1
|
Park J, Park S. Molecular Engineering for Future Thermoelectric Materials: The Role of Electrode and Metal Components in Molecular Junctions. CHEMSUSCHEM 2025; 18:e202402077. [PMID: 39582066 DOI: 10.1002/cssc.202402077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
As global temperatures increase due to climate change, the accumulation of excess heat on Earth presents a valuable resource that can be harnessed for electricity generation using thermoelectric materials. However, the intricate structures of bulk thermoelectric materials pose significant challenges to their comprehensive understanding and limit performance. Additionally, their relatively high production costs present practical obstacles. A promising solution to these issues lies in molecular control and the use of molecular junctions. Molecules are predicted to surpass the performance of existing bulk materials in energy conversion because they can be chemically tuned to achieve high thermoelectric efficiencies. This review identifies the thermoelectric parameters that affect the performance of molecular junctions. It also explores various experimental platforms for measuring thermoelectric performance from single molecules to assemblies of hundreds of molecules. Finally, it highlights recent advancements in thermoelectric molecular junctions, focusing on the crucial roles of electrodes and metal components within the molecules, such as Ru complexes, metalloporphyrins, metallocenes, conjugated silane wires, and endohedral metallofullerenes. Ultimately, our review provides a comprehensive analysis of strategies to enhance the thermoelectric efficiency of molecular junctions.
Collapse
Affiliation(s)
- Jiwoo Park
- School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Sohyun Park
- School of Chemistry and Energy, Sungshin Women's University, Seoul, 01133, Republic of Korea
| |
Collapse
|
2
|
He P, Jang J, Kang H, Yoon HJ. Thermoelectricity in Molecular Tunnel Junctions. Chem Rev 2025. [PMID: 39908450 DOI: 10.1021/acs.chemrev.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The growing interest in thermoelectric energy conversion technologies has recently extended to the molecular scale, with molecular tunnel junctions emerging as promising platforms for energy harvesting from heat in a quantum-tunneling regime. This Review explores the advances in thermoelectricity within molecular junctions, highlighting the unique ability of these junctions to exploit charge tunneling and controlled molecular structure to enhance thermoelectric performance. Molecular thermoelectrics, which bridge nanoscale material design and thermoelectric applications, utilize tunneling mechanisms, such as coherent tunneling and hopping processes, including coherent and incoherent pathways, to facilitate energy conversion. Complementing these mechanisms is an array of high-precision fabrication techniques for molecular junctions, from single-molecule break junctions to large-area liquid metal-based systems, each tailored to optimize heat and charge transfer properties. With novel design strategies such as the incorporation of electron-dense ligands, customizable anchor groups, and advanced junction architectures, molecular tunnel junctions hold promise for addressing challenging targets in thermoelectricity. This Review focuses on theoretical models, experimental methodologies, and design principles aimed at understanding the thermoelectric function in molecular junctions and enhancing the performance.
Collapse
Affiliation(s)
- Peng He
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hungu Kang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Mennemanteuil MM, Buret M, Colas-des-Francs G, Bouhelier A. Optical rectification and thermal currents in optical tunneling gap antennas. NANOPHOTONICS 2022; 11:4197-4208. [PMID: 36118961 PMCID: PMC9412842 DOI: 10.1515/nanoph-2022-0278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Electrically-contacted optical gap antennas are nanoscale interface devices enabling the transduction between photons and electrons. This new generation of device, usually constituted of metal elements (e.g. gold), captures visible to near infrared electromagnetic radiation and rectifies the incident energy in a direct-current (DC) electrical signal. However, light absorption by the metal may lead to additional thermal effects which need to be taken into account to understand the complete photo-response of the devices. The purpose of this communication is to discriminate the contribution of laser-induced thermo-electric effects in the photo-assisted electronic transport. We show case our analysis with the help of electromigrated devices.
