1
|
Khan A, Minbay M, Attia Z, Ay AA, Ingram KK. Sex- and Substance-Specific Associations of Circadian-Related Genes with Addiction in the UK Biobank Cohort Implicate Neuroplasticity Pathways. Brain Sci 2024; 14:1282. [PMID: 39766481 PMCID: PMC11674644 DOI: 10.3390/brainsci14121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The circadian clockwork is implicated in the etiology of addiction, with circadian rhythm disruptions bidirectionally linked to substance abuse, but the molecular mechanisms that underlie this connection are not well known. METHODS Here, we use machine learning to reveal sex- and substance-specific associations with addiction in variants from 51 circadian-related genes (156,702 SNPs) in 98,800 participants from a UK Biobank cohort. We further analyze SNP associations in a subset of the cohort for substance-specific addictions (alcohol, illicit drugs (narcotics), and prescription drugs (opioids)). RESULTS We find robust (OR > 10) and novel sex-specific and substance-specific associations with variants in synaptic transcription factors (ZBTB20, CHRNB3) and hormone receptors (RORA), particularly in individuals addicted to narcotics and opioids. Circadian-related gene variants associated with male and female addiction were non-overlapping; variants in males primarily involve dopaminergic pathways, while variants in females factor in metabolic and inflammation pathways, with a novel gene association of female addiction with DELEC1, a gene of unknown function. CONCLUSIONS Our findings underscore the complexity of genetic pathways associated with addiction, involving core clock genes and circadian-regulated pathways, and reveal novel circadian-related gene associations that will aid the development of targeted, sex-specific therapeutic interventions for substance abuse.
Collapse
Affiliation(s)
- Ayub Khan
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.K.); (A.A.A.)
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (M.M.); (Z.A.)
| | - Mete Minbay
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (M.M.); (Z.A.)
| | - Ziad Attia
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA; (M.M.); (Z.A.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Ahmet Ali Ay
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.K.); (A.A.A.)
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
| | - Krista K. Ingram
- Department of Biology, Colgate University, Hamilton, NY 13346, USA; (A.K.); (A.A.A.)
| |
Collapse
|
2
|
Al-Eitan L, Shatnawi M, Alghamdi M. Investigating CHRNA5, CHRNA3, and CHRNB4 variants in the genetic landscape of substance use disorder in Jordan. BMC Psychiatry 2024; 24:436. [PMID: 38862938 PMCID: PMC11167846 DOI: 10.1186/s12888-024-05898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Substance use disorder (SUD) is a complex illness that can be attributed to the interaction between environmental and genetic factors. The nicotinic receptor gene cluster on chromosome 15 has a plausible association with SUD, particularly with nicotine dependence. METHODS This study investigated 15 SNPs within the CHRNA5, CHRNA3, and CHRNB4 genes. Sequencing was used for genotyping 495 Jordanian males with SUD and 497 controls matched for age, gender, and descent. RESULTS Our findings revealed that none of the tested alleles or genotypes were correlated with SUD. However, our analysis suggests that the route of substance use was linked to rs1051730 (P value = 0.04), rs8040868 (P value = 0.01) of CHRNA3, and rs16969968 (P value = 0.03) of CHRNA5. Additionally, a correlation was identified between rs3813567 of the CHRNB4 gene and the age at substance use onset (P value = 0.04). CONCLUSIONS Variants in CHRNA5, CHRNA3, and CHRNB4 may interact with SUD features that can influence the development and progression of the disorder among Jordanians.
