Pavlyukh Y. Padé resummation of many-body perturbation theories.
Sci Rep 2017;
7:504. [PMID:
28356576 PMCID:
PMC5428253 DOI:
10.1038/s41598-017-00355-w]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/21/2017] [Indexed: 11/17/2022] Open
Abstract
In a typical scenario the diagrammatic many-body perturbation theory generates asymptotic series. Despite non-convergence, the asymptotic expansions are useful when truncated to a finite number of terms. This is the reason for the popularity of leading-order methods such as the GW approximation in condensed matter, molecular and atomic physics. Appropriate truncation order required for the accurate description of strongly correlated materials is, however, not known a priori. Here an efficient method based on the Padé approximation is introduced for the regularization of perturbative series allowing to perform higher-order self-consistent calculations and to make quantitative predictions on the convergence of many-body perturbation theories. The theory is extended towards excited states where the Wick theorem is not directly applicable. Focusing on the plasmon-assisted photoemission from graphene, we treat diagrammatically electrons coupled to the excited state plasmons and predict new spectral features that can be observed in the time-resolved measurements.
Collapse