Collapse
Affiliation(s)
- Marie Maxime Mennemanteuil
- Laboratoire Interdisciplinaire Carnot de Bourgogne CNRS UMR 6303, Université de Bourgogne Franche-Comté, 21000Dijon, France
| | - Mickaël Buret
- Laboratoire Interdisciplinaire Carnot de Bourgogne CNRS UMR 6303, Université de Bourgogne Franche-Comté, 21000Dijon, France
| | - Gérard Colas-des-Francs
- Laboratoire Interdisciplinaire Carnot de Bourgogne CNRS UMR 6303, Université de Bourgogne Franche-Comté, 21000Dijon, France
| | - Alexandre Bouhelier
- Laboratoire Interdisciplinaire Carnot de Bourgogne CNRS UMR 6303, Université de Bourgogne Franche-Comté, 21000Dijon, France
| |
Collapse
|
4
|
Al-Mamun M, Orlowski M. Electron tunneling between vibrating atoms in a copper nano-filament. Sci Rep 2021; 11:7413. [PMID: 33795732 PMCID: PMC8016960 DOI: 10.1038/s41598-021-86603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/17/2021] [Indexed: 11/08/2022] Open
Abstract
Nanowires, atomic point contacts, and chains of atoms are one-dimensional nanostructures, which display size-dependent quantum effects in electrical and thermal conductivity. In this work a Cu nanofilament of a defined resistance and formed between a Cu and Pt electrode is heated remotely in a controlled way. Depending on the robustness of the conductive filament and the amount of heat transferred several resistance-changing effects are observed. In case of sufficiently fragile nanofilament exhibiting electrical quantum conductance effects and moderate heating applied to it, a dramatic increase of resistance is observed just after the completion of the heating cycle. However, when the filament is allowed to cool off, a spontaneous restoration of the originally set resistance of the filament is observed within less than couple tens of seconds. When the filament is sufficiently fragile or the heating too excessive, the filament is permanently ruptured, resulting in a high resistance of the cell. In contrast, for robust, low resistance filaments, the remote heating does not affect the resistance. The spontaneous restoration of the initial resistance value is explained by electron tunneling between neighboring vibrating Cu atoms. As the vibrations of the Cu atoms subside during the cooling off period, the electron tunneling between the Cu atoms becomes more likely. At elevated temperatures, the average tunneling distance increases, leading to a sharp decrease of the tunneling probability and, consequently, to a sharp increase in transient resistance.
Collapse
Affiliation(s)
- Mohammad Al-Mamun
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marius Orlowski
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
5
|
Kim D, Du R, Yu SY, Yin Y, Dong S, Li Q, Mohney SE, Li X, Tadigadapa S. Enhanced thermoelectric efficiency in nanocrystalline bismuth telluride nanotubes. NANOTECHNOLOGY 2020; 31:365703. [PMID: 32470964 DOI: 10.1088/1361-6528/ab97d2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report on the thermal and thermoelectric properties of individual nanocrystalline Bi2 Te3 nanotubes synthesized by the solution phase method using 3ω method and a microfabricated testbench. Measurements show that the nanotubes offer improved ZT compared to bulk Bi2Te3 near room temperature due to an enhanced Seebeck coefficient and suppressed thermal conductivity. This improvement in ZT originates from the nanocrystalline nature and low dimensionality of the nanotubes. Domain boundary filtering of low-energy electrons provides an enhanced Seebeck coefficient. The scattering of phonons at the surface of the nanotube leads to suppressed thermal conductivity. These have been theoretically analyzed using the Boltzmann equation based on the relaxation time approximation and Landauer approach. This work clearly demonstrates the possibility of achieving enhancement in thermoelectric efficiency by combining nanocrystalline and low-dimensional systems.
