1
|
Tanaka KI, Kawahara M. Carnosine and Lung Disease. Curr Med Chem 2020; 27:1714-1725. [PMID: 31309876 DOI: 10.2174/0929867326666190712140545] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022]
Abstract
Carnosine (β-alanyl-L-histidine) is a small dipeptide with numerous activities, including antioxidant effects, metal ion chelation, proton buffering capacity, and inhibitory effects on protein carbonylation and glycation. Carnosine has been mostly studied in organs where it is abundant, including skeletal muscle, cerebral cortex, kidney, spleen, and plasma. Recently, the effect of supplementation with carnosine has been studied in organs with low levels of carnosine, such as the lung, in animal models of influenza virus or lipopolysaccharide-induced acute lung injury and pulmonary fibrosis. Among the known protective effects of carnosine, its antioxidant effect has attracted increasing attention for potential use in treating lung disease. In this review, we describe the in vitro and in vivo biological and physiological actions of carnosine. We also report our recent study and discuss the roles of carnosine or its related compounds in organs where carnosine is present in only small amounts (especially the lung) and its protective mechanisms.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| |
Collapse
|
2
|
Kimura K, Nakano Y, Sugizaki T, Shimoda M, Kobayashi N, Kawahara M, Tanaka KI. Protective effect of polaprezinc on cadmium-induced injury of lung epithelium. Metallomics 2020; 11:1310-1320. [PMID: 31236550 DOI: 10.1039/c9mt00060g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cadmium is a toxic metal contained in food, water and the atmosphere, and exposure to cadmium can cause respiratory diseases in humans. Various health problems caused by cadmium result from oxidative stress-dependent cellular injury. Metallothioneins are intracellular, cysteine-rich, metal-binding proteins that have a detoxifying action on heavy metals such as cadmium in various organs. In addition, expression of metallothioneins is induced by metals with low biological toxicity, such as zinc. Therefore, in this study we examined whether polaprezinc, a chelate compound consisting of carnosine and zinc, can suppress cadmium-induced lung epithelial cell death. We found that cell viability markers (intracellular ATP levels and mitochondrial activity) and cytotoxicity (lactate dehydrogenase release) were decreased and increased, respectively by cadmium treatment; however, polaprezinc significantly reversed these changes. Moreover, cadmium-dependent endoplasmic reticulum stress responses were suppressed by polaprezinc treatment. We then examined the protective mechanisms of polaprezinc, focusing on oxidative stress. Cadmium induced the production of reactive oxygen species (ROS) in A549 cells in a dose-dependent manner and polaprezinc significantly suppressed this cadmium-induced ROS production. Finally, we examined whether polaprezinc exerts an antioxidative action by inducing metallothioneins. We found that polaprezinc dose-dependently induced metallothioneins using real-time RT-PCR, ELISA, and western blotting analyses. These results indicate that polaprezinc can suppress cadmium-induced lung epithelial cell death and oxidative stress by inducing metallothioneins. We therefore suggest that polaprezinc may have therapeutic effects against respiratory diseases, such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Kazuma Kimura
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Yukari Nakano
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Toshifumi Sugizaki
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Mikako Shimoda
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Nahoko Kobayashi
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
3
|
Jyothi DB, Prasad SV, Vangoori Y, Bharatha A. A Prospective Study on Prescription Pattern in Chronic Obstructive Pulmonary Disease. MAEDICA 2020; 15:37-44. [PMID: 32419859 PMCID: PMC7221280 DOI: 10.26574/maedica.2020.15.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Background: Irrational prescribing results produce a negative impact on health and economy of both individuals and society, leading to wastage of resources and widespread health hazards. Method: Outpatients with mild, moderate, and severe COPD were included. Several parameters were noted: patient's age and gender, outpatient (OPD) ID number, date of admission, occupation, h/o smoking, alcohol consumption, etc, disease condition details (duration, gradation as mild, moderate and severe, and co-existing diseases), prescribed medication details (dose, frequency, route of administration, and duration). Drug selection was assessed as per GOLD guidelines, the severity of disease was categorized according to the same guidelines, and medication efficacy was evaluated by treatment outcome according to the modified MRC dyspnoea scale. Results: Inhalation route (36.95%) was the most preferred route of drug administration in this study, followed by the parenteral route (34.34%), and enteral route (28.71%). Adherence to GOLD 2015: All patients (n=400) were categorized to Gold stages I to IV based on the severity of COPD. Amongst these patients, 11 were in stage I, 146 in stage II, 184 in stage III, and 59 in stage IV. The majority of subjects received fixed-dose combination therapy: levocetirizine + montelukast (77%) and least bromhexine + guaiphenesin + terbutaline + menthol (18%). Dyspnoea status was graded from 0 to 4 according to the modified MRC dyspnea scale. Out of the 400 patients, 18 had grade 0, 44 grade 1, 156 grade 2, 133 grade 3, and 49 grade 4. Conclusion: Overall, data from this analysis suggest that adherence to GOLD guidelines does not have a perceivable impact on symptom prevalence, exacerbation rate or lung function. Male sex, asthma and severe co-morbidities as a cerebrovascular insult could be associated with a risk for frequent exacerbations.
