1
|
Kim S, Jang SY, Jha RK, Choi J. Naturally Derived Luminescent Material in Engineered Silk and Its Application as a Fluorescent Dye with a Large Stokes Shift and Sensing Capability. ACS Biomater Sci Eng 2024; 10:4552-4561. [PMID: 38922676 DOI: 10.1021/acsbiomaterials.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Silkworms have provided valuable byproducts (spanning from high-quality textiles to health supplements) to humans for millennia. Despite their importance in sericultural economy and biotechnology, manifold possibilities inherent in the myriad natural or artificially generated silk varieties have been underestimated. In this paper, we report that the Yeonnokjam silk strain, which shows light-green color, contains quercetin fluorochrome (QueF) in sericin, and QueF can be used as a fluorescence dye with a large Stokes shift and high sensitivity to environmental temperature and pH, thus functioning as an environmental sensing material. A Stokes shift exceeding 180 nm, a quantum efficiency of 1.28%, and a rapid fluorescence decay of 0.67 ns are obtained, which are influenced by solvent polarities. Moreover, QueF can be used as a UV blocker as well, and its low cytotoxicity and biocompatibility further suggest promising prospects for diverse application in cosmetics and medical materials in the future.
Collapse
Affiliation(s)
- Sunghwan Kim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seo-Young Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Rakesh Kumar Jha
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Juwan Choi
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Song Y, Hu C, Wang Z, Wang L. Silk-based wearable devices for health monitoring and medical treatment. iScience 2024; 27:109604. [PMID: 38628962 PMCID: PMC11019284 DOI: 10.1016/j.isci.2024.109604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Previous works have focused on enhancing the tensile properties, mechanical flexibility, biocompatibility, and biodegradability of wearable devices for real-time and continuous health management. Silk proteins, including silk fibroin (SF) and sericin, show great advantages in wearable devices due to their natural biodegradability, excellent biocompatibility, and low fabrication cost. Moreover, these silk proteins possess great potential for functionalization and are being explored as promising candidates for multifunctional wearable devices with sensory capabilities and therapeutic purposes. This review introduces current advancements in silk-based constituents used in the assembly of wearable sensors and adhesives for detecting essential physiological indicators, including metabolites in body fluids, body temperature, electrocardiogram (ECG), electromyogram (EMG), pulse, and respiration. SF and sericin play vital roles in addressing issues related to discomfort reduction, signal fidelity improvement, as well as facilitating medical treatment. These developments signify a transition from hospital-centered healthcare toward individual-centered health monitoring and on-demand therapeutic interventions.
Collapse
Affiliation(s)
- Yu Song
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuting Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-disciplinary Translational Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Guo N, He Y, Lu K, Xu X, Li C, Hu H, Tong X, Tang Y, Cheng L, Dai F. Super silkworm cocoons constructed by multi-silkworm larvae: Promising composites with dense structures and excellent mechanical properties. Int J Biol Macromol 2024; 257:128619. [PMID: 38061509 DOI: 10.1016/j.ijbiomac.2023.128619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
A normal silkworm cocoon (NSC) with a unique nonwoven structure is usually spun by a single silkworm larva. Notably, there is a special Bombyx mori genetic resource that many (three or more) mature larvae tend to collectively spin into one cocoon, which was named "multi-silkworm cocoon" ("MSC"). However, the MSCs display loose structure and poor mechanical properties which limits their further application. In this study, a series of hybrid silkworm cocoons (HMSCs) are obtained by hybridizing "MSC" with a selected commercial silkworm strain successfully. The morphology, microstructures, and mechanical properties of cocoons constructed by one to three silkworm larvae were characterized and compared. The results indicated that about 48.3 % of silkworm larvae could create double and triple cocoons in the F1 generation of the silkworm hybrid, displaying robust fiber networks and dense structures. The mechanical characteristics of the HMSCs, including the tensile, peeling, compression, and needle penetration resistance properties, exceeded those of MSCs, showing significant application potential for high-performance bio-composites. This study provides a practical approach for obtaining silkworm cocoons with controllable structures and mechanical properties to develop and fabricate natural composite and biomimetic materials.
