1
|
Eftekhari Z, Zohrabi H, Oghalaie A, Ebrahimi T, Shariati FS, Behdani M, Kazemi-Lomedasht F. Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102313. [PMID: 39281702 PMCID: PMC11402252 DOI: 10.1016/j.omtn.2024.102313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The use of mRNA and ribonucleoproteins (RNPs) as therapeutic agents is a promising strategy for treating diseases such as cancer and infectious diseases. This review provides recent advancements and challenges in mRNA- and RNP-based therapies, focusing on delivery systems such as lipid nanoparticles (LNPs), which ensure efficient delivery to target cells. Strategies such as microfluidic devices are employed to prepare LNPs loaded with mRNA and RNPs, demonstrating effective genome editing and protein expression in vitro and in vivo. These applications extend to cancer treatment and infectious disease management, with promising results in genome editing for cancer therapy using LNPs encapsulating Cas9 mRNA and single-guide RNA. In addition, tissue-specific targeting strategies offer potential for improved therapeutic outcomes and reduced off-target effects. Despite progress, challenges such as optimizing delivery efficiency and targeting remain. Future research should enhance delivery efficiency, explore tissue-specific targeting, investigate combination therapies, and advance clinical translation. In conclusion, mRNA- and RNP-based therapies offer a promising avenue for treating various diseases and have the potential to revolutionize medicine, providing new hope for patients worldwide.
Collapse
Affiliation(s)
- Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Horieh Zohrabi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Tahereh Ebrahimi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Sadat Shariati
- Department of Influenza and other Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
2
|
Janns JH, Mikkelsen JG. Gene Editing by Ferrying of CRISPR/Cas Ribonucleoprotein Complexes in Enveloped Virus-Derived Particles. Hum Gene Ther 2024; 35:604-616. [PMID: 39150015 DOI: 10.1089/hum.2024.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024] Open
Abstract
The invention of next-generation CRISPR/Cas gene editing tools, like base and prime editing, for correction of gene variants causing disease, has created hope for in vivo use in patients leading to wider clinical translation. To realize this potential, delivery vehicles that can ferry gene editing tool kits safely and effectively into specific cell populations or tissues are in great demand. In this review, we describe the development of enveloped retrovirus-derived particles as carriers of "ready-to-work" ribonucleoprotein complexes consisting of Cas9-derived editor proteins and single guide RNAs. We present arguments for adapting viruses for cell-targeted protein delivery and describe the status after a decade-long development period, which has already shown effective editing in primary cells, including T cells and hematopoietic stem cells, and in tissues targeted in vivo, including mouse retina, liver, and brain. Emerging evidence has demonstrated that engineered virus-derived nanoparticles can accommodate both base and prime editors and seems to fertilize a sprouting hope that such particles can be further developed and produced in large scale for therapeutic applications.
Collapse
|
3
|
Azcona MSR, Mussolino C. Protocol for Efficient Generation of Chimeric Antigen Receptor T Cells with Multiplexed Gene Silencing by Epigenome Editing. Methods Mol Biol 2024; 2842:209-223. [PMID: 39012598 DOI: 10.1007/978-1-0716-4051-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Multiplex gene regulation enables the controlled and simultaneous alteration of the expression levels of multiple genes and is generally pursued to precisely alter complex cellular pathways with a single intervention. Thus far, this has been typically exploited in combination with genome editing tools (i.e., base-/prime-editing, designer nucleases) to enable simultaneous genetic alterations and modulate complex physiologic cellular pathways. In the field of cancer immunotherapy, multiplex genome editing has been used to simultaneously inactivate three genes (i.e., TRAC, B2M, and PDCD1) and generate universal chimeric antigen receptor (CAR) T cells resistant to the inhibitory activity of the PD-1 ligand. However, the intrinsic risk of genomic aberrations driven by such tools poses concerns because of the generation of multiple single-strand or double-strand DNA breaks followed by DNA repair. Modulating gene expression without DNA damage using epigenome editing promises a safer and efficient approach to alter gene expression. This method enables for simultaneous activation and/or repression of target genes, offering superior fine-tuning capabilities with reduced off-targeting effects and potential reversibility as compared to genome editing. Here we describe a detailed protocol for achieving multiplexed and sustainable gene silencing in CAR T cells. In an exemplary approach, we use designer epigenome modifiers (DEMs) for the simultaneous inactivation of two T cell inhibitory genes, PDCD1 and LAG3 to generate CAR T cells with increased resistance to tumor-induced exhaustion.
