1
|
Sotoyama H, Namba H, Tohmi M, Nawa H. Schizophrenia Animal Modeling with Epidermal Growth Factor and Its Homologs: Their Connections to the Inflammatory Pathway and the Dopamine System. Biomolecules 2023; 13:biom13020372. [PMID: 36830741 PMCID: PMC9953688 DOI: 10.3390/biom13020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Epidermal growth factor (EGF) and its homologs, such as neuregulins, bind to ErbB (Her) receptor kinases and regulate glial differentiation and dopaminergic/GABAergic maturation in the brain and are therefore implicated in schizophrenia neuropathology involving these cell abnormalities. In this review, we summarize the biological activities of the EGF family and its neuropathologic association with schizophrenia, mainly overviewing our previous model studies and the related articles. Transgenic mice as well as the rat/monkey models established by perinatal challenges of EGF or its homologs consistently exhibit various behavioral endophenotypes relevant to schizophrenia. In particular, post-pubertal elevation in baseline dopaminergic activity may illustrate the abnormal behaviors relevant to positive and negative symptoms as well as to the timing of this behavioral onset. With the given molecular interaction and transactivation of ErbB receptor kinases with Toll-like receptors (TLRs), EGF/ErbB signals are recruited by viral infection and inflammatory diseases such as COVID-19-mediated pneumonia and poxvirus-mediated fibroma and implicated in the immune-inflammatory hypothesis of schizophrenia. Finally, we also discuss the interaction of clozapine with ErbB receptor kinases as well as new antipsychotic development targeting these receptors.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiology, School of Medicine, Niigata University, Niigata 951-8122, Japan
- Correspondence: (H.N.); (H.S.)
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Manavu Tohmi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama 649-8156, Japan
- Correspondence: (H.N.); (H.S.)
| |
Collapse
|
2
|
Khaleghi S, Rahbarizadeh F, Nikkhoi SK. Anti-HER2 VHH Targeted Fluorescent Liposome as Bimodal Nanoparticle for Drug Delivery and Optical Imaging. Recent Pat Anticancer Drug Discov 2021; 16:552-562. [PMID: 34365930 DOI: 10.2174/1574892816666210806150929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to formulate fluorescent-labeled targeted immunoliposome to visualize the delivery and distribution of drugs in real-time. METHODS In this study, fluorescent-labeled liposomes were decorated with anti-HER2 VHH or Herceptin to improve the monitoring of intracellular drug delivery and tumor cell tracking with minimal side effects. The conjugation efficiency of antibodies was analyzed by SDS-PAGE silver staining. In addition, the physicochemical characterization of liposomes was performed using DLS and TEM. Finally, confocal microscopy visualized nanoparticles in the target cells. RESULTS Quantitative and qualitative methods characterized the intracellular uptake of 110±10 nm particles with near 70% conjugation efficiency. In addition, live-cell trafficking during hours of incubation was monitored by wide-field microscopy imaging. The results show that the fluorescent-labeled nanoparticles can specifically bind to HER2-positive breast cancer with minimal off-target delivery. CONCLUSION This kind of nanoparticles can have several applications in personalized medicine, especially drug delivery and real-time visualization of cancer therapy. Moreover, this method also can be applied in the targeted delivery of contrast agents in imaging and thermotherapy.