Collapse
Affiliation(s)
- DukSoo Kim
- Samsung Electronics, 129 Samsung ro, Suwon-Si, Gyeonggi-Do 443-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Taniguchi M. Paving the way to single-molecule chemistry through molecular electronics. Phys Chem Chem Phys 2019; 21:9641-9650. [PMID: 31062773 DOI: 10.1039/c9cp00264b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since our understanding of single-molecule junctions, in which single molecules are connected between nanoelectrodes, has deepened, we have paved the way to single-molecule chemistry. Herein, we review fundamental properties, including the number of molecules connected to the electrode, their structure and type, the bonding force between the single molecule and electrode and the thermopower and quantum interference in single-molecule junctions. Additionally, we review the application of single-molecule junctions to biomolecules. Finally, we explore single-molecule chemical reaction analysis, which is one direction of single-molecule junction research.
Collapse
Affiliation(s)
- Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
7
|
Singh G, Kumar K, Moudgil RK. Alloying-induced spin Seebeck effect and spin figure of merit in Pt-based bimetallic atomic wires of noble metals. Phys Chem Chem Phys 2019; 21:20965-20980. [DOI: 10.1039/c9cp01671f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The chemical potential of electrodes can be tuned to generate pure thermal spin voltages in certain bimetallic wires of noble metals.
Collapse
Affiliation(s)
- Gurvinder Singh
- Department of Physics
- S. D. College
- Ambala Cantt-133 001
- India
- Department of Physics
| | - Krishan Kumar
- Department of Physics
- S. D. College
- Ambala Cantt-133 001
- India
| | - R. K. Moudgil
- Department of Physics
- Kurukshetra University
- Kurukshetra – 136 119
- India
| |
Collapse
|
8
|
Abstract
Understanding and control of heat dissipation is an important challenge in nanoelectronics wherein field-accelerated hot carriers in current-carrying ballistic systems release a large part of the kinetic energy into external bulk phonon baths. Here we report on a physical mechanism of this remote heat dissipation and its role on the stability of atomic contacts. We used a nano-fabricated thermocouple to directly characterize the self-heating in a mechanically-configurable Au junction. We found more pronounced heat dissipation at the current downstream that signifies the electron-hole asymmetry in Au nanocontacts. Meanwhile, the simultaneously measured single-atom chain lifetime revealed a minor influence of the heat dissipation on the contact stability by virtue of microleads serving as an effective heat spreader to moderate the temperature rise to several Kelvins from the ambient under microwatt input power. The present finding can be used for practical design of atomic and molecular electronic devices for heat dissipation managements.
Collapse
|
9
|
Taniguchi M. Single-Molecule Analysis Methods Using Nanogap Electrodes and Their Application to DNA Sequencing Technologies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047
| |
Collapse
|
10
|
|
11
|
Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions. Sci Rep 2017; 7:7949. [PMID: 28801557 PMCID: PMC5554135 DOI: 10.1038/s41598-017-08553-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022] Open
Abstract
The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.
Collapse
|
12
|
Advance of Mechanically Controllable Break Junction for Molecular Electronics. Top Curr Chem (Cham) 2017; 375:61. [DOI: 10.1007/s41061-017-0149-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
13
|
Mosso N, Drechsler U, Menges F, Nirmalraj P, Karg S, Riel H, Gotsmann B. Heat transport through atomic contacts. NATURE NANOTECHNOLOGY 2017; 12:430-433. [PMID: 28166205 DOI: 10.1038/nnano.2016.302] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.