Collapse
Affiliation(s)
- Maria Silvia Roman Azcona
- Institute for Transfusion Medicine and Gene Therapy, Center for Chronic Immunodeficiency & Medical Center, University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Center for Chronic Immunodeficiency & Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Chung S, Lee CM, Zhang M. Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases. NANOSCALE HORIZONS 2022; 8:10-28. [PMID: 36260016 PMCID: PMC11144305 DOI: 10.1039/d2nh00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The liver is a vital organ that functions to detoxify the body. Liver cancer and infectious diseases such as influenza and malaria can fatally compromise liver function. mRNA delivery is a relatively new means of therapeutic treatment which enables expression of tumor or pathogenic antigens, and elicits immune responses for therapeutic or prophylactic effect. Novel nanoparticles with unique biological properties serving as mRNA carriers have allowed mRNA-based therapeutics to become more clinically viable and relevant. In this review, we highlight recent progress in development of nanoparticle-based mRNA delivery systems for treatment of various liver diseases. First, we present developments in nanoparticle systems used to deliver mRNAs, with specific focus on enhanced cellular uptake and endosomal escape achieved through the use of these nanoparticles. To provide context for diseases that target the liver, we provide an overview of the function and structure of the liver, as well as the role of the immune system in the liver. Then, mRNA-based therapeutic approaches for addressing HCC are highlighted. We also discuss nanoparticle-based mRNA vaccines for treating hepatotropic infectious diseases. Finally, we present current challenges in the clinical translation of nanoparticle-based mRNA delivery systems and provide outlooks for their utilization in treating liver-related diseases.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Chan Mi Lee
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
5
|
Qin S, Tang X, Chen Y, Chen K, Fan N, Xiao W, Zheng Q, Li G, Teng Y, Wu M, Song X. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther 2022; 7:166. [PMID: 35597779 PMCID: PMC9123296 DOI: 10.1038/s41392-022-01007-w] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/04/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The therapeutic use of messenger RNA (mRNA) has fueled great hope to combat a wide range of incurable diseases. Recent rapid advances in biotechnology and molecular medicine have enabled the production of almost any functional protein/peptide in the human body by introducing mRNA as a vaccine or therapeutic agent. This represents a rising precision medicine field with great promise for preventing and treating many intractable or genetic diseases. In addition, in vitro transcribed mRNA has achieved programmed production, which is more effective, faster in design and production, as well as more flexible and cost-effective than conventional approaches that may offer. Based on these extraordinary advantages, mRNA vaccines have the characteristics of the swiftest response to large-scale outbreaks of infectious diseases, such as the currently devastating pandemic COVID-19. It has always been the scientists’ desire to improve the stability, immunogenicity, translation efficiency, and delivery system to achieve efficient and safe delivery of mRNA. Excitingly, these scientific dreams have gradually been realized with the rapid, amazing achievements of molecular biology, RNA technology, vaccinology, and nanotechnology. In this review, we comprehensively describe mRNA-based therapeutics, including their principles, manufacture, application, effects, and shortcomings. We also highlight the importance of mRNA optimization and delivery systems in successful mRNA therapeutics and discuss the key challenges and opportunities in developing these tools into powerful and versatile tools to combat many genetic, infectious, cancer, and other refractory diseases.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshan Tang
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kepan Chen
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Na Fan
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Zheng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guohong Li
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Teng
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Baron Y, Sens J, Lange L, Nassauer L, Klatt D, Hoffmann D, Kleppa MJ, Barbosa PV, Keisker M, Steinberg V, Suerth JD, Vondran FW, Meyer J, Morgan M, Schambach A, Galla M. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:810-823. [PMID: 35141043 PMCID: PMC8801357 DOI: 10.1016/j.omtn.2021.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
DNA-modifying technologies, such as the CRISPR-Cas9 system, are promising tools in the field of gene and cell therapies. However, high and prolonged expression of DNA-modifying enzymes may cause cytotoxic and genotoxic side effects and is therefore unwanted in therapeutic approaches. Consequently, development of new and potent short-term delivery methods is of utmost importance. Recently, we developed non-integrating gammaretrovirus- and MS2 bacteriophage-based Gag.MS2 (g.Gag.MS2) particles for transient transfer of non-retroviral CRISPR-Cas9 RNA into target cells. In the present study, we further improved the technique by transferring the system to the alpharetroviral vector platform (a.Gag.MS2), which significantly increased CRISPR-Cas9 delivery into target cells and allowed efficient targeted knockout of endogenous TP53/Trp53 genes in primary murine fibroblasts as well as primary human fibroblasts, hepatocytes, and cord-blood-derived CD34+ stem and progenitor cells. Strikingly, co-packaging of Cas9 mRNA and multiple single guide RNAs (sgRNAs) into a.Gag.MS2 chimera displayed efficient targeted knockout of up to three genes. Co-transfection of single-stranded DNA donor oligonucleotides during CRISPR-Cas9 particle production generated all-in-one particles, which mediated up to 12.5% of homology-directed repair in primary cell cultures. In summary, optimized a.Gag.MS2 particles represent a versatile tool for short-term delivery of DNA-modifying enzymes into a variety of target cells, including primary murine and human cells.
