1
|
Trus M, Atlas D. Non-ionotropic voltage-gated calcium channel signaling. Channels (Austin) 2024; 18:2341077. [PMID: 38601983 PMCID: PMC11017947 DOI: 10.1080/19336950.2024.2341077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage-gated calcium channels (VGCCs) are the major conduits for calcium ions (Ca2+) within excitable cells. Recent studies have highlighted the non-ionotropic functionality of VGCCs, revealing their capacity to activate intracellular pathways independently of ion flow. This non-ionotropic signaling mode plays a pivotal role in excitation-coupling processes, including gene transcription through excitation-transcription (ET), synaptic transmission via excitation-secretion (ES), and cardiac contraction through excitation-contraction (EC). However, it is noteworthy that these excitation-coupling processes require extracellular calcium (Ca2+) and Ca2+ occupancy of the channel ion pore. Analogous to the "non-canonical" characterization of the non-ionotropic signaling exhibited by the N-methyl-D-aspartate receptor (NMDA), which requires extracellular Ca2+ without the influx of ions, VGCC activation requires depolarization-triggered conformational change(s) concomitant with Ca2+ binding to the open channel. Here, we discuss the contributions of VGCCs to ES, ET, and EC coupling as Ca2+ binding macromolecules that transduces external stimuli to intracellular input prior to elevating intracellular Ca2+. We emphasize the recognition of calcium ion occupancy within the open ion-pore and its contribution to the excitation coupling processes that precede the influx of calcium. The non-ionotropic activation of VGCCs, triggered by the upstroke of an action potential, provides a conceptual framework to elucidate the mechanistic aspects underlying the microseconds nature of synaptic transmission, cardiac contractility, and the rapid induction of first-wave genes.
Collapse
Affiliation(s)
- Michael Trus
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daphne Atlas
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Szabó Z, Balogh M, Domonkos Á, Csányi M, Kaló P, Kiss GB. The bs5 allele of the susceptibility gene Bs5 of pepper (Capsicum annuum L.) encoding a natural deletion variant of a CYSTM protein conditions resistance to bacterial spot disease caused by Xanthomonas species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:64. [PMID: 36943531 PMCID: PMC10030403 DOI: 10.1007/s00122-023-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The bs5 resistance gene against bacterial spot was identified by map-based cloning. The recessive bs5 gene of pepper (Capsicum annuum L.) conditions a non-hypersensitive resistance trait, characterized by a slightly swollen, pale green, photosynthetically active leaf tissue, following Xanthomonas euvesicatoria infection. The isolation of the bs5 gene by map-based cloning revealed that the bs5 protein was shorter by 2 amino acids as compared to the wild type Bs5 protein. The natural 2 amino acid deletion occurred in the cysteine-rich transmembrane domain of the tail-anchored (TA) protein, Ca_CYSTM1. The protein products of the wild type Bs5 and mutant bs5 genes were shown to be located in the cell membrane, indicating an unknown function in this membrane compartment. Successful infection of the Bs5 pepper lines was abolished by the 6 bp deletion in the TM encoding domain of the Ca_CYSTM1 gene in bs5 homozygotes, suggesting, that the resulting resistance might be explained by the lack of entry of the Xanthomonas specific effector molecules into the plant cells.
Collapse
Affiliation(s)
- Zoltán Szabó
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary.