Collapse
Affiliation(s)
- Nico Mosso
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Ute Drechsler
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Fabian Menges
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Peter Nirmalraj
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Siegfried Karg
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Heike Riel
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Bernd Gotsmann
- IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
14
|
Tsutsui M, Yokota K, Morikawa T, Taniguchi M. Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower. Sci Rep 2017; 7:44276. [PMID: 28281684 PMCID: PMC5345045 DOI: 10.1038/srep44276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/06/2017] [Indexed: 11/26/2022] Open
Abstract
Molecular junction is a chemically-defined nanostructure whose discrete electronic states are expected to render enhanced thermoelectric figure of merit suitable for energy-harvesting applications. Here, we report on geometrical dependence of thermoelectricity in metal-molecule-metal structures. We performed simultaneous measurements of the electrical conductance and thermovoltage of aromatic molecules having different anchoring groups at room temperature in vacuum. We elucidated the mutual contributions of vacuum tunnelling on thermoelectricity in the short molecular bridges. We also found stretching-induced thermoelectric voltage enhancement in thiol-linked single-molecule bridges along with absence of the pulling effects in diamine counterparts, thereby suggested that the electromechanical effect would be a rather universal phenomenon in Au-S anchored molecular junctions that undergo substantial metal-molecule contact elongation upon stretching. The present results provide a novel concept for molecular design to achieve high thermopower with single-molecule junctions.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazumichi Yokota
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takanori Morikawa
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
15
|
Ofarim A, Kopp B, Möller T, Martin L, Boneberg J, Leiderer P, Scheer E. Thermo-voltage measurements of atomic contacts at low temperature. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:767-75. [PMID: 27335765 PMCID: PMC4902067 DOI: 10.3762/bjnano.7.68] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/10/2016] [Indexed: 05/28/2023]
Abstract
We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = -ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.
Collapse
Affiliation(s)
- Ayelet Ofarim
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Bastian Kopp
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Thomas Möller
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - León Martin
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Johannes Boneberg
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Paul Leiderer
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Elke Scheer
- Department of Physics, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
16
|
Rincón-García L, Evangeli C, Rubio-Bollinger G, Agraït N. Thermopower measurements in molecular junctions. Chem Soc Rev 2016; 45:4285-306. [DOI: 10.1039/c6cs00141f] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The measurement of thermopower in molecular junctions offers complementary information to conductance measurements and is becoming essential for the understanding of transport processes at the nanoscale.
Collapse
Affiliation(s)
- Laura Rincón-García
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia
| | - Charalambos Evangeli
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
| | - Gabino Rubio-Bollinger
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
- Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera”
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC)
- Universidad Autónoma de Madrid
- E-28049 Madrid
- Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia
| |
Collapse
|
17
|
Remote control of magnetostriction-based nanocontacts at room temperature. Sci Rep 2015; 5:13621. [PMID: 26323326 PMCID: PMC4555029 DOI: 10.1038/srep13621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/31/2015] [Indexed: 11/23/2022] Open
Abstract
The remote control of the electrical conductance through nanosized junctions at room temperature will play an important role in future nano-electromechanical systems and electronic devices. This can be achieved by exploiting the magnetostriction effects of ferromagnetic materials. Here we report on the electrical conductance of magnetic nanocontacts obtained from wires of the giant magnetostrictive compound Tb0.3Dy0.7Fe1.95 as an active element in a mechanically controlled break-junction device. The nanocontacts are reproducibly switched at room temperature between “open” (zero conductance) and “closed” (nonzero conductance) states by variation of a magnetic field applied perpendicularly to the long wire axis. Conductance measurements in a magnetic field oriented parallel to the long wire axis exhibit a different behaviour where the conductance switches between both states only in a limited field range close to the coercive field. Investigating the conductance in the regime of electron tunneling by mechanical or magnetostrictive control of the electrode separation enables an estimation of the magnetostriction. The present results pave the way to utilize the material in devices based on nano-electromechanical systems operating at room temperature.
