1
|
Tang R, Chen W, Wang Y. Different roles of subcortical inputs in V1 responses to luminance and contrast. Eur J Neurosci 2021; 53:3710-3726. [PMID: 33848389 DOI: 10.1111/ejn.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023]
Abstract
Cells in the primary visual cortex (V1) generally respond weakly to large uniform luminance stimuli. Only a subset of V1 cells is thought to encode uniform luminance information. In natural scenes, local luminance is an important feature for defining an object that varies and coexists with local spatial contrast. However, the strategies used by V1 cells to encode local mean luminance for spatial contrast stimuli remain largely unclear. Here, using extracellular recordings in anesthetized cats, we investigated the responses of V1 cells by comparing with those of retinal ganglion (RG) cells and lateral geniculate nucleus (LGN) cells to simultaneous and rapid changes in luminance and spatial contrast. Almost all V1 cells exhibited a strong monotonic increasing luminance tuning when they were exposed to high spatial contrast. Thus, V1 cells encode the luminance carried by spatial contrast stimuli with the monotonically increasing response function. Moreover, high contrast decreased luminance tuning of OFF cells but increased that of in ON cells in RG and LGN. The luminance and contrast tunings of LGN ON cells were highly separable as V1 cells, whereas those of LGN OFF cells were lowly separable. These asymmetrical effects of spatial contrast on ON/OFF channels might underlie the robust ability of V1 cells to perform luminance tuning when exposed to spatial contrast stimuli.
Collapse
Affiliation(s)
- Rendong Tang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhen Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Dai J, Wang Y. Contrast coding in the primary visual cortex depends on temporal contexts. Eur J Neurosci 2018; 47:947-958. [DOI: 10.1111/ejn.13893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Ji Dai
- State Key Laboratory of Brain and Cognitive Sciences; Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science; CAS Center for Excellence in Brain Science and Intelligence Technology; the Brain Cognition and Brain Disease Institute; Shenzhen Institutes of Advanced Technology; Chinese Academy of Sciences; Shenzhen 518055 China
| | - Yi Wang
- State Key Laboratory of Brain and Cognitive Sciences; Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
- University of Chinese Academy of Sciences; Beijing 100101 China
| |
Collapse
|
3
|
Wang Y, Wang Y. Neurons in primary visual cortex represent distribution of luminance. Physiol Rep 2016; 4:4/18/e12966. [PMID: 27655797 PMCID: PMC5037916 DOI: 10.14814/phy2.12966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/24/2022] Open
Abstract
To efficiently detect a wide range of light-intensity changes, visual neurons must adapt to ambient luminance. However, how neurons in the primary visual cortex (V1) code the distribution of luminance remains unknown. We designed stimuli that represent rapid changes in luminance under different luminance distributions and investigated V1 neuron responses to these novel stimuli. We demonstrate that V1 neurons represent luminance changes by dynamically adjusting their responses when the luminance distribution changes. Many cells (35%) detected luminance changes by responding to dark stimuli when the distribution was dominated by bright stimuli, bright stimuli when dominated by dark stimuli, and both dark and bright stimuli when dominated by intermediate luminance stimuli; 13% of cells signaled the mean luminance that was varied with different distributions; the remaining 52% of cells gradually shifted the responses that were most sensitive to luminance changes when the luminance distribution varied. The remarkable response changes of the former two cell groups suggest their crucial roles in detecting luminance changes. These response characteristics demonstrate that V1 neurons are not only sensitive to luminance change, but also luminance distribution change. They encode luminance changes according to the luminance distribution. Mean cells represent the prevailing luminance and reversal cells represent the salient stimuli in the environment.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics Chinese Academy of Sciences, Beijing, China University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Ghodrati M, Alwis DS, Price NSC. Orientation selectivity in rat primary visual cortex emerges earlier with low-contrast and high-luminance stimuli. Eur J Neurosci 2016; 44:2759-2773. [PMID: 27563930 DOI: 10.1111/ejn.13379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 11/25/2022]
Abstract
In natural vision, rapid and sustained variations in luminance and contrast change the reliability of information available about a visual scene, and markedly affect both neuronal and behavioural responses. The hallmark property of neurons in primary visual cortex (V1), orientation selectivity, is unaffected by changes in stimulus contrast, but it remains unclear how sustained differences in mean luminance and contrast affect the time-course of orientation selectivity, and the amount of information that neurons carry about orientation. We used reverse correlation with characterize the temporal dynamics of orientation selectivity in rat V1 neurons under four luminance-contrast conditions. We show that orientation selectivity and mutual information between neuronal responses and stimulus orientation are invariant to contrast or mean luminance. Critically, the time-course of the emergence of orientation selectivity was affected by both factors; response latencies were longer for low- than high-luminance gratings, and surprisingly, response latencies were also longer for high- than low-contrast gratings. Modelling suggests that luminance-modulated changes in feedforward gain, in combination with hyperpolarization caused by high contrasts can account for our physiological data. The hyperpolarization at high contrasts may increase signal-to-noise ratios, whereas a more depolarized membrane may lead to greater sensitivity to weak stimuli.
Collapse
Affiliation(s)
- Masoud Ghodrati
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Vic., 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Dasuni S Alwis
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Vic., 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia
| | - Nicholas S C Price
- Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Vic., 3800, Australia.,Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Vic., Australia.,ARC Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Vic., Australia
| |
Collapse
|
5
|
V1 neurons respond to luminance changes faster than contrast changes. Sci Rep 2015; 5:17173. [PMID: 26634691 PMCID: PMC4669454 DOI: 10.1038/srep17173] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Luminance and contrast are two major attributes of objects in the visual scene. Luminance and contrast information received by visual neurons are often updated simultaneously. We examined the temporal response properties of neurons in the primary visual cortex (V1) to stimuli whose luminance and contrast were simultaneously changed by 50 Hz. We found that response tuning to luminance changes precedes tuning to contrast changes in V1. For most V1 neurons, the onset time of response tuning to luminance changes was shorter than that to contrast changes. Most neurons carried luminance information in the early response stage, while all neurons carried both contrast and luminance information in the late response stage. The early luminance response suggests that cortical processing for luminance is not as slow as previously thought.
Collapse
|