| | - Márta Balogh
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Márta Csányi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - György B Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- AMBIS Biotechnology Research and Development Ltd., Budapest, Hungary
| |
Collapse
|
3
|
Bukharaeva EA, Skorinkin AI, Samigullin DV, Petrov AM. Presynaptic Acetylcholine Receptors Modulate the Time Course of Action Potential-Evoked Acetylcholine Quanta Secretion at Neuromuscular Junctions. Biomedicines 2022; 10:biomedicines10081771. [PMID: 35892671 PMCID: PMC9332499 DOI: 10.3390/biomedicines10081771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
For effective transmission of excitation in neuromuscular junctions, the postsynaptic response amplitude must exceed a critical level of depolarization to trigger action potential spreading along the muscle-fiber membrane. At the presynaptic level, the end-plate potential amplitude depends not only on the acetylcholine quanta number released from the nerve terminals in response to the nerve impulse but also on a degree of synchronicity of quanta releases. The time course of stimulus-phasic synchronous quanta secretion is modulated by many extra- and intracellular factors. One of the pathways to regulate the neurosecretion kinetics of acetylcholine quanta is an activation of presynaptic autoreceptors. This review discusses the contribution of acetylcholine presynaptic receptors to the control of the kinetics of evoked acetylcholine release from nerve terminals at the neuromuscular junctions. The timing characteristics of neurotransmitter release is nowadays considered an essential factor determining the plasticity and efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Ellya A. Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Correspondence:
| | - Andrey I. Skorinkin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
| | - Dmitry V. Samigullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University named after A.N. Tupolev, 420111 Kazan, Russia
| | - Alexey M. Petrov
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| |
Collapse
|
4
|
Atlas D. Revisiting the molecular basis of synaptic transmission. Prog Neurobiol 2022; 216:102312. [PMID: 35760141 DOI: 10.1016/j.pneurobio.2022.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Measurements of the time elapsed during synaptic transmission has shown that synaptic vesicle (SV) fusion lags behind Ca2+-influx by approximately 60 microseconds (µsec). The conventional model cannot explain this extreme rapidity of the release event. Synaptic transmission occurs at the active zone (AZ), which comprises of two pools of SV, non-releasable "tethered" vesicles, and a readily-releasable pool of channel-associated Ca2+-primed vesicles, "RRP". A recent TIRF study at cerebellar-mossy fiber-terminal, showed that subsequent to an action potential, newly "tethered" vesicles, became fusion-competent in a Ca2+-dependent manner, 300-400 milliseconds after tethering, but were not fused. This time resolution may correspond to priming of tethered vesicles through Ca2+-binding to Syt1/Munc13-1/complexin. It confirms that Ca2+-priming and Ca2+-influx-independent fusion, are two distinct events. Notably, we have established that Ca2+ channel signals evoked-release in an ion flux-independent manner, demonstrated by Ca2+-impermeable channel, or a Ca2+ channel in which Ca2+ is replaced by impermeable La3+. Thus, conformational changes in a channel coupled to RRP appear to directly activate the release machinery and account for a µsec Ca2+-influx-independent vesicle fusion. Rapid vesicle fusion driven by non-ionotropic channel signaling strengthens a conformational-coupling mechanism of synaptic transmission, and contributes to better understanding of neuronal communication vital for brain function.
Collapse
Affiliation(s)
- Daphne Atlas
- Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
| |
Collapse
|
5
|
Vardar G, Salazar-Lázaro A, Zobel S, Trimbuch T, Rosenmund C. Syntaxin-1A modulates vesicle fusion in mammalian neurons via juxtamembrane domain dependent palmitoylation of its transmembrane domain. eLife 2022; 11:78182. [PMID: 35638903 PMCID: PMC9183232 DOI: 10.7554/elife.78182] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A’s JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A’s JMD; and (3) palmitoylation deficiency mutations in STX1A’s TMD. We found that both JMD elongations and charge reversal mutations have position-dependent differential effects on Ca2+-evoked and spontaneous neurotransmitter release. Importantly, we show that STX1A’s JMD regulates the palmitoylation of STX1A’s TMD and loss of STX1A palmitoylation either through charge reversal mutation K260E or by loss of TMD cysteines inhibits spontaneous vesicle fusion. Interestingly, the retinal ribbon specific STX3B has a glutamate in the position corresponding to the K260E mutation in STX1A and mutating it with E259K acts as a molecular on-switch. Furthermore, palmitoylation of post-synaptic STX3A can be induced by the exchange of its JMD with STX1A’s JMD together with the incorporation of two cysteines into its TMD. Forced palmitoylation of STX3A dramatically enhances spontaneous vesicle fusion suggesting that STX1A regulates spontaneous release through two distinct mechanisms: one through the C-terminal half of its SNARE domain and the other through the palmitoylation of its TMD.
