1
|
Abstract
Until the acquisition of in-situ measurements, the study of the present-day heat flow of Mars must rely on indirect methods, mainly based on the relation between the thermal state of the lithosphere and its mechanical strength, or on theoretical models of internal evolution. Here, we present a first-order global model for the present-day surface heat flow for Mars, based on the radiogenic heat production of the crust and mantle, on scaling of heat flow variations arising from crustal thickness and topography variations, and on the heat flow derived from the effective elastic thickness of the lithosphere beneath the North Polar Region. Our preferred model finds heat flows varying between 14 and 25 mW m-2, with an average value of 19 mW m-2. Similar results (although about ten percent higher) are obtained if we use heat flow based on the lithospheric strength of the South Polar Region. Moreover, expressing our results in terms of the Urey ratio (the ratio between total internal heat production and total heat loss through the surface), we estimate values close to 0.7-0.75, which indicates a moderate contribution of secular cooling to the heat flow of Mars (consistent with the low heat flow values deduced from lithosphere strength), unless heat-producing elements abundances for Mars are subchondritic.
Collapse
|
2
|
Westall F, Foucher F, Bost N, Bertrand M, Loizeau D, Vago JL, Kminek G, Gaboyer F, Campbell KA, Bréhéret JG, Gautret P, Cockell CS. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. ASTROBIOLOGY 2015; 15:998-1029. [PMID: 26575218 PMCID: PMC4653824 DOI: 10.1089/ast.2015.1374] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
UNLABELLED The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This "punctuated" scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5-3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. KEY WORDS Mars-Early Earth-Anaerobic chemotrophs-Biosignatures-Astrobiology missions to Mars.
Collapse
Affiliation(s)
- Frances Westall
- CNRS-OSUC-Centre de Biophysique Moléculaire, CS80054, Orléans, France
| | - Frédéric Foucher
- CNRS-OSUC-Centre de Biophysique Moléculaire, CS80054, Orléans, France
| | - Nicolas Bost
- CNRS-Conditions Extrêmes et Matériaux: Haute Température et Irradiation, CS90055, Orléans, France
| | - Marylène Bertrand
- CNRS-OSUC-Centre de Biophysique Moléculaire, CS80054, Orléans, France
| | | | | | | | - Frédéric Gaboyer
- CNRS-OSUC-Centre de Biophysique Moléculaire, CS80054, Orléans, France
| | | | - Jean-Gabriel Bréhéret
- GéoHydrosytèmes Continentaux, Faculté des Sciences et Techniques, Université François-Rabelais de Tours, Tours, France
| | - Pascale Gautret
- CNRS-OSUC-Institut des Sciences de la Terre d'Orléans, Orléans, France
| | | |
Collapse
|