Collapse
Affiliation(s)
- Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Mohammad Shatnawi
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
3
|
Freda PJ, Moore JH, Kranzler HR. The phenomics and genetics of addictive and affective comorbidity in opioid use disorder. Drug Alcohol Depend 2021; 221:108602. [PMID: 33652377 PMCID: PMC8059867 DOI: 10.1016/j.drugalcdep.2021.108602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/21/2022]
Abstract
Opioid use disorder (OUD) creates significant public health and economic burdens worldwide. Therefore, understanding the risk factors that lead to the development of OUD is fundamental to reducing both its prevalence and its impact. Significant sources of OUD risk include co-occurring lifetime and current diagnoses of both psychiatric disorders, primarily mood disorders, and other substance use disorders, and unique and shared genetic factors. Although there appears to be pleiotropy between OUD and both mood and substance use disorders, this aspect of OUD risk is poorly understood. In this review, we describe the prevalence and clinical significance of addictive and affective comorbidities as risk factors for OUD development as a basis for rational opioid prescribing and OUD treatment and to improve efforts to prevent the disorder. We also review the genetic variants that have been associated with OUD and other addictive and affective disorders to highlight targets for future study and risk assessment protocols.
Collapse
Affiliation(s)
- Philip J. Freda
- University of Pennsylvania, Biostatistics, Epidemiology, & Informatics, The Perelman School of Medicine, University of Pennsylvania A201 R…, Philadelphia, Pennsylvania 19104, United States
| | - Jason H. Moore
- Edward Rose Professor of Informatics, Director, Institute for Biomedical Informatics, Director, Division of Informatics, Department of Biostatistics, Epidemiology, & Informatics, Senior Associate Dean for Informatics, The Perelman School of Medicine, University of Pennsylvania, Contact Information: D202 Richards Building, 3700 Hamilton Walk, University of Pennsylvania, Philadelphia, PA 19104-6116
| | - Henry R. Kranzler
- Benjamin Rush Professor in Psychiatry, Department of Psychiatry, University of Pennsylvania, Treatment Research Center, 3535 Market Street, Suite 500, Philadelphia, PA 19104-6178
| |
Collapse
|
4
|
Santoro A, Tomino C, Prinzi G, Lamonaca P, Cardaci V, Fini M, Russo P. Tobacco Smoking: Risk to Develop Addiction, Chronic Obstructive Pulmonary Disease, and Lung Cancer. Recent Pat Anticancer Drug Discov 2019; 14:39-52. [PMID: 30605063 DOI: 10.2174/1574892814666190102122848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The morbidity and mortality associated with tobacco smoking is well established. Nicotine is the addictive component of tobacco. Nicotine, through the non-neuronal α7nicotinic receptor, induces cell proliferation, neo-angiogenesis, epithelial to mesenchymal transition, and inhibits drug-induced apoptosis. OBJECTIVE To understand the genetic, molecular and cellular biology of addiction, chronic obstructive pulmonary disease and lung cancer. METHODS The search for papers to be included in the review was performed during the months of July- September 2018 in the following databases: PubMed (http://www.ncbi.nlm.nih.gov), Scopus (http://www.scopus.com), EMBASE (http://www.elsevier.com/online-tools/embase), and ISI Web of Knowledge (http://apps.webofknowledge.com/). The following searching terms: "nicotine", "nicotinic receptor", and "addiction" or "COPD" or "lung cancer" were used. Patents were retrieved in clinicaltrials.gov (https://clinicaltrials.gov/). All papers written in English were evaluated. The reference list of retrieved articles was also reviewed to identify other eligible studies that were not indexed by the above-mentioned databases. New experimental data on the ability of nicotine to promote transformation of human bronchial epithelial cells, exposed for one hour to Benzo[a]pyrene-7,8-diol-9-10-epoxide, are reported. RESULTS Nicotinic receptors variants and nicotinic receptors upregulation are involved in addiction, chronic obstructive pulmonary disease and/or lung cancer. Nicotine through α7nicotinic receptor upregulation induces complete bronchial epithelial cells transformation. CONCLUSION Genetic studies highlight the involvement of nicotinic receptors variants in addiction, chronic obstructive pulmonary disease and/or lung cancer. A future important step will be to translate these genetic findings to clinical practice. Interventions able to help smoking cessation in nicotine dependence subjects, under patent, are reported.