Collapse
Affiliation(s)
- Gülçin Vardar
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andrea Salazar-Lázaro
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sina Zobel
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thorsten Trimbuch
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Rosenmund
- Department of Neurophysiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Atlas D. Emerging therapeutic opportunities of novel thiol-amides, NAC-amide (AD4/NACA) and thioredoxin mimetics (TXM-Peptides) for neurodegenerative-related disorders. Free Radic Biol Med 2021; 176:120-141. [PMID: 34481041 DOI: 10.1016/j.freeradbiomed.2021.08.239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022]
Abstract
Understanding neurodegenerative diseases have challenged scientists for decades. It has become apparent that a decrease in life span is often correlated with the development of neurodegenerative disorders. Oxidative stress and the subsequent inflammatory damages appear to contribute to the different molecular and biochemical mechanisms associated with neurodegeneration. In this review, I examine the protective properties of novel amino acid based compounds, comprising the AD series (AD1-AD7) in particular N-acetylcysteine amide, AD4, also called NACA, and the series of thioredoxin mimetic (TXM) peptides, TXM-CB3-TXM-CB16. Designed to cross the blood-brain-barrier (BBB) and permeate the cell membrane, these antioxidant/anti-inflammatory compounds may enable effective treatment of neurodegenerative related disorders. The review addresses the molecular mechanism of cellular protection exhibited by these new reagents, focusing on the reversal of oxidative stress, mitochondrial stress, inflammatory damages, and prevention of premature cell death. In addition, it will cover the outlook of the clinical prospects of AD4/NACA and the thioredoxin-mimetic peptides, which are currently in development.
Collapse
Affiliation(s)
- Daphne Atlas
- Professor of Neurochemistry, Dept. of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
7
|
Vardar G, Salazar-Lázaro A, Brockmann M, Weber-Boyvat M, Zobel S, Kumbol VWA, Trimbuch T, Rosenmund C. Reexamination of N-terminal domains of syntaxin-1 in vesicle fusion from central murine synapses. eLife 2021; 10:69498. [PMID: 34427183 PMCID: PMC8416022 DOI: 10.7554/elife.69498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/23/2021] [Indexed: 01/11/2023] Open
Abstract
Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1’s N-peptide and through STX1’s closed conformation driven by its Habc- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial. Here we characterized the roles of STX1’s N-peptide, Habc-domain, and open conformation with and without N-peptide deletion using our STX1-null mouse model system and exogenous reintroduction of STX1A mutants. We show, on the contrary to the general view, that the Habc-domain is absolutely required and N-peptide is dispensable for synaptic transmission. However, STX1A’s N-peptide plays a regulatory role, particularly in the Ca2+-sensitivity and the short-term plasticity of vesicular release, whereas STX1’s open conformation governs the vesicle fusogenicity. Strikingly, we also show neurotransmitter release still proceeds when the two interaction modes between STX1A and Munc18-1 are presumably intervened, necessitating a refinement of the conceptualization of STX1A–Munc18-1 interaction.
Collapse
Affiliation(s)
- Gülçin Vardar
- Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Andrea Salazar-Lázaro
- Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Marisa Brockmann
- Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Marion Weber-Boyvat
- Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Sina Zobel
- Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | | | - Thorsten Trimbuch
- Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Christian Rosenmund
- Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Saro G, Lia AS, Thapliyal S, Marques F, Busch KE, Glauser DA. Specific Ion Channels Control Sensory Gain, Sensitivity, and Kinetics in a Tonic Thermonociceptor. Cell Rep 2020; 30:397-408.e4. [DOI: 10.1016/j.celrep.2019.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/17/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
|
9
|
Servili E, Trus M, Atlas D. Ion occupancy of the channel pore is critical for triggering excitation-transcription (ET) coupling. Cell Calcium 2019; 84:102102. [DOI: 10.1016/j.ceca.2019.102102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 11/28/2022]