Collapse
Affiliation(s)
- Yvonne Baron
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Johanna Sens
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Larissa Nassauer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Denise Klatt
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Marc-Jens Kleppa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Philippe Vollmer Barbosa
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover 30625, Germany
| | - Maximilian Keisker
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Viviane Steinberg
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Julia D. Suerth
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Florian W.R. Vondran
- ReMediES, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover 30625, Germany
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover Medical School, Hannover 30625, Germany
| | - Johann Meyer
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
7
|
Abstract
Chimeric antigen receptor T (CART)-cell immunotherapies have opened a door in the development of specialized gene therapies for hematological and solid cancers. Impressive response rates in pivotal trials led to the FDA approval of CART-cell therapy for certain hematological malignancies. However, autologous CART products are costly and time-intensive to manufacture, and most patients experience disease relapse within 1 year of CART administration. Additionally, CART-cell efficacy in solid tumors is extremely limited. CART-cell therapy is also associated with serious toxicities. Manufacturing difficulties, intrinsic T-cell defects, CART exhaustion, and treatment-associated toxicities are some of the current barriers to widespread adoption of CART-cell therapy. Genome editing tools such as CRISPR/Cas systems have demonstrated efficacy in further engineering CART cells to overcome these limitations. In this review, we will summarize the current approaches that use CRISPR to facilitate off-the-shelf CART products, increase CART-cell efficacy, and minimize CART-associated toxicities.
Collapse
|
8
|
PSMA-Directed CAR T Cells Combined with Low-Dose Docetaxel Treatment Induce Tumor Regression in a Prostate Cancer Xenograft Model. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:226-235. [PMID: 32728611 PMCID: PMC7372156 DOI: 10.1016/j.omto.2020.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023]
Abstract
While chimeric antigen receptor (CAR) T cell immunotherapy targeting CD19 has shown remarkable success in patients with lymphoid malignancies, the potency of CAR T cells in solid tumors is low so far. To improve the efficacy of CAR T cells targeting prostate carcinoma, we designed a novel CAR that recognizes a new epitope in the prostate-specific membrane antigen (PSMA) and established novel paradigms to apply CAR T cells in a preclinical prostate cancer model. In vitro characterization of the D7 single-chain antibody fragment-derived anti-PSMA CAR confirmed that the choice of the co-stimulatory domain is a major determinant of CAR T cell activation, differentiation, and exhaustion. In vivo, focal injections of the PSMA CAR T cells eradicated established human prostate cancer xenografts in a preclinical mouse model. Moreover, systemic intravenous CAR T cell application significantly inhibited tumor growth in combination with non-ablative low-dose docetaxel chemotherapy, while docetaxel or CAR T cell application alone was not effective. In conclusion, the focal application of D7-derived CAR T cells and their combination with chemotherapy represent promising immunotherapeutic avenues to treat local and advanced prostate cancer in the clinic.