Collapse
Affiliation(s)
- D B Jyothi
- Vijayanagar Institute of Medical Sciences (VIMS), Bellary, Karnataka, India
| | - S Vijay Prasad
- Department of Pharmacology, Govt Medical College, SHIVPURI, Madhya Pradesh, India
| | - Yakaiah Vangoori
- Sri Ramachandra Institute of Higher Education and Research (SRIHER) Chennai and Santhiram Medical College, Nandyal, AP, India
| | - Ambadasu Bharatha
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Barbados, WI
| |
Collapse
|
4
|
Sugizaki T, Tanaka KI, Asano T, Kobayashi D, Hino Y, Takafuji A, Shimoda M, Mogushi K, Kawahara M, Mizushima T. Idebenone has preventative and therapeutic effects on pulmonary fibrosis via preferential suppression of fibroblast activity. Cell Death Discov 2019; 5:146. [PMID: 31754474 PMCID: PMC6861265 DOI: 10.1038/s41420-019-0226-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023] Open
Abstract
Alveolar epithelial injury induced by reactive oxygen species (ROS) and abnormal collagen production by activated fibroblasts (myofibroblasts) is involved in the onset and exacerbation of idiopathic pulmonary fibrosis (IPF). Compared with alveolar epithelial cells, lung fibroblasts, especially myofibroblasts, exhibit an apoptosis-resistance phenotype (apoptosis paradox) that appears to be involved in IPF pathogenesis. Thus, we screened for chemicals eliciting preferential cytotoxicity of LL29 cells (lung fibroblasts from an IPF patient) compared with A549 cells (human lung alveolar epithelial cell line) from medicines already in clinical use. We identified idebenone, a synthetic analogue of coenzyme Q10 (CoQ10, an antioxidant) that has been used clinically as a brain metabolic stimulant. Idebenone induced cell growth inhibition and cell death in LL29 cells at a lower concentration than in A549 cells, a feature that was not observed for other antioxidant molecules (such as CoQ10) and two IPF drugs (pirfenidone and nintedanib). Administration of idebenone prevented bleomycin-induced pulmonary fibrosis and increased pulmonary ROS levels. Importantly, idebenone also improved pulmonary fibrosis and lung function when administered after the development of fibrosis, whereas administration of CoQ10 similarly prevented bleomycin-induced pulmonary fibrosis, but had no effect after its development. Administration of idebenone, but not CoQ10, suppressed bleomycin-induced increases in lung myofibroblasts. In vitro, treatment of LL29 cells with idebenone, but not CoQ10, suppressed TGF-β–induced collagen production. These results suggest that in addition to antioxidant activity, idebenone exerts inhibitory activity on the function of lung fibroblasts, with the former activity being preventative and the latter therapeutic for bleomycin-induced fibrosis. Thus, we propose that idebenone may be more therapeutically beneficial for IPF patients than current treatments.