|
10
|
Serra SA, Gené GG, Elorza-Vidal X, Fernández-Fernández JM. Cross talk between β subunits, intracellular Ca 2+ signaling, and SNAREs in the modulation of Ca V 2.1 channel steady-state inactivation. Physiol Rep 2019; 6. [PMID: 29380539 PMCID: PMC5789719 DOI: 10.14814/phy2.13557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 01/05/2023] Open
Abstract
Modulation of CaV2.1 channel activity plays a key role in interneuronal communication and synaptic plasticity. SNAREs interact with a specific synprint site at the second intracellular loop (LII‐III) of the CaV2.1 pore‐forming α1A subunit to optimize neurotransmitter release from presynaptic terminals by allowing secretory vesicles docking near the Ca2+ entry pathway, and by modulating the voltage dependence of channel steady‐state inactivation. Ca2+ influx through CaV2.1 also promotes channel inactivation. This process seems to involve Ca2+‐calmodulin interaction with two adjacent sites in the α1A carboxyl tail (C‐tail) (the IQ‐like motif and the Calmodulin‐Binding Domain (CBD) site), and contributes to long‐term potentiation and spatial learning and memory. Besides, binding of regulatory β subunits to the α interaction domain (AID) at the first intracellular loop (LI‐II) of α1A determines the degree of channel inactivation by both voltage and Ca2+. Here, we explore the cross talk between β subunits, Ca2+, and syntaxin‐1A‐modulated CaV2.1 inactivation, highlighting the α1A domains involved in such process. β3‐containing CaV2.1 channels show syntaxin‐1A‐modulated but no Ca2+‐dependent steady‐state inactivation. Conversely, β2a‐containing CaV2.1 channels show Ca2+‐dependent but not syntaxin‐1A‐modulated steady‐state inactivation. A LI‐II deletion confers Ca2+‐dependent inactivation and prevents modulation by syntaxin‐1A in β3‐containing CaV2.1 channels. Mutation of the IQ‐like motif, unlike CBD deletion, abolishes Ca2+‐dependent inactivation and confers modulation by syntaxin‐1A in β2a‐containing CaV2.1 channels. Altogether, these results suggest that LI‐II structural modifications determine the regulation of CaV2.1 steady‐state inactivation either by Ca2+ or by SNAREs but not by both.
Collapse
Affiliation(s)
- Selma Angèlica Serra
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma G Gené
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Xabier Elorza-Vidal
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
11
|
β-Subunit of the voltage-gated Ca 2+ channel Cav1.2 drives signaling to the nucleus via H-Ras. Proc Natl Acad Sci U S A 2018; 115:E8624-E8633. [PMID: 30150369 DOI: 10.1073/pnas.1805380115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Depolarization-induced signaling to the nucleus by the L-type voltage-gated calcium channel Cav1.2 is widely assumed to proceed by elevating intracellular calcium. The apparent lack of quantitative correlation between Ca2+ influx and gene activation suggests an alternative activation pathway. Here, we demonstrate that membrane depolarization of HEK293 cells transfected with α11.2/β2b/α2δ subunits (Cav1.2) triggers c-Fos and MeCP2 activation via the Ras/ERK/CREB pathway. Nuclear signaling is lost either by absence of the intracellular β2 subunit or by transfecting the cells with the channel mutant α11.2W440A/β2b/α2δ, a mutation that disrupts the interaction between α11.2 and β2 subunits. Pulldown assays in neuronal SH-SY5Y cells and in vitro binding of recombinant H-Ras and β2 confirmed the importance of the intracellular β2 subunit for depolarization-induced gene activation. Using a Ca2+-impermeable mutant channel α11.2L745P/β2b/α2δ or disrupting Ca2+/calmodulin binding to the channel using the channel mutant α11.2I1624A/β2b/α2δ, we demonstrate that depolarization-induced c-Fos and MeCP2 activation does not depend on Ca2+ transport by the channel. Thus, in contrast to the paradigm that elevated intracellular Ca2+ drives nuclear signaling, we show that Cav1.2-triggered c-Fos or MeCP2 is dependent on extracellular Ca2+ and Ca2+ occupancy of the open channel pore, but is Ca2+-influx independent. An indispensable β-subunit interaction with H-Ras, which is triggered by conformational changes at α11.2 independently of Ca2+ flux, brings to light a master regulatory role of β2 in transcriptional activation via the ERK/CREB pathway. This mode of H-Ras activation could have broad implications for understanding the coupling of membrane depolarization to the rapid induction of gene transcription.