Collapse
Affiliation(s)
- Alessia Santoro
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Vittorio Cardaci
- Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana, 235, I-00163 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| |
Collapse
|
5
|
Crits-Christoph P, Wadden S, Gaines A, Rieger A, Gallop R, McKay JR, Gibbons MBC. Symptoms of anhedonia, not depression, predict the outcome of treatment of cocaine dependence. J Subst Abuse Treat 2018; 92:46-50. [PMID: 30032944 PMCID: PMC6502233 DOI: 10.1016/j.jsat.2018.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 06/19/2018] [Indexed: 01/09/2023]
Abstract
The purpose of this paper is to reanalyze data from two studies to determine if anhedonia specifically, rather than depression overall, predicts treatment outcome for patients with cocaine use disorders. Measures of baseline anhedonia symptoms were created using anhedonia items from the Beck Depression Inventory (BDI) to re-examine National Institute on Drug Abuse Cocaine Collaborative Treatment study data (Crits-Christoph et al., 1999) and the contingency management group from the McKay et al. (2010) trial. Baseline anhedonia was used to predict cocaine abstinence rates across the treatment period in both studies. Anhedonia was a significant predictor of cocaine abstinence, even when overall depression scores excluding anhedonia were included in the models. The development of treatments to target individuals with cocaine use disorder who have symptoms of anhedonia has the potential to improve overall outcomes for those with this disorder.
Collapse
Affiliation(s)
- Paul Crits-Christoph
- Department of Psychiatry, (1)Perelman School of Medicine, University of Pennsylvania, 3535 Market St., 6th Floor, Philadelphia, PA 19104, United States of America.
| | - Steven Wadden
- Department of Psychiatry, (1)Perelman School of Medicine, University of Pennsylvania, 3535 Market St., 6th Floor, Philadelphia, PA 19104, United States of America
| | - Averi Gaines
- Department of Psychiatry, (1)Perelman School of Medicine, University of Pennsylvania, 3535 Market St., 6th Floor, Philadelphia, PA 19104, United States of America
| | - Agnes Rieger
- Department of Psychiatry, (1)Perelman School of Medicine, University of Pennsylvania, 3535 Market St., 6th Floor, Philadelphia, PA 19104, United States of America
| | - Robert Gallop
- Department of Mathematics, West Chester University, 25 University Avenue, Room 180, West Chester, PA 19383, United States of America
| | - James R McKay
- Department of Psychiatry, (1)Perelman School of Medicine, University of Pennsylvania, 3535 Market St., 6th Floor, Philadelphia, PA 19104, United States of America
| | - Mary Beth Connolly Gibbons
- Department of Psychiatry, (1)Perelman School of Medicine, University of Pennsylvania, 3535 Market St., 6th Floor, Philadelphia, PA 19104, United States of America
| |
Collapse
|
6
|
Pierce RC, Fant B, Swinford-Jackson SE, Heller EA, Berrettini WH, Wimmer ME. Environmental, genetic and epigenetic contributions to cocaine addiction. Neuropsychopharmacology 2018; 43:1471-1480. [PMID: 29453446 PMCID: PMC5983541 DOI: 10.1038/s41386-018-0008-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
Abstract
Decades of research on cocaine has produced volumes of data that have answered many important questions about the nature of this highly addictive drug. Sadly, none of this information has translated into the development of effective therapies for the treatment of cocaine addiction. This review endeavors to assess the current state of cocaine research in an attempt to identify novel pathways for therapeutic development. For example, risk of cocaine addiction is highly heritable but genome-wide analyses comparing cocaine-dependent individuals to controls have not resulted in promising targets for drug development. Is this because the genetics of addiction is too complex or because the existing research methodologies are inadequate? Likewise, animal studies have revealed dozens of enduring changes in gene expression following prolonged exposure to cocaine, none of which have translated into therapeutics either because the resulting compounds were ineffective or produced intolerable side-effects. Recently, attention has focused on epigenetic modifications resulting from repeated cocaine intake, some of which appear to be heritable through changes in the germline. While epigenetic changes represent new vistas for therapeutic development, selective manipulation of epigenetic marks is currently challenging even in animals such that translational potential is a distant prospect. This review will reveal that despite the enormous progress made in understanding the molecular and physiological bases of cocaine addiction, there is much that remains a mystery. Continued advances in genetics and molecular biology hold potential for revealing multiple pathways toward the development of treatments for the continuing scourge of cocaine addiction.