Collapse
|
9
|
Elahi R, Khosh E, Tahmasebi S, Esmaeilzadeh A. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells. Front Immunol 2018; 9:1717. [PMID: 30108584 PMCID: PMC6080612 DOI: 10.3389/fimmu.2018.01717] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022] Open
Abstract
T cells equipped with chimeric antigen receptors (CAR T cells) have recently provided promising advances as a novel immunotherapeutic approach for cancer treatment. CAR T cell therapy has shown stunning results especially in B-cell malignancies; however, it has shown less success against solid tumors, which is more supposed to be related to the specific characteristics of the tumor microenvironment. In this review, we discuss the structure of the CAR, current clinical advantages from finished and ongoing trials, adverse effects, challenges and controversies, new engineering methods of CAR, and clinical considerations that are associated with CAR T cell therapy both in hematological malignancies and solid tumors. Also, we provide a comprehensive description of recently introduced modifications for designing smarter models of CAR T cells. Specific hurdles and problems that limit the optimal function of CAR T cells, especially on solid tumors, and possible solutions according to new modifications and generations of CAR T cells have been introduced here. We also provide information of the future directions on how to enhance engineering the next smarter generations of CAR T cells in order to decrease the adverse effects and increase the potency and efficacy of CAR T cells against cancer.
Collapse
Affiliation(s)
- Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Department of Immunology, Health Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Mikkelsen JG. Viral delivery of genome-modifying proteins for cellular reprogramming. Curr Opin Genet Dev 2018; 52:92-99. [PMID: 29929184 DOI: 10.1016/j.gde.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022]
Abstract
Following the successful development of virus-based gene vehicles for genetic therapies, exploitation of viruses as carriers of genetic tools for cellular reprogramming and genome editing should be right up the street. However, whereas persistent, potentially life-long gene expression is the main goal of conventional genetic therapies, tools and bits for genome engineering should ideally be short-lived and active only for a limited time. Although viral vector systems have already been adapted for potent genome editing both in vitro and in vivo, regulatable gene expression systems or self-limiting expression circuits need to be implemented limiting exposure of chromatin to genome-modifying enzymes. As an alternative approach, emerging virus-based protein delivery technologies support direct protein delivery, providing a short, robust boost of enzymatic activity in transduced cells. Is this potentially the perfect way of shipping loads of cargo to many recipients and still maintain short-term activity?
Collapse
|
11
|
Wu DD, Song J, Bartel S, Krauss-Etschmann S, Rots MG, Hylkema MN. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol Ther 2018; 182:1-14. [PMID: 28830839 DOI: 10.1016/j.pharmthera.2017.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is an age and smoking related progressive, pulmonary disorder presenting with poorly reversible airflow limitation as a result of chronic bronchitis and emphysema. The prevalence, disease burden for the individual, and mortality of COPD continues to increase, whereas no effective treatment strategies are available. For many years now, a combination of bronchodilators and anti-inflammatory corticosteroids has been most widely used for therapeutic management of patients with persistent COPD. However, this approach has had disappointing results as a large number of COPD patients are corticosteroid resistant. In patients with COPD, there is emerging evidence showing aberrant expression of epigenetic marks such as DNA methylation, histone modifications and microRNAs in blood, sputum and lung tissue. Therefore, novel therapeutic approaches may exist using epigenetic therapy. This review aims to describe and summarize current knowledge of aberrant expression of epigenetic marks in COPD. In addition, tools available for restoration of epigenetic marks are described, as well as delivery mechanisms of epigenetic editors to cells. Targeting epigenetic marks might be a very promising tool for treatment and lung regeneration in COPD in the future.
Collapse
Affiliation(s)
- Dan-Dan Wu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, P.R. China
| | - Juan Song
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands; Tianjin Medical University, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Department of Immunology, Tianjin, China
| | - Sabine Bartel
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Susanne Krauss-Etschmann
- Early Life Origins of Chronic Lung Disease, Priority Area Asthma & Allergy, Leibnitz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel; Airway Research Center North, member of the German Center for Lung Research (DZL), Germany
| | - Marianne G Rots
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands.