Collapse
|
12
|
The L-type Voltage-Gated Calcium Channel co-localizes with Syntaxin 1A in nano-clusters at the plasma membrane. Sci Rep 2017; 7:11350. [PMID: 28900128 PMCID: PMC5595989 DOI: 10.1038/s41598-017-10588-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
The secretory signal elicited by membrane depolarization traverses from the Ca2+-bound α11.2 pore-forming subunit of the L-type Ca2+-channel (Cav1.2) to syntaxin 1 A (Sx1A) via an intra-membrane signaling mechanism. Here, we report the use of two-color Photo-Activated-Localization-Microscopy (PALM) to determine the relation between Cav1.2 and Sx1A in single-molecule detail. We observed nanoscale co-clusters of PAmCherry-tagged Sx1A and Dronpa-tagged α11.2 at a ~1:1 ratio. PAmCherry-tagged Sx1AC145A, or PAmCherry-tagged Sx2, an inactive Cav1.2 modulator, in which Cys145 is a Ser residue, showed no co-clustering. These results are consistent with the crucial role of the single cytosolic Sx1ACys145 in clustering with Cav1.2. Cav1.2 and the functionally inactive transmembrane-domain double mutant Sx1AC271V/C272V engendered clusters with a ~2:1 ratio. A higher extent of co-clustering, which coincides with compromised depolarization-evoked transmitter-release, was observed also by oxidation of Sx1ACys271 and Cys272. Our super-resolution-imaging results set the stage for studying co-clustering of the channel with other exocytotic proteins at a single-molecule level.
Collapse
|
13
|
Hirano M, Takada Y, Wong CF, Yamaguchi K, Kotani H, Kurokawa T, Mori MX, Snutch TP, Ronjat M, De Waard M, Mori Y. C-terminal splice variants of P/Q-type Ca 2+ channel Ca V2.1 α 1 subunits are differentially regulated by Rab3-interacting molecule proteins. J Biol Chem 2017; 292:9365-9381. [PMID: 28377503 DOI: 10.1074/jbc.m117.778829] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/26/2017] [Indexed: 11/06/2022] Open
Abstract
Voltage-dependent Ca2+ channels (VDCCs) mediate neurotransmitter release controlled by presynaptic proteins such as the scaffolding proteins Rab3-interacting molecules (RIMs). RIMs confer sustained activity and anchoring of synaptic vesicles to the VDCCs. Multiple sites on the VDCC α1 and β subunits have been reported to mediate the RIMs-VDCC interaction, but their significance is unclear. Because alternative splicing of exons 44 and 47 in the P/Q-type VDCC α1 subunit CaV2.1 gene generates major variants of the CaV2.1 C-terminal region, known for associating with presynaptic proteins, we focused here on the protein regions encoded by these two exons. Co-immunoprecipitation experiments indicated that the C-terminal domain (CTD) encoded by CaV2.1 exons 40-47 interacts with the α-RIMs, RIM1α and RIM2α, and this interaction was abolished by alternative splicing that deletes the protein regions encoded by exons 44 and 47. Electrophysiological characterization of VDCC currents revealed that the suppressive effect of RIM2α on voltage-dependent inactivation (VDI) was stronger than that of RIM1α for the CaV2.1 variant containing the region encoded by exons 44 and 47. Importantly, in the CaV2.1 variant in which exons 44 and 47 were deleted, strong RIM2α-mediated VDI suppression was attenuated to a level comparable with that of RIM1α-mediated VDI suppression, which was unaffected by the exclusion of exons 44 and 47. Studies of deletion mutants of the exon 47 region identified 17 amino acid residues on the C-terminal side of a polyglutamine stretch as being essential for the potentiated VDI suppression characteristic of RIM2α. These results suggest that the interactions of the CaV2.1 CTD with RIMs enable CaV2.1 proteins to distinguish α-RIM isoforms in VDI suppression of P/Q-type VDCC currents.
