1
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
2
|
Smaldone G, Rosa E, Gallo E, Diaferia C, Morelli G, Stornaiuolo M, Accardo A. Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines. Pharmaceutics 2023; 15:pharmaceutics15031026. [PMID: 36986886 PMCID: PMC10051563 DOI: 10.3390/pharmaceutics15031026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
INTRODUCTION Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the chemical features of the cargo, thus improving its loading and release. A full understanding of the intracellular mechanism involved in nanogel uptake by cancer cells and tissues would further contribute to the potential diagnostic and clinical applications of these nanocarriers, allowing the fine tuning of their selectivity, potency, and activity. The structural characterization of nanogels were assessed by Dynamic Light Scattering (DLS) and Nanoparticles Tracking Analysis (NTA) analysis. Cells viability of Fmoc-FF nanogels was evaluated by MTT assay on six breast cancer cell lines at different incubation times (24, 48, and 72 h) and peptide concentrations (in the range 6.25 × 10-4 ÷ 5·10-3 × wt%). The cell cycle and mechanisms involved in Fmoc-FF nanogels intracellular uptake were evaluated using flow cytometry and confocal analysis, respectively. Fmoc-FF nanogels, endowed with a diameter of ~130 nm and a zeta potential of ~-20.0/-25.0 mV, enter cancer cells via caveolae, mostly those responsible for albumin uptake. The specificity of the machinery used by Fmoc-FF nanogels confers a selectivity toward cancer cell lines overexpressing the protein caveolin1 and efficiently performing caveolae-mediated endocytosis.
Collapse
Affiliation(s)
| | - Elisabetta Rosa
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Enrico Gallo
- IRCCS Synlab SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Carlo Diaferia
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Giancarlo Morelli
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy and Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
3
|
Yeast-based directed-evolution for high-throughput structural stabilization of G protein-coupled receptors (GPCRs). Sci Rep 2022; 12:8657. [PMID: 35606532 PMCID: PMC9126886 DOI: 10.1038/s41598-022-12731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The immense potential of G protein-coupled receptors (GPCRs) as targets for drug discovery is not fully realized due to the enormous difficulties associated with structure elucidation of these profoundly unstable membrane proteins. The existing methods of GPCR stability-engineering are cumbersome and low-throughput; in addition, the scope of GPCRs that could benefit from these techniques is limited. Here, we present a yeast-based screening platform for a single-step isolation of GRCR variants stable in the presence of short-chain detergents, a feature essential for their successful crystallization using vapor diffusion method. The yeast detergent-resistant cell wall presents a unique opportunity for compartmentalization, to physically link the receptor's phenotype to its encoding DNA, and thus enable discovery of stable GPCR variants with unprecedent efficiency. The scope of mutations identified by the method reveals a surprising amenability of the GPCR scaffold to stabilization, and suggests an intriguing possibility of amending the stability properties of GPCR by varying the structural status of the C-terminus.
Collapse
|
4
|
D'Agostino M, Scerra G, Cannata Serio M, Caporaso MG, Bonatti S, Renna M. Unconventional secretion of α-Crystallin B requires the Autophagic pathway and is controlled by phosphorylation of its serine 59 residue. Sci Rep 2019; 9:16892. [PMID: 31729431 PMCID: PMC6858465 DOI: 10.1038/s41598-019-53226-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/14/2019] [Indexed: 01/26/2023] Open
Abstract
α-Crystallin B (CRYAB or HspB5) is a chaperone member of the small heat-shock protein family that prevents aggregation of many cytosolic client proteins by means of its ATP-independent holdase activity. Surprisingly, several reports show that CRYAB exerts a protective role also extracellularly, and it has been recently demonstrated that CRYAB is secreted from human retinal pigment epithelial cells by an unconventional secretion pathway that involves multi-vesicular bodies. Here we show that autophagy is crucial for this unconventional secretion pathway and that phosphorylation at serine 59 residue regulates CRYAB secretion by inhibiting its recruitment to the autophagosomes. In addition, we found that autophagosomes containing CRYAB are not able to fuse with lysosomes. Therefore, CRYAB is capable to highjack and divert autophagosomes toward the exocytic pathway, inhibiting their canonical route leading to the lysosomal compartment. Potential implications of these findings in the context of disease-associated mutant proteins turn-over are discussed.