Collapse
|
18
|
Tsutsui M, Morikawa T, He Y, Arima A, Taniguchi M. High thermopower of mechanically stretched single-molecule junctions. Sci Rep 2015; 5:11519. [PMID: 26112999 PMCID: PMC4481826 DOI: 10.1038/srep11519] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/29/2015] [Indexed: 11/10/2022] Open
Abstract
Metal-molecule-metal junction is a promising candidate for thermoelectric applications that utilizes quantum confinement effects in the chemically defined zero-dimensional atomic structure to achieve enhanced dimensionless figure of merit ZT. A key issue in this new class of thermoelectric nanomaterials is to clarify the sensitivity of thermoelectricity on the molecular junction configurations. Here we report simultaneous measurements of the thermoelectric voltage and conductance on Au-1,4-benzenedithiol (BDT)-Au junctions mechanically-stretched in-situ at sub-nanoscale. We obtained the average single-molecule conductance and thermopower of 0.01 G0 and 15 μV/K, respectively, suggesting charge transport through the highest occupied molecular orbital. Meanwhile, we found the single-molecule thermoelectric transport properties extremely-sensitive to the BDT bridge configurations, whereby manifesting the importance to design the electrode-molecule contact motifs for optimizing the thermoelectric performance of molecular junctions.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takanori Morikawa
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuhui He
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Akihide Arima
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
19
|
Evangeli C, Matt M, Rincón-García L, Pauly F, Nielaba P, Rubio-Bollinger G, Cuevas JC, Agraït N. Quantum thermopower of metallic atomic-size contacts at room temperature. NANO LETTERS 2015; 15:1006-11. [PMID: 25607343 DOI: 10.1021/nl503853v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report conductance and thermopower measurements of metallic atomic-size contacts, namely gold and platinum, using a scanning tunneling microscope (STM) at room temperature. We find that few-atom gold contacts have an average negative thermopower, whereas platinum contacts present a positive thermopower, showing that for both metals, the sign of the thermopower in the nanoscale differs from that of bulk wires. We also find that the magnitude of the thermopower exhibits minima at the maxima of the conductance histogram in the case of gold nanocontacts while for platinum it presents large fluctuations. Tight-binding calculations and Green's function techniques, together with molecular dynamics simulations, show that these observations can be understood in the context of the Landauer-Büttiker picture of coherent transport in atomic-scale wires. In particular, we show that the differences in the thermopower between these two metals are due to the fact that the elastic transport is dominated by the 6s orbitals in the case of gold and by the 5d orbitals in the case of platinum.
Collapse
Affiliation(s)
- Charalambos Evangeli
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid , E-28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Matsushita R, Kaneko S, Fujii S, Nakamura H, Kiguchi M. Temperature dependence of the thermopower and its variation of the Au atomic contact. NANOTECHNOLOGY 2015; 26:045709. [PMID: 25566868 DOI: 10.1088/0957-4484/26/4/045709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We performed simultaneous measurements of the thermopower, and conductance of Au atomic contacts during the self-breaking process under temperature control. During the whole measurement temperature regime (290-330 K), the thermopower randomly fluctuated from positive to negative in sign, and the average thermopower was negligibly small with respect to the variation of the thermopower of the contact. Meanwhile, the standard deviation of the thermoelectric voltage increased linearly with the temperature difference across the contacts. Above 320 K, we observed a decrease in the standard deviation of thermopower, which suggested a decrease in the density of defects near the contacts. The linear increase in the standard deviation of the thermoelectric voltage, and the decrease in the standard deviation of the thermopower above 320 K, indicate that the standard deviation of thermopower provides insight into the thermopower of an individual Au atomic contact and the atomic structure of Au atomic contacts, such as crystallinity and the distribution of defects near the contacts.
Collapse
Affiliation(s)
- Ryuji Matsushita
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 W4-10, Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | | | | | | | | |
Collapse
|
21
|
Morikawa T, Arima A, Tsutsui M, Taniguchi M. Thermoelectric voltage measurements of atomic and molecular wires using microheater-embedded mechanically-controllable break junctions. NANOSCALE 2014; 6:8235-8241. [PMID: 24930503 DOI: 10.1039/c4nr00127c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We developed a method for simultaneous measurements of conductance and thermopower of atomic and molecular junctions by using a microheater-embedded mechanically-controllable break junction. We find linear increase in the thermoelectric voltage of Au atomic junctions with the voltage added to the heater. We also detect thermopower oscillations at several conductance quanta reflecting the quantum confinement effects in the atomic wire. Under high heater voltage conditions, on the other hand, we observed a peculiar behaviour in the conductance dependent thermopower, which was ascribed to a disordered contact structure under elevated temperatures.
Collapse
Affiliation(s)
- Takanori Morikawa
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|