Collapse
Affiliation(s)
- Toshifumi Sugizaki
- 1Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ken-Ichiro Tanaka
- 2Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585 Japan
| | - Teita Asano
- 3Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8512 Japan
| | - Daisuke Kobayashi
- 2Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585 Japan
| | - Yuuki Hino
- 2Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585 Japan
| | - Ayaka Takafuji
- 2Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585 Japan
| | - Mikako Shimoda
- 2Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585 Japan
| | - Kaoru Mogushi
- 4Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiro Kawahara
- 2Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585 Japan
| | - Tohru Mizushima
- 5LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan
| |
Collapse
|
5
|
Yamashita Y, Tanaka KI, Yamakawa N, Asano T, Kanda Y, Takafuji A, Kawahara M, Takenaga M, Fukunishi Y, Mizushima T. Chemical modification-mediated optimisation of bronchodilatory activity of mepenzolate, a muscarinic receptor antagonist with anti-inflammatory activity. Bioorg Med Chem 2019; 27:3339-3346. [PMID: 31204225 DOI: 10.1016/j.bmc.2019.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/26/2022]
Abstract
The treatment for patients with chronic obstructive pulmonary disease (COPD) usually involves a combination of anti-inflammatory and bronchodilatory drugs. We recently found that mepenzolate bromide (1) and its derivative, 3-(2-hydroxy-2, 2-diphenylacetoxy)-1-(3-phenoxypropyl)-1-azoniabicyclo[2.2.2]octane bromide (5), have both anti-inflammatory and bronchodilatory activities. We chemically modified 5 with a view to obtain derivatives with both anti-inflammatory and longer-lasting bronchodilatory activities. Among the synthesized compounds, (R)-(-)-12 ((R)-3-(2-hydroxy-2,2-diphenylacetoxy)-1-(3-phenylpropyl)-1-azoniabicyclo[2.2.2]octane bromide) showed the highest affinity in vitro for the human muscarinic M3 receptor (hM3R). Compared to 1 and 5, (R)-(-)-12 exhibited longer-lasting bronchodilatory activity and equivalent anti-inflammatory effect in mice. The long-term intratracheal administration of (R)-(-)-12 suppressed porcine pancreatic elastase-induced pulmonary emphysema in mice, whereas the same procedure with a long-acting muscarinic antagonist used clinically (tiotropium bromide) did not. These results suggest that (R)-(-)-12 might be therapeutically beneficial for use with COPD patients given the improved effects seen against both inflammatory pulmonary emphysema and airflow limitation in this animal model.
Collapse
Affiliation(s)
- Yasunobu Yamashita
- Technology Research Association for Next-Generation Natural Products Chemistry, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ken-Ichiro Tanaka
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Naoki Yamakawa
- Shujitsu University School of Pharmacy, 1-6-1, Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Teita Asano
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8512, Japan
| | - Yuki Kanda
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Ayaka Takafuji
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Masahiro Kawahara
- Department of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo 202-8585, Japan
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki 216-8512, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tohru Mizushima
- LTT Bio-Pharma Co., Ltd, Shiodome Building 3F, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022, Japan.
| |
Collapse
|
6
|
Tanaka KI, Yamakawa N, Yamashita Y, Asano T, Kanda Y, Takafuji A, Kawahara M, Takenaga M, Fukunishi Y, Mizushima T. Identification of Mepenzolate Derivatives With Long-Acting Bronchodilatory Activity. Front Pharmacol 2018; 9:344. [PMID: 29692733 PMCID: PMC5902689 DOI: 10.3389/fphar.2018.00344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
The standard treatment for chronic obstructive pulmonary disease is a combination of anti-inflammatory drugs and bronchodilators. We recently found that mepenzolate bromide (MP), an antagonist for human muscarinic M3 receptor (hM3R), has both anti-inflammatory and short-acting bronchodilatory activities. To obtain MP derivatives with longer-lasting bronchodilatory activity, we synthesized hybrid compounds based on MP and two other muscarinic antagonists with long-acting bronchodilatory activity glycopyrronium bromide (GC) and aclidinium bromide (AD). Of these three synthesized hybrid compounds (MP-GC, GC-MP, MP-AD) and MP, MP-AD showed the highest affinity for hM3R and had the longest lasting bronchodilatory activity, which was equivalent to that of GC and AD. Both MP-GC and MP-AD exhibited an anti-inflammatory effect equivalent to that of MP, whereas, in line with GC and AD, GC-MP did not show this effect. We also confirmed that administration of MP-AD suppressed elastase-induced pulmonary emphysema in a mouse model. These findings provide important information about the structure-activity relationship of MP for both bronchodilatory and anti-inflammatory activities.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | | | - Yasunobu Yamashita
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Teita Asano
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yuki Kanda
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Ayaka Takafuji
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Masahiro Kawahara
- Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, Nishi-Tokyo, Japan
| | - Mitsuko Takenaga
- Institute of Medical Science, School of Medicine, St. Marianna University, Kawasaki, Japan
| | - Yoshifumi Fukunishi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
7
|
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. J Control Release 2017; 270:203-225. [PMID: 29199062 DOI: 10.1016/j.jconrel.2017.11.049] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
The use of nanoemulsion in augmenting dermal and transdermal effectiveness of drugs has now well established. The development of nanoemulsion based semisolid dosage forms is an active area of present research. However, thickening or liquid-to-semisolid conversion of the nanoemulsions provides opportunities to the formulation scientist to explore novel means of solving instability issues during transformation. Extending knowledge about the explicit role of nature/magnitude of zeta potential, types of emulsifiers and selection of appropriate semisolid bases could place these versatile carriers from laboratory to industrial scale. This article reviews the progressive advancement in the delivery of medicament via nanoemulsion with special reference to the dermal and transdermal administration. It is attempted to explore the most suitable semi solid dosage form for the particular type of nanoemulsion (o/w, w/o and others) and effect of particle size and zeta potential on the delivery of drugs through dermal or transdermal route. Finally, this review also highlights the basic principles and fundamental considerations of nanoemulsion manufacture, application of nanoemulsion based semisolid dosage forms in the dermal/transdermal administration and basic considerations during the nanoemulsion absorption into and through skin.