Collapse
Affiliation(s)
- M D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| | - G Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Cannata Serio
- Laboratory of Epithelial Biology and Disease, Imagine Institute, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - M G Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - S Bonatti
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - M Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
5
|
Seemab S, Pervaiz N, Zehra R, Anwar S, Bao Y, Abbasi AA. Molecular evolutionary and structural analysis of familial exudative vitreoretinopathy associated FZD4 gene. BMC Evol Biol 2019; 19:72. [PMID: 30849938 PMCID: PMC6408821 DOI: 10.1186/s12862-019-1400-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frizzled family members belong to G-protein coupled receptors and encode proteins accountable for cell signal transduction, cell proliferation and cell death. Members of Frizzled receptor family are considered to have critical roles in causing various forms of cancer, cardiac hypertrophy, familial exudative vitreoretinopathy (FEVR) and schizophrenia. RESULTS This study investigates the evolutionary and structural aspects of Frizzled receptors, with particular focus on FEVR associated FZD4 gene. The phylogenetic tree topology suggests the diversification of Frizzled receptors at the root of metazoans history. Moreover, comparative structural data reveals that FEVR associated missense mutations in FZD4 effect the common protein region (amino acids 495-537) through a well-known phenomenon called epistasis. This critical protein region is present at the carboxyl-terminal domain and encompasses the K-T/S-XXX-W, a PDZ binding motif and S/T-X-V PDZ recognition motif. CONCLUSION Taken together these results demonstrate that during the course of evolution, FZD4 has acquired new functions or epistasis via complex patter of gene duplications, sequence divergence and conformational remodeling. In particular, amino acids 495-537 at the C-terminus region of FZD4 protein might be crucial in its normal function and/or pathophysiology. This critical region of FZD4 protein may offer opportunities for the development of novel therapeutics approaches for human retinal vascular disease.
Collapse
Affiliation(s)
- Suman Seemab
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Nashaiman Pervaiz
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Rabail Zehra
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Saneela Anwar
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| | - Yiming Bao
- BIG Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320 Pakistan
| |
Collapse
|
6
|
Thomas R, Kermode AR. Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective. Mol Genet Metab 2019; 126:83-97. [PMID: 30528228 DOI: 10.1016/j.ymgme.2018.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023]
Abstract
Small-molecule- enzyme enhancement therapeutics (EETs) have emerged as attractive agents for the treatment of lysosomal storage diseases (LSDs), a broad group of genetic diseases caused by mutations in genes encoding lysosomal enzymes, or proteins required for lysosomal function. The underlying enzyme deficiencies characterizing LSDs cause a block in the stepwise degradation of complex macromolecules (e.g. glycosaminoglycans, glycolipids and others), such that undegraded or partially degraded substrates progressively accumulate in lysosomal and non-lysosomal compartments, a process leading to multisystem pathology via primary and secondary mechanisms. Missense mutations underlie many of the LSDs; the resultant mutant variant enzyme hydrolase is often impaired in its folding and maturation making it subject to rapid disposal by endoplasmic reticulum (ER)-associated degradation (ERAD). Enzyme deficiency in the lysosome is the result, even though the mutant enzyme may retain significant catalytic functioning. Small molecule modulators - pharmacological chaperones (PCs), or proteostasis regulators (PRs) are being identified through library screens and computational tools, as they may offer a less costly approach than enzyme replacement therapy (ERT) for LSDs, and potentially treat neuronal forms of the diseases. PCs, capable of directly stabilizing the mutant protein, and PRs, which act on other cellular elements to enhance protein maturation, both allow a proportion of the synthesized variant protein to reach the lysosome and function. Proof-of-principle for PCs and PRs as therapeutic agents has been demonstrated for several LSDs, yet definitive data of their efficacy in disease models and/or in downstream clinical studies in many cases has yet to be achieved. Basic research to understand the cellular consequences of protein misfolding such as perturbed organellar crosstalk, redox status, and calcium balance is needed. Likewise, an elucidation of the early in cellulo pathogenic events underlying LSDs is vital and may lead to the discovery of new small molecule modulators and/or to other therapeutic approaches for driving proteostasis toward protein rescue.