Collapse
Affiliation(s)
- Nangkuo Guo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Yuanyuan He
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Kunpeng Lu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Chunlin Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Yuxia Tang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China
| | - Lan Cheng
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Yibin Academy, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
John VL, Nayana AR, Keerthi TR, K A AK, Sasidharan BCP, T P V. Mulberry Leaves (Morus Rubra)-Derived Blue-Emissive Carbon Dots Fed to Silkworms to Produce Augmented Silk Applicable for the Ratiometric Detection of Dopamine. Macromol Biosci 2023; 23:e2300081. [PMID: 37097218 DOI: 10.1002/mabi.202300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Silk fibers (SF) reeled from silkworms are constituted by natural proteins, and their characteristic structural features render them applicable as materials for textiles and packaging. Modification of SF with functional materials can facilitate their applications in additional areas. In this work, the preparation of functional SF embedded with carbon dots (CD) is reported through the direct feeding of a CD-modified diet to silkworms. Fluorescent and mechanically robust SF are obtained from silkworms (Bombyx mori) that are fed on CDs synthesized from the Morus rubra variant of mulberry leaves (MB-CDs). MB-CDs are introduced to silkworms from the third instar by spraying them on the silkworm feed, the mulberry leaves. MB-CDs are synthesized hydrothermally without adding surface passivating agents and are observed to have a quantum yield of 22%. With sizes of ≈4 nm, MB-CDs exhibited blue fluorescence, and they can be used as efficient fluorophores to detect Dopamine (DA) up to the limit of 4.39 nM. The nanostructures and physical characteristics of SF weren't altered when the SF are infused with MB-CDs. Also, a novel DA sensing application based on fluorescence with the MB-CD incorporated SF is demonstrated.
Collapse
Affiliation(s)
- Varsha Lisa John
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| | - A R Nayana
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - T R Keerthi
- School of Biosciences, Mahatma Gandhi University, P.D Hills (P.O), Kottayam, Kerala, 686560, India
| | - Athira Krishnan K A
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - B C P Sasidharan
- Centre for Neuroscience, Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Vinod T P
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore, 560029, India
| |
Collapse
|
5
|
Urbanek Krajnc A, Bakonyi T, Ando I, Kurucz E, Solymosi N, Pongrac P, Berčič RL. The Effect of Feeding with Central European Local Mulberry Genotypes on the Development and Health Status of Silkworms and Quality Parameters of Raw Silk. INSECTS 2022; 13:836. [PMID: 36135536 PMCID: PMC9506520 DOI: 10.3390/insects13090836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Silkworm rearing activities ceased in the 1970's in several European countries. Attempts on the re-establishment of ecological and sustainable sericulture in Slovenia and Hungary are ongoing. The aim of the study was to assess the usability of locally adapted mulberry genotypes for sericulture and to estimate connections between leaf compound and silkworm performance parameters. A controlled feeding experiment of silkworms was performed to test the influence of leaves from selected trees on the growth of larvae, the health and microbiological status of larvae (e.g., gut bacterial microbiome, Bombyx mori nucleopolyhedrovirus infection), weight of cocoons and raw silk parameters. The Slovenian and Hungarian mulberry genotypes had significantly higher total protein contents, and lower total phenolic contents and differed significantly in some individual phenolics compared to the reference sericultural and fruit varieties. Significant differences were found in the contents of the macro- and microelements, namely S, Mn, Fe, and Sr. Based on correlative statistics and multivariate analysis, a combined positive influence of proteins, specific phenolics, and microelements on larval growth and silk thread parameters was predicted. The results of the study indicate that selected local Slovenian and Hungarian mulberry varieties are suitable for high-quality silk cocoon and raw silk production.
