1
|
Loh YY, Anantharajan J, Huang Q, Xu W, Fulwood J, Ng HQ, Ng EY, Gea CY, Choong ML, Tan QW, Koh X, Lim WH, Nacro K, Cherian J, Baburajendran N, Ke Z, Kang C. Identification of small-molecule binding sites of a ubiquitin-conjugating enzyme-UBE2T through fragment-based screening. Protein Sci 2024; 33:e4904. [PMID: 38358126 PMCID: PMC10868430 DOI: 10.1002/pro.4904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using 19 F-nuclear magnetic resonance (NMR) and validated the hits with 1 H-15 N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies. The cocrystal structures obtained revealed the binding modes of the hit fragments and allowed for the characterization of the fragment-binding sites. Further screening of structural analogues resulted in the identification of a compound series with inhibitory effect on UBE2T activity. Our current study has identified two new binding pockets in UBE2T, which will be useful for the development of small molecules to regulate the function of this protein. In addition, the compounds identified in this study can serve as chemical starting points for the development of UBE2T modulators.
Collapse
Affiliation(s)
- Yong Yao Loh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jothi Anantharajan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Weijun Xu
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Justina Fulwood
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Chong Yu Gea
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Meng Ling Choong
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qian Wen Tan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Xiaoying Koh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Wan Hsin Lim
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joseph Cherian
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
2
|
Anantharajan J, Tan QW, Fulwood J, Sifang W, Huang Q, Ng HQ, Koh X, Xu W, Cherian J, Baburajendran N, Kang C, Ke Z. Identification and characterization of inhibitors covalently modifying catalytic cysteine of UBE2T and blocking ubiquitin transfer. Biochem Biophys Res Commun 2023; 689:149238. [PMID: 37979329 DOI: 10.1016/j.bbrc.2023.149238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
UBE2T is an E2 ubiquitin ligase critical for ubiquitination of substrate and plays important roles in many diseases. Despite the important function, UBE2T is considered as an undruggable target due to lack of a pocket for binding to small molecules with satisfied properties for clinical applications. To develop potent and specific UBE2T inhibitors, we adopted a high-throughput screening assay and two compounds-ETC-6152 and ETC-9004 containing a sulfone tetrazole scaffold were identified. Solution NMR study demonstrated the direct interactions between UBE2T and compounds in solution. Further co-crystal structures reveal the binding modes of these compounds. Both compound hydrolysation and formation of a hydrogen bond with the thiol group of the catalytic cysteine were observed. The formation of covalent complex was confirmed with mass spectrometry. As these two compounds inhibit ubiquitin transfer, our study provides a strategy to develop potent inhibitors of UBE2T.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Qian Wen Tan
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Justina Fulwood
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Wang Sifang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Xiaoying Koh
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Weijun Xu
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Joseph Cherian
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| |
Collapse
|
3
|
Huang Q, Ng HQ, Loh YY, Ke Z, Lim WH, Kang C. Backbone 1H, 15N and 13C resonance assignments for an E2 ubiquitin conjugating enzyme-UBE2T. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:269-274. [PMID: 37773242 DOI: 10.1007/s12104-023-10154-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) plays important roles in ubiquitination of proteins through participation in transferring ubiquitin to its substrate. Due to its importance in protein modifications, UBE2T associates with diverse diseases and serves as an important target for drug discovery and development. The crystal structure of UBE2T has been determined and the structure reveals the lack of a druggable pocket for binding to small molecules for clinical applications. Despite the challenge, effort has been made to develop UBE2T inhibitors. We obtained UBE2T constructs with and without the C-terminal region which is flexible in solution. Herein, we report the backbone resonance assignments for human UBE2T without the C-terminal region. The backbone dynamics of UBE2T was also explored. The available assignments will be helpful for hit identification, determining ligand binding site and understanding the mechanism of action of UBE2T inhibitors.
Collapse
Affiliation(s)
- Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Yong Yao Loh
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - Wan Hsin Lim
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore.
| |
Collapse
|
4
|
He Q, Wang Y, Zhao K, Binderiya U, Bao L, Zhao P, Yan D, Hao H, Guo X, Wang Z. SQSTM1/p62 interacts with FKBP38 and regulates cell cycle in Cashmere goat foetal fibroblasts. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1495643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Qiburi He
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, People’s Republic of China
| | - Yanfeng Wang
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Keyu Zhao
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Uyanga Binderiya
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Lili Bao
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
- College of Basic Medical Science, Inner Mongolia Medical University, Hohhot, People’s Republic of China
| | - Pingping Zhao
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Dandan Yan
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Huifang Hao
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Xudong Guo
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| | - Zhigang Wang
- College of Life Sciences, Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, People’s Republic of China
| |
Collapse
|
5
|
De Cicco M, Kiss L, Dames SA. NMR analysis of the backbone dynamics of the small GTPase Rheb and its interaction with the regulatory protein FKBP38. FEBS Lett 2017; 592:130-146. [PMID: 29194576 DOI: 10.1002/1873-3468.12925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/06/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Ras homolog enriched in brain (Rheb) is a small GTPase that regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) and, thereby, cell growth and metabolism. Here we show that cycling between the inactive GDP- and the active GTP-bound state modulates the backbone dynamics of a C-terminal truncated form, RhebΔCT, which is suggested to influence its interactions. We further investigated the interactions between RhebΔCT and the proposed Rheb-binding domain of the regulatory protein FKBP38. The observed weak interactions with the GTP-analogue- (GppNHp-) but not the GDP-bound state, appear to accelerate the GDP to GTP exchange, but only very weakly compared to a genuine GEF. Thus, FKBP38 is most likely not a GEF but a Rheb effector that may function in membrane targeting of Rheb.