Collapse
Affiliation(s)
- Ryan Thomas
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby B.C. V5A 1S6, Canada.
| |
Collapse
|
7
|
Li C, Clark LVT, Zhang R, Porebski BT, McCoey JM, Borg NA, Webb GI, Kass I, Buckle M, Song J, Woolfson A, Buckle AM. Structural Capacitance in Protein Evolution and Human Diseases. J Mol Biol 2018; 430:3200-3217. [PMID: 30111491 DOI: 10.1016/j.jmb.2018.06.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/18/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
Canonical mechanisms of protein evolution include the duplication and diversification of pre-existing folds through genetic alterations that include point mutations, insertions, deletions, and copy number amplifications, as well as post-translational modifications that modify processes such as folding efficiency and cellular localization. Following a survey of the human mutation database, we have identified an additional mechanism that we term "structural capacitance," which results in the de novo generation of microstructure in previously disordered regions. We suggest that the potential for structural capacitance confers select proteins with the capacity to evolve over rapid timescales, facilitating saltatory evolution as opposed to gradualistic canonical Darwinian mechanisms. Our results implicate the elements of protein microstructure generated by this distinct mechanism in the pathogenesis of a wide variety of human diseases. The benefits of rapidly furnishing the potential for evolutionary change conferred by structural capacitance are consequently counterbalanced by this accompanying risk. The phenomenon of structural capacitance has implications ranging from the ancestral diversification of protein folds to the engineering of synthetic proteins with enhanced evolvability.
Collapse
Affiliation(s)
- Chen Li
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Liah V T Clark
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rory Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Julia M McCoey
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Natalie A Borg
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Itamar Kass
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Amai Proteins, Prof. A. D. Bergman 2B, Suite 212, Rehovot 7670504, Israel
| | - Malcolm Buckle
- LBPA, ENS Cachan, CNRS, Université Paris-Saclay, F-94235 Cachan, France
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | | | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
8
|
Riccio G, Bottone S, La Regina G, Badolati N, Passacantilli S, Rossi GB, Accardo A, Dentice M, Silvestri R, Novellino E, Stornaiuolo M. A Negative Allosteric Modulator of WNT Receptor Frizzled 4 Switches into an Allosteric Agonist. Biochemistry 2018; 57:839-851. [DOI: 10.1021/acs.biochem.7b01087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gennaro Riccio
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sara Bottone
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giuseppe La Regina
- Istituto
Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Nadia Badolati
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Sara Passacantilli
- Istituto
Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Giovanni Battista Rossi
- Gastroenterology
and gastrointestinal endoscopy unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Antonella Accardo
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Monica Dentice
- Department
of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Romano Silvestri
- Istituto
Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie
del Farmaco, Sapienza University of Rome, Rome, Italy
| | - Ettore Novellino
- Department
of Pharmacy, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
9
|
Diaferia C, Sibillano T, Altamura D, Roviello V, Vitagliano L, Giannini C, Morelli G, Accardo A. Structural Characterization of PEGylated Hexaphenylalanine Nanostructures Exhibiting Green Photoluminescence Emission. Chemistry 2017; 23:14039-14048. [PMID: 28782843 DOI: 10.1002/chem.201703055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/31/2022]
Abstract
Peptides containing aromatic residues are known to exhibit spontaneous phenomena of supramolecular organization into ordered nanostructures (NSs). In this work we studied the structural behavior and optoelectronic properties of new biocompatible materials obtained by the self-assembly of a series of hexaphenylalanines (F6) modified at the N terminus by a PEG chain of different lengths. PEG12 -F6, PEG18 -F6, and PEG24 -F6 peptides were synthesized by coupling sequentially two, three, or four units of amino-carboxy-PEG6 blocks, each one containing six oxyethylene repetitions. Changes in the length and composition of the PEG chain were found to modulate the structural organization of the phenylalanine-based nanostructures. An increase in the self-aggregation tendency was observed with longer PEG chains, whereas, independently of the PEG length, the peptide NSs display cross-β-like secondary structures with an antiparallel β-strand arrangement. WAXS/GIWAXS diffraction patterns indicate a progressive decrease in fiber order along the series. All the PEG-F6 derivatives present blue photoluminescent (PL) emission at 460 nm, with the adduct with the longest PEG chain (PEG24 -F6) showing an additional green emission at 530 nm.