Collapse
Affiliation(s)
- Andreja Urbanek Krajnc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Tamas Bakonyi
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Istvan Ando
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | - Eva Kurucz
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, P.O. Box 521, H-6701 Szeged, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
| | - Paula Pongrac
- Department of Biology, Chair of Botany and Plant Physiology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Rebeka Lucijana Berčič
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine Budapest, István u. 2, H-1078 Budapest, Hungary
- Institute for Sericulture, Rebecca Luciana Bercic, Koroška c. 65, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Jangir H, Das M. Designing water vapor fuelled brine-silk cocoon protein bio-battery for a self-lighting kettle and water-vapor panels. Sci Rep 2022; 12:13999. [PMID: 35978100 PMCID: PMC9385712 DOI: 10.1038/s41598-022-18211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
Water vapor increases the electrical conductivity of silk cocoons, human hair, jute, and corn silk. This phenomenon is unclear. In the present study, XPS analysis of cocoons showed that water vapor reduces the surface presence of low-energy carbon species (C–C, C–H). In contrast, electron-dense, high-energy carbon species (C–N, C=C, C=O) remained unchanged, possibly enhancing surface charge hopping. While water vapor improves the conduction, the deficiency of charge carrier diminishes the effect. We increase the charge carrier by soaking the cocoon in an aqueous solution of common salt (NaCl) to amplify the current. Salt treatment followed by 2-min exposure to water vapor results in a sharp upward spike in the current (3.6 ± 1.07 mA, n = 12; mean ± SE) from the baseline (0.06 ± 0.02 mA, n = 12). After 1 h, it maintains an average value of 0.39 ± 0.12 mA; n = 12, indicating an upward shift in the baseline. Every time the cocoon charges with water vapor, the next charging cycle initiates after the cocoon dries up. Inspired by the cocoon ecology, we demonstrate an alternating 'water vapor–dry air' cycle for rapid charging and discharging of the cocoon battery. Finally, we designed a prototype of a self-lighting kettle and water–vapor panels for futuristic homes using a 'brine-silk cocoon protein bio-battery,' where moist waste heat generates electricity.
Collapse
Affiliation(s)
- Himanshi Jangir
- NanoScience Technology Center, University of Central Florida, Orlando, Fl, 32826, USA.
| | - Mainak Das
- Design Department, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India.
| |
Collapse
|
7
|
Daney de Marcillac W, Nguyen LTP, Aracheloff C, Berthier S, Schöllhorn B. Bright green fluorescence of Asian paper wasp nests. J R Soc Interface 2021; 18:20210418. [PMID: 34428946 PMCID: PMC8385335 DOI: 10.1098/rsif.2021.0418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
An exceptionally bright fluorescent biomatter was discovered when exploring, with UV-A light, the nests of several oriental paper wasp species of the genus Polistes, a genus of diurnal social insects. Fluorescence spectra of the cocoon cap membranes revealed narrow emission bands in the green range of the visible spectrum. Large Stokes shifts of around 160 nm and high fluorescence quantum yields of up to 35% were measured. Transmission spectra were recorded in order to estimate the contribution of the fluorescence to the visible light transmitted through the cocoon cap membrane. The nest fluorescence of the Vietnamese wasps was compared with a European and an American species. Potential biological functions of these interesting fluorescence properties of the studied biomaterial are discussed. The discovery of this striking example of a fluorescent terrestrial biomaterial may contribute to the debate on adaptive biological functions of natural fluorescence and falls in line with the growing interest in biodiversity and bio-inspiration.
Collapse
Affiliation(s)
| | - Lien Thi Phuong Nguyen
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Nghia Do, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Camille Aracheloff
- Institut des Nanoscience de Paris, UMR 7588 CNRS - Sorbonne Université, Paris, France
| | - Serge Berthier
- Institut des Nanoscience de Paris, UMR 7588 CNRS - Sorbonne Université, Paris, France
| | - Bernd Schöllhorn
- Université de Paris - Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006 Paris, France
| |
Collapse
|
8
|
Prakash NJ, Mane PP, George SM, Kandasubramanian B. Silk Fibroin As an Immobilization Matrix for Sensing Applications. ACS Biomater Sci Eng 2021; 7:2015-2042. [PMID: 33861079 DOI: 10.1021/acsbiomaterials.1c00080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The development of flexible, biocompatible, and environment-friendly sensors has attracted a significant amount of scientific interest for the past few decades. Among all the natural materials, silk fibroin (SF), due to its tunable biodegradability, biocompatibility, ease of processing, presence of functional groups, and controllable dimensions, has opened up opportunities for immobilizing multitudinous biomolecules and conformability to the skin, among other attractive opportunities. The silk fibroins also offer good physical properties, such as superior toughness and tensile strength. The sensors made of SF as an immobilization matrix have demonstrated excellent analytical performance, sensing even at low concentrations. The significant advantage of silk fibroins is the presence of functional groups along with a controllable conformation transition that enables immobilization of receptor molecules using silk fibroins as an immobilization matrix enables us to entrap the receptor molecules without using any chemical reagents. This review encompasses a detailed discussion on sensors, the advantages of using silk fibroins as an immobilization matrix for various receptors, their applications, and the future research scope in this state-of-the-art technology based upon the explorable applications for silk fibroin-based sensors.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| | - Prathamesh Parshuram Mane
- Department of Fibers and Textiles Processing Technology, Institute of Chemical Technology, Mumbai-400019, India
| | - Suchi Mercy George
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Nano Texturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune-411025, Maharashtra, India