| |
Collapse
|
12
|
Schambach A, Schott JW, Morgan MA. Uncoupling the Oncogenic Engine. Cancer Res 2017; 77:6060-6064. [PMID: 29097608 DOI: 10.1158/0008-5472.can-17-2362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 08/31/2017] [Accepted: 09/13/2017] [Indexed: 11/16/2022]
Abstract
Inhibition of oncogenic signaling and correction of aberrant metabolic processes may be key paradigms to eliminate cancer cells. The high incidence of activating RAS mutations and hyperactivated ERK1/2 signaling observed in many human tumors and the lack of effective targeted therapies to elicit long-term inhibition of the RAS-ERK1/2 signaling pathway add to the importance of discovering novel strategies to treat malignancies characterized by elevated RAS-ERK1/2 signaling. In this review, we describe connections between oncogenic signaling and cancer cell metabolism and how these links may be exploited for novel modern molecular medicine approaches. Cancer Res; 77(22); 6060-4. ©2017 AACR.
Collapse
Affiliation(s)
- Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Juliane W Schott
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Michael A Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany. .,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Liu J, Shui SL. Delivery methods for site-specific nucleases: Achieving the full potential of therapeutic gene editing. J Control Release 2016; 244:83-97. [PMID: 27865852 DOI: 10.1016/j.jconrel.2016.11.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
|
14
|
The Functionality of Minimal PiggyBac Transposons in Mammalian Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e369. [PMID: 27701401 PMCID: PMC5095681 DOI: 10.1038/mtna.2016.76] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 07/12/2016] [Indexed: 12/11/2022]
Abstract
Minimal piggyBac vectors are a modified single-plasmid version of the classical piggyBac delivery system that can be used for stable transgene integration. These vectors have a truncated terminal domain in the delivery cassette and thus, integrate significantly less flanking transposon DNA into host cell chromatin than classical piggyBac vectors. Herein, we test various characteristics of this modified transposon. The integration efficiency of minimal piggyBac vectors was inversely related to the size of both the transposon and the entire plasmid, but inserts as large as 15 kb were efficiently integrated. Open and super-coiled vectors demonstrated the same integration efficiency while DNA methylation decreased the integration efficiency and silenced the expression of previously integrated sequences in some cell types. Importantly, the incidence of plasmid backbone integration was not increased above that seen in nontransposon control vectors. In BALB/c mice, we demonstrated prolonged expression of two transgenes (intracellular mCherry and secretable Gaussia luciferase) when delivered by the minimal piggyBac that resulted in a more sustained antibody production against the immunogenic luciferase than when delivered by a transient (nontransposon) vector plasmid. We conclude that minimal piggyBac vectors are an effective alternative to other integrative systems for stable DNA delivery in vitro and in vivo.
Collapse
|
15
|
Kawabe Y, Shimomura T, Huang S, Imanishi S, Ito A, Kamihira M. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors. Biotechnol Bioeng 2016; 113:1600-10. [DOI: 10.1002/bit.25923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/18/2015] [Accepted: 12/29/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Takuya Shimomura
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Shuohao Huang
- Graduate School of Systems Life Sciences; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Suguru Imanishi
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Akira Ito
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering; Kyushu University; Nishi-ku Fukuoka Japan
- Graduate School of Systems Life Sciences; Kyushu University; 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
16
|
Liu J, Gaj T, Yang Y, Wang N, Shui S, Kim S, Kanchiswamy CN, Kim JS, Barbas CF. Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells. Nat Protoc 2015; 10:1842-59. [DOI: 10.1038/nprot.2015.117] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Retrovirus-based vectors for transient and permanent cell modification. Curr Opin Pharmacol 2015; 24:135-46. [PMID: 26433198 DOI: 10.1016/j.coph.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 01/19/2023]
Abstract
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas.
Collapse
|
18
|
Rajendran SRCK, Yau YY, Pandey D, Kumar A. CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:261-75. [PMID: 25871888 DOI: 10.1089/omi.2015.0023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently developed strategies and techniques that make use of the vast amount of genetic information to perform targeted perturbations in the genome of living organisms are collectively referred to as genome engineering. The wide array of applications made possible by the use of this technology range from agriculture to healthcare. This, along with the applications involving basic biological research, has made it a very dynamic and active field of research. This review focuses on the CRISPR system from its discovery and role in bacterial adaptive immunity to the most recent developments, and its possible applications in agriculture and modern medicine.