Collapse
Affiliation(s)
- R. Christopher Pierce
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Bruno Fant
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Sarah E. Swinford-Jackson
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Elizabeth A. Heller
- 0000 0004 1936 8972grid.25879.31Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Wade H. Berrettini
- 0000 0004 1936 8972grid.25879.31Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mathieu E. Wimmer
- 0000 0001 2248 3398grid.264727.2Department of Psychology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
7
|
Tomas-Roig J, Piscitelli F, Gil V, Quintana E, Ramió-Torrentà LL, Del Río JA, Moore TP, Agbemenyah H, Salinas G, Pommerenke C, Lorenzen S, Beißbarth T, Hoyer-Fender S, Di Marzo V, Havemann-Reinecke U. Effects of repeated long-term psychosocial stress and acute cannabinoid exposure on mouse corticostriatal circuitries: Implications for neuropsychiatric disorders. CNS Neurosci Ther 2018; 24:528-538. [PMID: 29388323 PMCID: PMC5969305 DOI: 10.1111/cns.12810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Vulnerability to psychiatric manifestations is achieved by the influence of genetic and environment including stress and cannabis consumption. Here, we used a psychosocial stress model based on resident‐intruder confrontations to study the brain corticostriatal‐function, since deregulation of corticostriatal circuitries has been reported in many psychiatric disorders. CB1 receptors are widely expressed in the central nervous system and particularly, in both cortex and striatum brain structures. Aims and methods The investigation presented here is addressed to assess the impact of repeated stress following acute cannabinoid exposure on behavior and corticostriatal brain physiology by assessing mice behavior, the concentration of endocannabinoid and endocannabinoid‐like molecules and changes in the transcriptome. Results Stressed animals urinated frequently; showed exacerbated scratching activity, lower striatal N‐arachidonylethanolamine (AEA) levels and higher cortical expression of cholinergic receptor nicotinic alpha 6. The cannabinoid agonist WIN55212.2 diminished locomotor activity while the inverse agonist increased the distance travelled in the center of the open field. Upon CB1 activation, N‐oleoylethanolamide and N‐palmitoylethanolamide, two AEA congeners that do not interact directly with cannabinoid receptors, were enhanced in the striatum. The co‐administration with both cannabinoids induced an up‐regulation of striatal FK506 binding protein 5. The inverse agonist in controls reversed the effects of WIN55212.2 on motor activity. When Rimonabant was injected under stress, the cortical levels of 2‐arachidonoylglycerol were maximum. The agonist and the antagonist influenced the cortical expression of cholinergic receptor nicotinic alpha 6 and serotonin transporter neurotransmitter type 4 in opposite directions, while their co‐administration tended to produce a null effect under stress. Conclusions The endocannabinoid system had a direct effect on serotoninergic neurotransmission and glucocorticoid signaling. Cholinergic receptor nicotinic alpha‐6 was shown to be deregulated in response to stress and following synthetic cannabinoid drugs thus could confer vulnerability to cannabis addiction and psychosis. Targeting the receptors of endocannabinoids and endocannabinoid‐like mediators might be a valuable option for treating stress‐related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Vanesa Gil
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ester Quintana
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Lluís L Ramió-Torrentà
- Girona Neuroimmunology and Multiple Sclerosis Unit (UNIEMTG), Dr. Josep Trueta University Hospital and Neurodegeneration and Neuroinflammation Research Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Jose Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Timothy Patrick Moore
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Child and Adolescent Psychiatry, University Hospital Münster, Münster, Germany
| | - Hope Agbemenyah
- Laboratory for Aging and Cognitive Diseases, European Neuroscience Institute, Goettingen, Germany
| | - Gabriela Salinas
- Department of Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Claudia Pommerenke
- Department of Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Stephan Lorenzen