| |
Collapse
|
9
|
Fan S, Zheng X, Zhan Q, Zhang H, Shao H, Wang J, Cao C, Zhu M, Wang D, Zhang Y. Super-strong and Intrinsically Fluorescent Silkworm Silk from Carbon Nanodots Feeding. NANO-MICRO LETTERS 2019; 11:75. [PMID: 34138020 PMCID: PMC7770652 DOI: 10.1007/s40820-019-0303-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/16/2019] [Indexed: 06/12/2023]
Abstract
Fluorescent silk is fundamentally important for the development of future tissue engineering scaffolds. Despite great progress in the preparation of a variety of colored silks, fluorescent silk with enhanced mechanical properties has yet to be explored. In this study, we report on the fabrication of intrinsically super-strong fluorescent silk by feeding Bombyx mori silkworm carbon nanodots (CNDs). The CNDs were incorporated into silk fibroin, hindering the conformation transformation, confining crystallization, and inducing orientation of mesophase. The resultant silk exhibited super-strong mechanical properties with breaking strength of 521.9 ± 82.7 MPa and breaking elongation of 19.2 ± 4.3%, improvements of 55.1% and 53.6%, respectively, in comparison with regular silk. The CNDs-reinforced silk displayed intrinsic blue fluorescence when exposed to 405 nm laser and exhibited no cytotoxic effect on cells, suggesting that multi-functional silks would be potentially useful in bioimaging and other applications.
Collapse
Affiliation(s)
- Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Xiaoting Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Qi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Huihui Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Jiexin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Chengbo Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, People's Republic of China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
10
|
Pang L, Ming J, Pan F, Ning X. Fabrication of Silk Fibroin Fluorescent Nanofibers via Electrospinning. Polymers (Basel) 2019; 11:E986. [PMID: 31167377 PMCID: PMC6631164 DOI: 10.3390/polym11060986] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/03/2022] Open
Abstract
Fluorescent silk fibroin nanofibers were fabricated via electrospinning method with three kinds of fluorescent dyes. Electrospun fluorescent nanofibers showed smooth surfaces and average diameters of 873 ± 135 nm, 835 ± 195 nm, and 925 ± 205 nm, respectively, for silk fibroin-fluorescein sodium, silk fibroin-rhodamine B, and silk fibroin-acridine orange nanofibers containing 2.0 wt% fluorescent dyes. At the same time, the secondary structure of silk fibroin in fluorescent nanofibers was predominantly amorphous conformation without influence by adding different concentrations of fluorescent dyes, as characterized by Fourier transform infrared spectroscopy and X-ray diffraction. Thermal degradation behavior of fluorescent silk fibroin nanofibers with a dramatic decrease in weight residue was observed at around 250 °C. The fluorescence effect of fluorescent silk fibroin nanofibers was changed by changing the concentration of different fluorescent dyes. These fluorescent nanofibers may make promising textile materials for large scale application.
Collapse
Affiliation(s)
- Liaoliao Pang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China.
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China.
| | - Fukui Pan
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
11
|
He Y, Zhang LM, Chen YM, Sun L, Hu C, Wang MX, Gao Y, Yang JH, Zhang QQ. Biocompatible Photoluminescent Silk Fibers with Stability and Durability. ACS Biomater Sci Eng 2019; 5:2657-2668. [DOI: 10.1021/acsbiomaterials.9b00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuan He
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Li Mei Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yong Mei Chen
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Key Laboratory of Leather Cleaner Production, China National Light Industry, Xi’an, Shaanxi 710021, China
| | - Lei Sun
- School of Science, State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chen Hu
- School of Science, State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Mei Xiang Wang
- School of Science, State Key Laboratory for Mechanical Behaviour of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yang Gao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Jian Hai Yang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, School of Aerospace Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qi Qing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350002, China
- Fujian Guided
Tissue Regeneration (GTR) Biotechnology Co., Ltd., Fuzhou 350108, China
| |
Collapse
|
12
|
Cheng L, Tong X, Li Z, Liu Z, Huang H, Zhao H, Dai F. Natural Silkworm Cocoon Composites with High Strength and Stiffness Constructed in Confined Cocooning Space. Polymers (Basel) 2018; 10:polym10111214. [PMID: 30961139 PMCID: PMC6290615 DOI: 10.3390/polym10111214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, using round paper tubes (PTs) and rectangular cardboard boxes (CBs) as external constraints to control the size of the cocooning space, we fabricated a series of modified silkworm cocoons (PT cocoons and CB cocoons). Their microstructures, morphologies, compositions, and mechanical properties were characterized and compared with normal silkworm cocoons. These two kinds of modified silkworm cocoons exhibit dense and homogeneous layer structures. Tensile test results indicate that above a size limit of cocooning space, their tensile strengths, Young's moduli, and strain energy densities increase with the decrease in cocooning space. Especially in comparison with the normal cocoons, the tensile strength and Young's modulus of the PT-14 cocoon increase by 44% and 100%, respectively. Meanwhile, PT cocoons and CB cocoons, except PT-12, also possess better peeling resistance than normal cocoons. Owing to the dense structure and low porosity, the modified cocoons form robust fiber networks that result in high strength and toughness. This study provides a green and efficient method to fabricate mechanically enhanced silkworm cocoons with special shapes and dense layer structures. The method can be easily subjected to further modification processes and has potential applications in the production of high-performance green cocoon composites and biomimetic materials.