Collapse
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" and DFM Scarl, Via Mezzocannone 16, 80134, Naples, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Davide Altamura
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and Centro Servizi Metrologici Avanzati, University of Naples "Federico II", Corso Nicolangelo Protopisani, 80146, Naples, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, Via Mezzocannone 16, 80134, Naples, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), CNR, Via Amendola 122, 70126, Bari, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" and DFM Scarl, Via Mezzocannone 16, 80134, Naples, Italy
| | - Antonella Accardo
- Department of Pharmacy, Research Centre on Bioactive Peptides (CIRPeB), University of Naples "Federico II" and DFM Scarl, Via Mezzocannone 16, 80134, Naples, Italy
| |
Collapse
|
10
|
Ciano M, Allocca S, Ciardulli MC, Della Volpe L, Bonatti S, D'Agostino M. Differential phosphorylation-based regulation of αB-crystallin chaperone activity for multipass transmembrane proteins. Biochem Biophys Res Commun 2016; 479:325-330. [PMID: 27641668 PMCID: PMC5053547 DOI: 10.1016/j.bbrc.2016.09.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
We have previously shown that αB-crystallin (CRYAB), a small heat shock protein (sHsp) that prevents irreversible aggregation of unfolded protein by an ATP-independent chaperone activity, plays a pivotal role in the biogenesis of multipass transmembrane proteins (TMPs) assisting their folding from the cytosolic side of the endoplasmic reticulum (ER) (D'Agostino et al., 2013). Here we present evidence, based on phosphomimetic substitutions, that the three phosphorytable serine residues at position 19, 45 and 59 of CRYAB play a different regulatory role in this novel chaperone activity: S19 and S45 have a strong inhibitory effect, either alone or in combination, while S59 has not and counteracts the inhibition caused by single phosphomimetic substitutions at S19 and S45. Interestingly, all phosphomimetic substitutions determine the formation of smaller oligomeric complexes containing CRYAB, indicating that the inhibitory effect seen for S19 and S45 cannot be ascribed to the reduction of oligomerization frequently associated to a decreased chaperone activity. These results indicate that phosphorylation finely regulates the chaperone activity of CRYAB with multipass TMPs and suggest a pivotal role for S59 in this process. CRYAB chaperone activity toward ATP7B-H1069Q and Fz4-FEVR. Phosphomimetic S19D and S45D inhibit CRYAB chaperone activity. Phosphomimetic S59D protects CRYAB chaperone activity. Pseudo-phosphorylation decreases CRYAB oligomerization.
Collapse
Affiliation(s)
- Michela Ciano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Allocca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Camilla Ciardulli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Lucrezia Della Volpe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefano Bonatti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Musada GR, Syed H, Jalali S, Chakrabarti S, Kaur I. Mutation spectrum of the FZD-4, TSPAN12 AND ZNF408 genes in Indian FEVR patients. BMC Ophthalmol 2016; 16:90. [PMID: 27316669 PMCID: PMC4912735 DOI: 10.1186/s12886-016-0236-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/10/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in candidate genes that encode for a ligand (NDP) and receptor complex (FZD4, LRP5 and TSPAN12) in the Norrin β-catenin signaling pathway are involved in the pathogenesis of familial exudative vitreoretinopathy (FEVR, MIM # 133780). Recently, a transcription factor (ZNF408) has also been implicated in FEVR. We had earlier characterized the variations in NDP among FEVR patients from India. The present study aimed at understanding the involvement of the remaining genes (FZD4, TSPAN12 and ZNF408) in the same cohort. METHODS The DNA of 110 unrelated FEVR patients and 115 unaffected controls were screened for variations in the entire coding and untranslated regions of these 3 genes by resequencing. Segregation of the disease-associated variants was assessed in the family members of the probands. The effect of the observed missense changes were further analyzed by SIFT and PolyPhen-2 scores. RESULTS The screening of FZD4, TSPAN12 and ZNF408 genes identified 11 different mutations in 15/110 FEVR probands. Of the 11 identified mutations, 6 mutations were novel. The detected missense mutations were mainly located in the domains which are functionally crucial for the formation of ligand-receptor complex and as they replaced evolutionarily highly conserved amino acids with a SIFT score < 0.005, they are predicted to be pathogenic. Additionally 2 novel and 16 reported single nucleotide polymorphisms (SNP) were also detected. CONCLUSIONS Our genetic screening revealed varying mutation frequencies in the FZD4 (8.0 %), TSPAN12 (5.4 %) and ZNF408 (2.7 %) genes among the FEVR patients, indicating their potential role in the disease pathogenesis. The observed mutations segregated with the disease phenotype and exhibited variable expressivity. The mutations in FZD4 and TSPAN12 were involved in autosomal dominant and autosomal recessive families and further validates the involvement of these gene in FEVR development.