Collapse
Affiliation(s)
- Sepideh Khaleghi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran. Iran
| | | |
Collapse
|
3
|
Kim D, Lee S, Na K. Immune Stimulating Antibody-Photosensitizer Conjugates via Fc-Mediated Dendritic Cell Phagocytosis and Phototriggered Immunogenic Cell Death for KRAS-Mutated Pancreatic Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006650. [PMID: 33590726 DOI: 10.1002/smll.202006650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Although cetuximab (CTX) is a chimeric epidermal growth factor receptor (EGFR) antibody, the antitumor efficacy of CTX has a negligible effect in patients with Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) mutated pancreatic adenocarcinoma. Given that all extant treatments are ineffective due to the undruggable characteristics of KRAS-mutated cancer, alternative strategies have been investigated. In this work, CTX-conjugated maleimide-polyethylene glycol-chlorin e6 (CMPC) is designed to strengthen its antitumor efficacy. With strong affinity for EGFR overexpressing Aspc-1 cells, CMPC with laser exerts the greatest cytotoxicity (90%) and induction of immunogenic cell death. Through a combination of fragment crystallizable region-mediated antigen uptake by CTX and danger-associated molecular patterns released by photodynamic therapy (PDT), phagocytosis and maturation of dendritic cells treated with CMPC plus laser show dramatic increases. In vivo biodistribution and antitumor effect also demonstrate that CMPC has significant tumor selectivity and tumor ablation efficacy upon laser irradiation. Furthermore, a large number of CD4+ , CD8+ T cells and mature DCs and natural killer cells are infiltrated in CMPC with laser-treated tumor tissues and tumor-draining lymph nodes, revealing both innate and adaptive cellular immune stimulation. This synergistic effect with CMPC and laser treatment provides an effective approach for pancreatic cancer immunotherapy attributed to both CTX and PDT.
Collapse
Affiliation(s)
- Dahye Kim
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| | - Sanghee Lee
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| | - Kun Na
- Department of Biotechnology, Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi, 14662, Republic of Korea
| |
Collapse
|
4
|
Clozapine-dependent inhibition of EGF/neuregulin receptor (ErbB) kinases. Transl Psychiatry 2019; 9:181. [PMID: 31371697 PMCID: PMC6675791 DOI: 10.1038/s41398-019-0519-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/01/2019] [Indexed: 12/20/2022] Open
Abstract
Clozapine is an antipsychotic agent prescribed to psychotic patients exhibiting tolerance and/or resistance to the conventional antipsychotic medications that mainly drive monoamine antagonism. As the pharmacological fundamentals of its unique antipsychotic profile have been unrevealed, here, we attempted to obtain hints at this question. Here, we found that clozapine directly acts on ErbB kinases to downregulate epidermal growth factor (EGF)/neuregulin signaling. In cultured cell lines and cortical neurons, EGF-triggered ErbB1 phosphorylation was diminished by 30 μM clozapine, but not haloperidol, risperidone, or olanzapine. The neuregulin-1-triggered ErbB4 phosphorylation was attenuated by 10 μM clozapine and 30 μM haloperidol. We assumed that clozapine may directly interact with the ErbB tyrosine kinases and affect their enzyme activity. To test this assumption, we performed in vitro kinase assays using recombinant truncated ErbB kinases. Clozapine (3-30 μM) significantly decreased the enzyme activity of the truncated ErbB1, B2, and B4 kinases. Acute in vivo administration of clozapine (20 mg/kg) to adult rats significantly suppressed the basal phosphorylation levels of ErbB4 in the brain, although we failed to detect effects on basal ErbB1 phosphorylation. Altogether with the previous findings that quinazoline inhibitors for ErbB kinases harbor antipsychotic potential in animal models for schizophrenia, our present observations suggest the possibility that the micromolar concentrations of clozapine can attenuate the activity of ErbB receptor kinases, which might illustrate a part of its unique antipsychotic psychopharmacology.