Collapse
Affiliation(s)
- Maristella De Cicco
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Leo Kiss
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany
| | - Sonja A Dames
- Technische Universität München, Department of Chemistry, Biomolecular NMR Spectroscopy, Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
6
|
Lopez E, Berna-Erro A, Salido GM, Rosado JA, Redondo PC. FKBP25 and FKBP38 regulate non-capacitative calcium entry through TRPC6. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2684-2696. [PMID: 26239116 DOI: 10.1016/j.bbamcr.2015.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 07/27/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Non-capacitative calcium entry (NCCE) contributes to cell activation in response to the occupation of G protein-coupled membrane receptors. Thrombin administration to platelets evokes the synthesis of diacylglycerol downstream of PAR receptor activation. Diacylglycerol evokes NCCE through activating TRPC3 and TRPC6 in human platelets. Although it is known that immunophilins interact with TRPCs, the role of immunophilins in the regulation of NCCE remains unknown. Platelet incubation with FK506, an immunophilin antagonist, reduced OAG-evoked NCCE in a concentration-dependent manner, an effect that was independent on the inactivation of calcineurin (CaN). FK506 was unable to reduce NCCE evoked by OAG in platelets from TRPC6-/- mice. In HEK-293 cells overexpressing TRPC6, currents through TRPC6 were altered in the presence of FK506. We have found interaction between FKBP38 and other FKBPs, like FKBP25, FKBP12, and FKBP52 that were not affected by FK506, as well as with calmodulin (CaM). FK506 modified the pattern of association between FKBP25 and TRPCs as well as impaired OAG-evoked TRPC3 and TRPC6 coupling in both human and mouse platelets. By performing biotinylation experiments we have elucidated that FKBP25 and FKBP38 might be found at different cellular location, the plasma membrane and the already described intracellular locations. Finally, FKBP25 and FKBP38 silencing significantly inhibits OAG-evoked NCCE in MEG-01 and HEK293 cells, while overexpression of FKBP38 does not modify NCCE in HEK293 cells. All together, these findings provide strong evidence for a role of immunophilins, including FKBP25 and FKBP38, in NCCE mediated by TRPC6.
Collapse
Affiliation(s)
- Esther Lopez
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain
| | - Alejandro Berna-Erro
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain
| | - Gines M Salido
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group, University of Extremadura, 10003 Cáceres, Spain.
| |
Collapse
|
7
|
Li Q, Yan C, Xu H, Wang Z, Long J, Li W, Wu J, Yin P, Yan N. Examination of the dimerization states of the single-stranded RNA recognition protein pentatricopeptide repeat 10 (PPR10). J Biol Chem 2014; 289:31503-12. [PMID: 25231995 DOI: 10.1074/jbc.m114.575472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins, particularly abundant in plastids and mitochrondria of angiosperms, include a large number of sequence-specific RNA binding proteins that are involved in diverse aspects of organelle RNA metabolisms. PPR proteins contain multiple tandom repeats, and each repeat can specifically recognize a RNA base through residues 2, 5, and 35 in a modular fashion. The crystal structure of PPR10 from maize chloroplast exhibits dimeric existence both in the absence and presence of the 18-nucleotide psaJ RNA element. However, previous biochemical analysis suggested a monomeric shift of PPR10 upon RNA binding. In this report, we show that the amino-terminal segments of PPR10 determine the dimerization state of PPR10. A single amino acid alteration of cysteine to serine within repeat 10 of PPR10 further drives dimerization of PPR10. The biochemical elucidation of the determinants for PPR10 dimerization may provide an important foundation to understand the working mechanisms of PPR proteins underlying their diverse physiological functions.
Collapse
Affiliation(s)
- Quanxiu Li
- From the State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and
| | - Chuangye Yan
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Huisha Xu
- the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China, and
| | - Zheng Wang
- the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China, and
| | - Jiafu Long
- the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China, and
| | - Wenqi Li
- From the State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and
| | - Jianping Wu
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Ping Yin
- the National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, and College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nieng Yan
- From the State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and
| |
Collapse
|