Collapse
Affiliation(s)
- Subin Raj Cheri Kunnumal Rajendran
- 1 Department of Molecular Biology and Genetic Engineering, G.B. Pant University of Agriculture and Technology , Pantnagar, U.S. Nagar, Uttarakhand, India
| | | | | | | |
Collapse
|
19
|
Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e232. [PMID: 25756962 PMCID: PMC4354341 DOI: 10.1038/mtna.2015.6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 12/27/2022]
Abstract
Safe, efficient, and broadly applicable methods for delivering site-specific nucleases into cells are needed in order for targeted genome editing to reach its full potential for basic research and medicine. We previously reported that zinc-finger nuclease (ZFN) proteins have the innate capacity to cross cell membranes and induce genome modification via their direct application to human cells. Here, we show that incorporation of tandem nuclear localization signal (NLS) repeats into the ZFN protein backbone enhances cell permeability nearly 13-fold and that single administration of multi-NLS ZFN proteins leads to genome modification rates of up to 26% in CD4(+) T cells and 17% in CD34(+) hematopoietic stem/progenitor cells. In addition, we show that multi-NLS ZFN proteins attenuate off-target effects and that codelivery of ZFN protein pairs facilitates dual gene modification frequencies of 20-30% in CD4(+) T cells. These results illustrate the applicability of ZFN protein delivery for precision genome engineering.
Collapse
|
20
|
Schott JW, Jaeschke NM, Hoffmann D, Maetzig T, Ballmaier M, Godinho T, Cathomen T, Schambach A. Deciphering the impact of parameters influencing transgene expression kinetics after repeated cell transduction with integration-deficient retroviral vectors. Cytometry A 2015; 87:405-18. [DOI: 10.1002/cyto.a.22650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/10/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Juliane W. Schott
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Nico M. Jaeschke
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Institute for Cell and Gene Therapy, University Medical Center Freiburg; Freiburg im Breisgau Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Tobias Maetzig
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Matthias Ballmaier
- Central Research Facility Cell Sorting; Hannover Medical School; Hannover Germany
| | - Tamaryin Godinho
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg; Freiburg im Breisgau Germany
- Center for Chronic Immunodeficiency; University Medical Center Freiburg; Freiburg im Breisgau Germany
| | - Axel Schambach
- Institute of Experimental Hematology; Hannover Medical School; Hannover Germany
- Cluster of Excellence REBIRTH; Hannover Medical School; Hannover Germany
- Division of Hematology/Oncology; Boston Children's Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
21
|
Mock U, Riecken K, Berdien B, Qasim W, Chan E, Cathomen T, Fehse B. Novel lentiviral vectors with mutated reverse transcriptase for mRNA delivery of TALE nucleases. Sci Rep 2014; 4:6409. [PMID: 25230987 PMCID: PMC4166709 DOI: 10.1038/srep06409] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
TAL-effector nucleases (TALENs) are attractive tools for sequence-specific genome modifications, but their delivery still remains problematic. It is well known that the presence of multiple sequence repeats in TALEN genes hampers the use of lentiviral vectors. We report that lentiviral vectors readily package full-length vector mRNAs encoding TALENs, but recombination during reverse transcription prevents successful delivery. We reasoned that preventing reverse transcription of lentiviral-vector RNA would allow transfer of TALENs as mRNA. We demonstrate that lentiviral particles containing genetically inactivated reverse transcriptase (RT) mediated efficient transduction of cultured cells and supported transient transgene expression. For proof-of-principle, we transferred CCR5- and TCR-specific TALEN pairs for efficient targeted genome editing and abrogated expression for each of the receptor proteins in different cell lines. Combining the high specificity of TALENs with efficient lentiviral gene delivery should advance genome editing in vitro and potentially in vivo, and RT-deficient lentiviral vectors may be useful for transient expression of various other genes-of-interest.
Collapse
Affiliation(s)
- Ulrike Mock
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kristoffer Riecken
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Belinda Berdien
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Waseem Qasim
- Molecular Immunology Unit, UCL Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Emma Chan
- Molecular Immunology Unit, UCL Institute of Child Health, London, WC1N 1EH, United Kingdom
| | - Toni Cathomen
- 1] Institute for Cell and Gene Therapy, University Medical Centre Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany [2] Centre for Chronic Immunodeficiency, University Medical Centre Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Boris Fehse
- Research Dept. Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|