Collapse
|
5
|
Mieszkowska M, Piasecka D, Potemski P, Debska-Szmich S, Rychlowski M, Kordek R, Sadej R, Romanska HM. Tetraspanin CD151 impairs heterodimerization of ErbB2/ErbB3 in breast cancer cells. Transl Res 2019; 207:44-55. [PMID: 30639369 DOI: 10.1016/j.trsl.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 01/07/2023]
Abstract
CD151/Tspan24 (SFS-1, PETA3) is one of the best characterized members of the tetraspanin family, whose involvement in breast cancer (BCa) progression was demonstrated both in vitro and in vivo. We have recently reported that in ErbB2-overexpressing BCa cells grown in 3D laminin-rich extracellular matrix, CD151 regulated basal phosphorylation and homodimerization of ErbB2 and sensitized the cells to Herceptin (trastuzumab). Following from these data, we have here analyzed an involvement of CD151 in regulation of ErbB2/ErbB3 heterodimerization and its impact on cell response to Herceptin. CD151 was found to: (1) impair ErbB2/ErbB3 heterodimerization, (2) inhibit heregulin-dependent cell growth in 3D and signaling, and (3) counteract the protective effect of heregulin on Herceptin-mediated growth inhibition. Analysis of tissue samples demonstrated for the first time clinical significance of CD151 in patients with ErbB2-overexpressing BCa undergone trastuzumab-based therapy. Consistent with in vitro results, CD151 impact on disease outcome was ErbB3-dependent. In patients with ErbB3-negative tumors, CD151 significantly improved both overall survival (OS) (hazard ratio [HR] = 0.19, P = 0.034) and progression-free survival (PFS) (HR = 0.36, P = 0.043), while in ErbB3-positive cases it had no significant effect on patient survival (OS: HR = 3.33, P = 0.283; PFS: HR = 2.40, P = 0.208). These results support previous findings and show that CD151 acts as an important component of ErbB2 signaling axis in BCa cells, affecting their sensitivity to ErbB2-targeting therapy.
Collapse
Affiliation(s)
- Magdalena Mieszkowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz and Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Sylwia Debska-Szmich
- Department of Chemotherapy, Medical University of Lodz and Copernicus Memorial Hospital in Lodz, Lodz, Poland
| | - Michal Rychlowski
- Department of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Hanna M Romanska
- Department of Pathology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
6
|
β-Heregulin impairs EGF induced PLC-γ1 signalling in human breast cancer cells. Cell Signal 2018; 52:23-34. [PMID: 30165102 DOI: 10.1016/j.cellsig.2018.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 11/20/2022]
Abstract
The interplay of ErbB receptor homo- and heterodimers plays a crucial role in the pathology of breast cancer since activated signal transduction cascades coordinate proliferation, survival and migration of cells. EGF and β-Heregulin are well characterised ligands known to induce ErbB homo- and heterodimerisation, which have been associated with disease progression. In the present study, we investigated the impact of both factors on the migration of MDA-NEO and MDA-HER2 human breast cancer cells. MDA-NEO cells are positive for EGFR and HER3, while MDA-HER2 cells express EGFR, HER2 and HER3. Cell migration analysis revealed that β-Heregulin potently impaired EGF induced migration in both cell lines. Western blot studies showed that both ErbB receptor and PLC-γ1 tyrosine phosphorylation levels were diminished in EGF and β-Heregulin co-treated MDA-NEO and MDA-HER2 cells, which was further correlated to a significantly impaired calcium influx. Our data indicate that EGF and HRG may interfere with each other for receptor binding and dimerisation, which ultimately has an impact on signalling outcome.
Collapse
|
7
|
PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A 2016; 113:E282-90. [PMID: 26729871 DOI: 10.1073/pnas.1516138113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the lactating mammary gland, the plasma membrane calcium ATPase2 (PMCA2) transports milk calcium. Its expression is activated in breast cancers, where high tumor levels predict increased mortality. We find that PMCA2 expression correlates with HER2 levels in breast cancers and that PMCA2 interacts with HER2 in specific actin-rich membrane domains. Knocking down PMCA2 increases intracellular calcium, disrupts interactions between HER2 and HSP-90, inhibits HER2 signaling, and results in internalization and degradation of HER2. Manipulating PMCA2 levels regulates the growth of breast cancer cells, and knocking out PMCA2 inhibits the formation of tumors in mouse mammary tumor virus (MMTV)-Neu mice. These data reveal previously unappreciated molecular interactions regulating HER2 localization, membrane retention, and signaling, as well as the ability of HER2 to generate breast tumors, suggesting that interactions between PMCA2 and HER2 may represent therapeutic targets for breast cancer.
Collapse
|