Collapse
Affiliation(s)
- Mitsuru Hirano
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Yoshinori Takada
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Chee Fah Wong
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and.,the Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Kazuma Yamaguchi
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Hiroshi Kotani
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Tatsuki Kurokawa
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Masayuki X Mori
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and
| | - Terrance P Snutch
- the Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada, and
| | - Michel Ronjat
- the LabEx Ion Channels, Science and Therapeutics, INSERM UMR1087/CNRS UMR6291, Institut du Thorax, Université de Nantes, Nantes F-44000, France
| | - Michel De Waard
- the LabEx Ion Channels, Science and Therapeutics, INSERM UMR1087/CNRS UMR6291, Institut du Thorax, Université de Nantes, Nantes F-44000, France
| | - Yasuo Mori
- From the Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, and .,the Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
14
|
Zulliger R, Conley SM, Mwoyosvi ML, Stuck MW, Azadi S, Naash MI. SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS One 2015; 10:e0138508. [PMID: 26406599 PMCID: PMC4583372 DOI: 10.1371/journal.pone.0138508] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the photoreceptor protein peripherin-2 (also known as RDS) cause severe retinal degeneration. RDS and its homolog ROM-1 (rod outer segment protein 1) are synthesized in the inner segment and then trafficked into the outer segment where they function in tetramers and covalently linked larger complexes. Our goal is to identify binding partners of RDS and ROM-1 that may be involved in their biosynthetic pathway or in their function in the photoreceptor outer segment (OS). Here we utilize several methods including mass spectrometry after affinity purification, in vitro co-expression followed by pull-down, in vivo pull-down from mouse retinas, and proximity ligation assay to identify and confirm the SNARE proteins Syntaxin 3B and SNAP-25 as novel binding partners of RDS and ROM-1. We show that both covalently linked and non-covalently linked RDS complexes interact with Syntaxin 3B. RDS in the mouse is trafficked from the inner segment to the outer segment by both conventional (i.e., Golgi dependent) and unconventional secretory pathways, and RDS from both pathways interacts with Syntaxin3B. Syntaxin 3B and SNAP-25 are enriched in the inner segment (compared to the outer segment) suggesting that the interaction with RDS/ROM-1 occurs in the inner segment. Syntaxin 3B and SNAP-25 are involved in mediating fusion of vesicles carrying other outer segment proteins during outer segment targeting, so could be involved in the trafficking of RDS/ROM-1.
Collapse
Affiliation(s)
- Rahel Zulliger
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Maggie L. Mwoyosvi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Michael W. Stuck
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Seifollah Azadi
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
| | - Muna I. Naash
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States of America
- * E-mail:
| |
Collapse
|
15
|
Renigunta V, Fischer T, Zuzarte M, Kling S, Zou X, Siebert K, Limberg MM, Rinné S, Decher N, Schlichthörl G, Daut J. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1. Mol Biol Cell 2014; 25:1877-91. [PMID: 24743596 PMCID: PMC4055267 DOI: 10.1091/mbc.e13-10-0592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
SNARE proteins can have functions unrelated to membrane fusion. The unassembled form of the SNARE protein syntaxin-8 interacts with the K+ channel TASK-1; both proteins are internalized via clathrin-mediated endocytosis in a cooperative manner. This is a novel mechanism for the control of endocytosis by cargo proteins. The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Thomas Fischer
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Marylou Zuzarte
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Stefan Kling
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Xinle Zou
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Kai Siebert
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Maren M Limberg
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Günter Schlichthörl
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| | - Jürgen Daut
- Institute of Physiology and Pathophysiology, Marburg University, 35037 Marburg, Germany
| |
Collapse
|
16
|
Atlas D. Voltage-gated calcium channels function as Ca2+-activated signaling receptors. Trends Biochem Sci 2014; 39:45-52. [PMID: 24388968 DOI: 10.1016/j.tibs.2013.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
Voltage-gated calcium channels (VGCCs) are transmembrane cell surface proteins responsible for multifunctional signals. In response to voltage, VGCCs trigger synaptic transmission, drive muscle contraction, and regulate gene expression. Voltage perturbations open VGCCs enabling Ca(2+) binding to the low affinity Ca(2+) binding site of the channel pore. Subsequent to permeation, Ca(2+) targets selective proteins to activate diverse signaling pathways. It is becoming apparent that the Ca(2+)-bound channel triggers secretion in excitable cells and drives contraction in cardiomyocytes prior to Ca(2+) permeation. Here, I highlight recent data implicating receptor-like function of the Ca(2+)-bound channel in converting external Ca(2+) into an intracellular signal. The two sequential mechanistic perspectives of VGCC function are discussed in the context of the prevailing and long-standing current models of depolarization-evoked secretion and cardiac contraction.
Collapse
Affiliation(s)
- Daphne Atlas
- Department of Biological Chemistry, The Alexander Silverman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel.
| |
Collapse
|