Collapse
Affiliation(s)
- Vineet Kumar Rai
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Nidhi Mishra
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Kuldeep Singh Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India
| | - Narayan Prasad Yadav
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, U.P., India.
| |
Collapse
|
8
|
Tanaka KI, Niino T, Ishihara T, Takafuji A, Takayama T, Kanda Y, Sugizaki T, Tamura F, Kurotsu S, Kawahara M, Mizushima T. Protective and therapeutic effect of felodipine against bleomycin-induced pulmonary fibrosis in mice. Sci Rep 2017; 7:3439. [PMID: 28611390 PMCID: PMC5469778 DOI: 10.1038/s41598-017-03676-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) involves alveolar epithelial injury and abnormal collagen production caused by activated fibroblasts; transforming growth factor (TGF)-β1 is implicated in this activation. In this study, we screened for chemicals capable of inhibiting TGF-β1-induced collagen production in cultured fibroblasts from medicines already in clinical use. We selected felodipine based on its extent of collagen production inhibition, clinical safety profile, and other pharmacological activity. Felodipine is a dihydropyridine Ca2+ channel blocker that has been used clinically to treat patients with high blood pressure. Felodipine suppressed collagen production within LL29 cells in the presence of TGF-β1, but not in its absence. Intratracheal administration of felodipine prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction. Felodipine also improved pulmonary fibrosis, as well as lung and respiratory function when administered after fibrosis development. Furthermore, administration of felodipine suppressed a bleomycin-induced increase in activated fibroblasts in the lung. We also found other dihydropyridine Ca2+ channel blockers (nifedipine and benidipine) inhibited collagen production in vitro and partially prevented bleomycin-induced pulmonary fibrosis, alteration of lung mechanics and respiratory dysfunction in vivo. We propose that these Ca2+ channel blockers may be therapeutically beneficial for IPF patients.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan. .,Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan.
| | - Tomomi Niino
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Tomoaki Ishihara
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Ayaka Takafuji
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Takahiro Takayama
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Yuki Kanda
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | - Toshifumi Sugizaki
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Fumiya Tamura
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Shota Kurotsu
- Division of Drug Discovery and Development, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, Japan
| | | |
Collapse
|
9
|
Zheng Y, Wang X, Ji S, Tian S, Wu H, Luo P, Fang H, Wang L, Wu G, Xiao S, Xia Z. Mepenzolate bromide promotes diabetic wound healing by modulating inflammation and oxidative stress. Am J Transl Res 2016; 8:2738-2747. [PMID: 27398156 PMCID: PMC4931167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/17/2016] [Indexed: 06/06/2023]
Abstract
Diabetic wounds are characterized by persistent inflammation and the excessive production of reactive oxygen species, thus resulting in impaired wound healing. Mepenzolate bromide, which was originally used to treat gastrointestinal disorders in clinical settings, has recently been shown to display beneficial effects in chronic obstructive pulmonary disease and pulmonary fibrosis of a mouse model by inhibiting inflammatory responses and reducing oxidative stress. However,the role of mepenzolate bromide in diabetic wound healing is still unclear. In this study, full-thickness excisional skin wounds were created on the backs of db/db mice, and mepenzolate bromide was topically applied to the wound bed. We found that mepenzolate bromide significantly promoted diabetic wound healing by measuring wound closure rate and histomorphometric analyses. Further studies showed that inflammation was inhibited by assessing the number of macrophages and levels of pro-inflammatory cytokines and pro-healing cytokines in the wounds. Furthermore, oxidative stress was reduced by monitoring the levels of MDA and H2O2 and the activities of glutathione peroxidase and catalase in the wounds. These results demonstrated the potential application of mepenzolate bromide for treating diabetic ulcers and other chronic wounds in clinics.
Collapse
Affiliation(s)
- Yongjun Zheng
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Xingtong Wang
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Shizhao Ji
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Song Tian
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Haibin Wu
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Pengfei Luo
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - He Fang
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Li Wang
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Guosheng Wu
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Shichu Xiao
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| | - Zhaofan Xia
- Burns Center of Changhai Hospital, The Second Military Medical University Shanghai, China
| |
Collapse
|