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Developmental Biology, Göttingen, Germany
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
8
|
Le Q, Yan B, Yu X, Li Y, Song H, Zhu H, Hou W, Ma D, Wu F, Zhou Y, Ma L. Drug-seeking motivation level in male rats determines offspring susceptibility or resistance to cocaine-seeking behaviour. Nat Commun 2017; 8:15527. [PMID: 28556835 PMCID: PMC5459992 DOI: 10.1038/ncomms15527] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Liability to develop drug addiction is heritable, but the precise contribution of non-Mendelian factors is not well understood. Here we separate male rats into addiction-like and non-addiction-like groups, based on their incentive motivation to seek cocaine. We find that the high incentive responding of the F0 generation could be transmitted to F1 and F2 generations. Moreover, the inheritance of high incentive response to cocaine is contingent on high motivation, as it is elicited by voluntary cocaine administration, but not high intake of cocaine itself. We also find DNA methylation differences between sperm of addiction-like and non-addiction-like groups that were maintained from F0 to F1, providing an epigenetic link to transcriptomic changes of addiction-related signalling pathways in the nucleus accumbens of offspring. Our data suggest that highly motivated drug seeking experience may increase vulnerability and/or reduce resistance to drug addiction in descendants. Drug addiction is partially heritable but the non-genetic inheritance mechanisms are not well understood. The authors show that motivation of male rats in response to cocaine self-administration elicit susceptibility and/or decreased resistance to developing addiction like behaviour in offspring.
Collapse
Affiliation(s)
- Qiumin Le
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Biao Yan
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiangchen Yu
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yanqing Li
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Haikun Song
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Huiwen Zhu
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Weiqing Hou
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Dingailu Ma
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Feizhen Wu
- Laboratory of Epigenetics, Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuqing Zhou
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Lan Ma
- Department of Neurosurgery, and Institute of Translational Neuroscience, Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| |
Collapse
|
9
|
Kamens HM, Corley RP, Richmond PA, Darlington TM, Dowell R, Hopfer CJ, Stallings MC, Hewitt JK, Brown SA, Ehringer MA. Evidence for Association Between Low Frequency Variants in CHRNA6/CHRNB3 and Antisocial Drug Dependence. Behav Genet 2016; 46:693-704. [PMID: 27085880 DOI: 10.1007/s10519-016-9792-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 04/05/2016] [Indexed: 11/24/2022]
Abstract
Common SNPs in nicotinic acetylcholine receptor genes (CHRN genes) have been associated with drug behaviors and personality traits, but the influence of rare genetic variants is not well characterized. The goal of this project was to identify novel rare variants in CHRN genes in the Center for Antisocial Drug Dependence (CADD) and Genetics of Antisocial Drug Dependence (GADD) samples and to determine if low frequency variants are associated with antisocial drug dependence. Two samples of 114 and 200 individuals were selected using a case/control design including the tails of the phenotypic distribution of antisocial drug dependence. The capture, sequencing, and analysis of all variants in 16 CHRN genes (CHRNA1-7, 9, 10, CHRNB1-4, CHRND, CHRNG, CHRNE) were performed independently for each subject in each sample. Sequencing reads were aligned to the human reference sequence using BWA prior to variant calling with the Genome Analysis ToolKit (GATK). Low frequency variants (minor allele frequency < 0.05) were analyzed using SKAT-O and C-alpha to examine the distribution of rare variants among cases and controls. In our larger sample, the region containing the CHRNA6/CHRNB3 gene cluster was significantly associated with disease status using both SKAT-O and C-alpha (unadjusted p values <0.05). More low frequency variants in the CHRNA6/CHRNB3 gene region were observed in cases compared to controls. These data support a role for genetic variants in CHRN genes and antisocial drug behaviors.