Collapse
Affiliation(s)
- Lan Cheng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Zhi Li
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China.
| | - Zulan Liu
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textile and Garment, Southwest University, Chongqing 400715, China.
| | - Huiming Huang
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China.
| | - Hongping Zhao
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
13
|
Auto-fluorescence of a silk fibroin-based scaffold and its interference with fluorophores in labeled cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:573-581. [DOI: 10.1007/s00249-018-1279-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 09/22/2017] [Accepted: 01/14/2018] [Indexed: 01/05/2023]
|
14
|
Roy M, Dubey A, Singh SK, Bhargava K, Sethy NK, Philip D, Sarkar S, Bajpai A, Das M. Soft magnetic memory of silk cocoon membrane. Sci Rep 2016; 6:29214. [PMID: 27374752 PMCID: PMC4931590 DOI: 10.1038/srep29214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
Silk cocoon membrane (SCM), a solid matrix of protein fiber, responds to light, heat and moisture and converts these energies to electrical signals. Essentially it exhibits photo-electric and thermo-electric properties; making it a natural electro-magnetic sensor, which may influence the pupal development. This raises the question: ‘is it only electricity?’, or ‘it also posses some kind of magnetic memory?’ This work attempted to explore the magnetic memory of SCM and confirm its soft magnetism. Fe, Co, Ni, Mn, Gd were found in SCM, in traces, through energy dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS). Presence of iron was ascertained by electron paramagnetic resonance (EPR). In addition, EPR-spectra showed the presence of a stable pool of carbon-centric free radical in the cocoon structure. Carbon-centric free radicals behaves as a soft magnet inherently. Magnetic-Hysteresis (M-H) of SCM confirmed its soft magnetism. It can be concluded that the soft bio-magnetic feature of SCM is due to the entrapment of ferromagnetic elements in a stable pool of carbon centric radicals occurring on the super-coiled protein structure. Natural soft magnets like SCM provide us with models for developing eco-friendly, protein-based biological soft magnets.
Collapse
Affiliation(s)
- Manas Roy
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Amarish Dubey
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | | | | | | | - Deepu Philip
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Sabyasachi Sarkar
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Alok Bajpai
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Mainak Das
- Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
15
|
Tulachan B, Srivastava S, Kusurkar TS, Sethy NK, Bhargava K, Singh SK, Philip D, Bajpai A, Das M. The role of photo-electric properties of silk cocoon membrane in pupal metamorphosis: A natural solar cell. Sci Rep 2016; 6:21915. [PMID: 26907586 PMCID: PMC4764832 DOI: 10.1038/srep21915] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/02/2016] [Indexed: 11/08/2022] Open
Abstract
Silkworm metamorphosis is governed by the intrinsic and extrinsic factors. One key intrinsic factor is the temporal electrical firing of the neuro-secretory cells of the dormant pupae residing inside the silk cocoon membrane (SCM). Extrinsic factors are environmental like temperature, humidity and light. The firing pattern of the cells is a function of the environmental factors that eventually controls the pupal development. How does the nervous organization of the dormant pupae sense the environment even while enclosed inside the cocoon shell? We propose that the SCM does this by capturing the incident light and converting it to electricity in addition to translating the variation in temperature and humidity as an electrical signal. The light to electricity conversion is more pronounced with ultraviolet (UV) frequency. We discovered that a UV sensitive fluorescent quercetin derivative that is present on the SCM and pupal body surface is responsible for generating the observed photo current. Based on these results, we propose an equivalent circuit model of the SCM where an overall electrical output transfers the weather information to pupae, directing its growth. We further discuss the implication of this electrical energy conversion and its utility for consumable electricity.