Collapse
Affiliation(s)
- Ganeswara Rao Musada
- Kallam Anji Reddy Molecular Genetics Laboratory, Brien Holden Eye Research Centre, L V Prasad Eye Institute (KAR Campus), Road#2, Banjara Hills, Hyderabad, 500034, India
| | - Hameed Syed
- Kallam Anji Reddy Molecular Genetics Laboratory, Brien Holden Eye Research Centre, L V Prasad Eye Institute (KAR Campus), Road#2, Banjara Hills, Hyderabad, 500034, India
| | - Subhadra Jalali
- Smt. Kanuri Santhamma Centre for Vitreo Retinal Diseases, LV Prasad Eye Institute, Hyderabad, India
| | - Subhabrata Chakrabarti
- Kallam Anji Reddy Molecular Genetics Laboratory, Brien Holden Eye Research Centre, L V Prasad Eye Institute (KAR Campus), Road#2, Banjara Hills, Hyderabad, 500034, India
| | - Inderjeet Kaur
- Kallam Anji Reddy Molecular Genetics Laboratory, Brien Holden Eye Research Centre, L V Prasad Eye Institute (KAR Campus), Road#2, Banjara Hills, Hyderabad, 500034, India.
| |
Collapse
|
12
|
Frizzled-4 C-terminus Distal to KTXXXW Motif is Essential for Normal Dishevelled Recruitment and Norrin-stimulated Activation of Lef/Tcf-dependent Transcriptional Activation. J Mol Signal 2016; 11:1. [PMID: 27096005 PMCID: PMC4834752 DOI: 10.5334/1750-2187-11-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carboxy (C)-termini of G protein coupled receptors (GPCR) dictate essential functions. The KTXXXW motif C-terminus of Frizzleds (FZD) has been implicated in recruitment of Dishevelled (DVL). Through study of FZD4 and its associated ligand Norrin, we report that a minimum of three residues distal to the KTXXXW motif in the C-terminal tail of Frizzled-4 are essential for DVL recruitment and robust Lef/Tcf-dependent transcriptional activation in response to Norrin.
Collapse
|
13
|
Disorder Prediction Methods, Their Applicability to Different Protein Targets and Their Usefulness for Guiding Experimental Studies. Int J Mol Sci 2015; 16:19040-54. [PMID: 26287166 PMCID: PMC4581285 DOI: 10.3390/ijms160819040] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/15/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022] Open
Abstract
The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.
Collapse
|
14
|
Latysheva NS, Flock T, Weatheritt RJ, Chavali S, Babu MM. How do disordered regions achieve comparable functions to structured domains? Protein Sci 2015; 24:909-22. [PMID: 25752799 PMCID: PMC4456105 DOI: 10.1002/pro.2674] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases.
Collapse
Affiliation(s)
| | - Tilman Flock
- MRC Laboratory of Molecular BiologyCambridge, CB2 0QH, United Kingdom
| | | | - Sreenivas Chavali
- MRC Laboratory of Molecular BiologyCambridge, CB2 0QH, United Kingdom
| | - M Madan Babu
- MRC Laboratory of Molecular BiologyCambridge, CB2 0QH, United Kingdom
| |
Collapse
|
15
|
Pharmacological folding chaperones act as allosteric ligands of Frizzled4. Nat Chem Biol 2015; 11:280-6. [DOI: 10.1038/nchembio.1770] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 02/10/2015] [Indexed: 02/01/2023]
|
16
|
Stornaiuolo M, La Regina G, Passacantilli S, Grassia G, Coluccia A, La Pietra V, Giustiniano M, Cassese H, Di Maro S, Brancaccio D, Taliani S, Ialenti A, Silvestri R, Martini C, Novellino E, Marinelli L. Structure-Based Lead Optimization and Biological Evaluation of BAX Direct Activators as Novel Potential Anticancer Agents. J Med Chem 2015; 58:2135-48. [DOI: 10.1021/jm501123r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariano Stornaiuolo
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe La Regina
- Istituto
Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Sara Passacantilli
- Istituto
Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Gianluca Grassia
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Coluccia
- Istituto
Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Valeria La Pietra
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Mariateresa Giustiniano
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Hilde Cassese
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Salvatore Di Maro
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Diego Brancaccio
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Sabrina Taliani
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Ialenti
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Romano Silvestri
- Istituto
Pasteur—Fondazione Cenci Bolognetti, Dipartimento di Chimica
e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo
Moro 5, I-00185 Roma, Italy
| | - Claudia Martini
- Dipartimento
di Farmacia, Università di Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| | - Luciana Marinelli
- Dipartimento
di Farmacia, Università di Napoli “Federico II”, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
17
|
D'Agostino M, Crespi A, Polishchuk E, Generoso S, Martire G, Colombo SF, Bonatti S. ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum. J Membr Biol 2014; 247:1149-59. [PMID: 25086772 DOI: 10.1007/s00232-014-9710-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.
Collapse
Affiliation(s)
- Massimo D'Agostino
- Department of Molecular medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|