate School of Medicine; Sakyo-ku Kyoto 606-8507 Japan
| |
Collapse
|