Collapse
Affiliation(s)
- Brindan Tulachan
- Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Shivansh Srivastava
- Department of Applied Chemistry and Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Tejas Sanjeev Kusurkar
- Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Niroj Kumar Sethy
- Defense Institute of Physiology & Allied Sciences, Defense Research Development Organization, Timarpur, Lucknow Road, Delhi, 110054, India
| | - Kalpana Bhargava
- Defense Institute of Physiology & Allied Sciences, Defense Research Development Organization, Timarpur, Lucknow Road, Delhi, 110054, India
| | - Sushil Kumar Singh
- Solid State Physics Laboratory, Defense Research Development Organization, Timarpur, Lucknow Road, Delhi, 110054, India
| | - Deepu Philip
- Industrial & Management Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Design Program, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Alok Bajpai
- Institute Psychiatrist, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Mainak Das
- Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Design Program, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| |
Collapse
|
16
|
Li G, Li Y, Chen G, He J, Han Y, Wang X, Kaplan DL. Silk-based biomaterials in biomedical textiles and fiber-based implants. Adv Healthc Mater 2015; 4:1134-51. [PMID: 25772248 PMCID: PMC4456268 DOI: 10.1002/adhm.201500002] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/04/2015] [Indexed: 01/25/2023]
Abstract
Biomedical textiles and fiber-based implants (BTFIs) have been in routine clinical use to facilitate healing for nearly five decades. Amongst the variety of biomaterials used, silk-based biomaterials (SBBs) have been widely used clinically viz. sutures for centuries and are being increasingly recognized as a prospective material for biomedical textiles. The ease of processing, controllable degradability, remarkable mechanical properties and biocompatibility have prompted the use of SBBs for various BTFIs for extracorporeal implants, soft tissue repair, healthcare/hygiene products and related needs. The present Review focuses on BTFIs from the perspective of types and physical and biological properties, and this discussion is followed with an examination of the advantages and limitations of BTFIs from SBBs. The Review covers progress in surface coatings, physical and chemical modifications of SBBs for BTFIs and identifies future needs and opportunities for the further development for BTFIs using SBBs.
Collapse
Affiliation(s)
- Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Yi Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Jihuan He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P.R. China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Room 153, Medford, MA 02155, USA
| |
Collapse
|
17
|
|
18
|
Tulachan B, Meena SK, Rai RK, Mallick C, Kusurkar TS, Teotia AK, Sethy NK, Bhargava K, Bhattacharya S, Kumar A, Sharma RK, Sinha N, Singh SK, Das M. Electricity from the silk cocoon membrane. Sci Rep 2014; 4:5434. [PMID: 24961354 PMCID: PMC4069722 DOI: 10.1038/srep05434] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 06/05/2014] [Indexed: 11/16/2022] Open
Abstract
Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.
Collapse
Affiliation(s)
- Brindan Tulachan
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- These authors contributed equally to this work
| | - Sunil Kumar Meena
- Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- These authors contributed equally to this work
| | - Ratan Kumar Rai
- Center for Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, UP, 226014, India
| | - Chandrakant Mallick
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Tejas Sanjeev Kusurkar
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Arun Kumar Teotia
- Department of Biological Sciences and Bioengineering & Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Niroj Kumar Sethy
- Peptide and Proteomics Unit, Defense Institute Physiology and Allied Sciences, Defense Research Development Organization, Delhi, 110054, India
| | - Kalpana Bhargava
- Peptide and Proteomics Unit, Defense Institute Physiology and Allied Sciences, Defense Research Development Organization, Delhi, 110054, India
| | - Shantanu Bhattacharya
- Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering & Center for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | | | - Neeraj Sinha
- Center for Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, UP, 226014, India
| | - Sushil Kumar Singh
- Functional Materials Group, Solid State Physics Laboratory, Defense Research Development Organization, Delhi, 110054, India
| | - Mainak Das
- Bioelectricity, Green Energy, Physiology & Sensor Group, Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
- Design Program, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| |
Collapse
|