Collapse
Affiliation(s)
- Helen M Kamens
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Robin P Corley
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA
| | | | - Todd M Darlington
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA
| | - Robin Dowell
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Christian J Hopfer
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA.,Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA.,Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA
| | - Sandra A Brown
- Department of Psychology and Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado, 447 UCB, Boulder, CO, 80309, USA. .,Department of Integrative Physiology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
10
|
Melroy-Greif WE, Stitzel JA, Ehringer MA. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use. GENES, BRAIN, AND BEHAVIOR 2016; 15:89-107. [PMID: 26351737 PMCID: PMC4780670 DOI: 10.1111/gbb.12251] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022]
Abstract
Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain's reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use.
Collapse
Affiliation(s)
- Whitney E. Melroy-Greif
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
| | - Jerry A. Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| | - Marissa A. Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| |
Collapse
|
11
|
Sadler B, Haller G, Edenberg H, Tischfield J, Brooks A, Kramer J, Schuckit M, Nurnberger J, Goate A. Positive Selection on Loci Associated with Drug and Alcohol Dependence. PLoS One 2015; 10:e0134393. [PMID: 26270548 PMCID: PMC4536217 DOI: 10.1371/journal.pone.0134393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/08/2015] [Indexed: 01/20/2023] Open
Abstract
Much of the evolution of human behavior remains a mystery, including how certain disadvantageous behaviors are so prevalent. Nicotine addiction is one such phenotype. Several loci have been implicated in nicotine related phenotypes including the nicotinic receptor gene clusters (CHRNs) on chromosomes 8 and 15. Here we use 1000 Genomes sequence data from 3 populations (Africans, Asians and Europeans) to examine whether natural selection has occurred at these loci. We used Tajima's D and the integrated haplotype score (iHS) to test for evidence of natural selection. Our results provide evidence for strong selection in the nicotinic receptor gene cluster on chromosome 8, previously found to be significantly associated with both nicotine and cocaine dependence, as well as evidence selection acting on the region containing the CHRNA5 nicotinic receptor gene on chromosome 15, that is genome wide significant for risk for nicotine dependence. To examine the possibility that this selection is related to memory and learning, we utilized genetic data from the Collaborative Studies on the Genetics of Alcoholism (COGA) to test variants within these regions with three tests of memory and learning, the Wechsler Adult Intelligence Scale (WAIS) Block Design, WAIS Digit Symbol and WAIS Information tests. Of the 17 SNPs genotyped in COGA in this region, we find one significantly associated with WAIS digit symbol test results. This test captures aspects of reaction time and memory, suggesting that a phenotype relating to memory and learning may have been the driving force behind selection at these loci. This study could begin to explain why these seemingly deleterious SNPs are present at their current frequencies.
Collapse
Affiliation(s)
- Brooke Sadler
- Department of Psychiatry, Washington University, St. Louis, MO, United States of America
| | - Gabe Haller
- Department of Orthopedic Surgery, Washington University, St. Louis, MO, United States of America
| | - Howard Edenberg
- Department of Molecular Biology, Indiana University, Indianapolis, IN, United States of America
| | - Jay Tischfield
- Department of Genetics, Rutgers University, Piscataway, NJ, United States of America
| | - Andy Brooks
- Department of Genetics, Rutgers University, Piscataway, NJ, United States of America
| | - John Kramer
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States of America
| | - Marc Schuckit
- Department of Psychiatry, University of San Diego, La Jolla, CA, United States of America
| | - John Nurnberger
- Department of Psychiatry, Indiana University, Indianapolis, IN, United States of America
| | - Alison Goate
- Department of Neuroscience, Mount Sinai, New York City, NY, United States of America
| |
Collapse
|