1
|
Bassi E, Perucca P, Guardamagna I, Prosperi E, Stivala LA, Cazzalini O. Exploring new potential role of DDB2 by host cell reactivation assay in human tumorigenic cells. BMC Cancer 2019; 19:1013. [PMID: 31664956 PMCID: PMC6819583 DOI: 10.1186/s12885-019-6258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Host Cell Reactivation assay (HCR) allows studying the DNA repair capability in different types of human cells. This assay was carried out to assess the ability in removing UV-lesions from DNA, thus verifying NER efficiency. Previously we have shown that DDB2, a protein involved in the Global Genome Repair, interacts directly with PCNA and, in human cells, the loss of this interaction affects DNA repair machinery. In addition, a mutant form unable to interact with PCNA (DDB2PCNA-), has shown a reduced ability to interact with a UV-damaged DNA plasmid in vitro. METHODS In this work, we have investigated whether DDB2 protein may influence the repair of a UV-damaged DNA plasmid into the cellular environment by applying the HCR method. To this end, human kidney 293 stable clones, expressing DDB2Wt or DDB2PCNA-, were co-transfected with pmRFP-N2 and UV-irradiated pEGFP-reported plasmids. Moreover, the co-localization between DDB2 proteins and different NER factors recruited at DNA damaged sites was analysed by immunofluorescence and confocal microscopy. RESULTS The results have shown that DDB2Wt recognize and repair the UV-induced lesions in plasmidic DNA transfected in the cells, whereas a delay in these processes were observed in the presence of DDB2PCNA-, as also confirmed by the different extent of co-localization of DDB2Wt and some NER proteins (such as XPG), vs the DDB2 mutant form. CONCLUSION The HCR confirms itself as a very helpful approach to assess in the cellular context the effect of expressing mutant vs Wt NER proteins on the DNA damage response. Loss of interaction of DDB2 and PCNA affects negatively DNA repair efficiency.
Collapse
Affiliation(s)
- Elisabetta Bassi
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Paola Perucca
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Isabella Guardamagna
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR, Pavia, Italy.
| | - Lucia A Stivala
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| | - Ornella Cazzalini
- Dipartimento di Medicina Molecolare, Unità di Immunologia e Patologia generale, Università degli Studi di Pavia, Pavia, Italy.
| |
Collapse
|
2
|
Bastek H, Zubel T, Stemmer K, Mangerich A, Beneke S, Dietrich DR. Comparison of Aristolochic acid I derived DNA adduct levels in human renal toxicity models. Toxicology 2019; 420:29-38. [DOI: 10.1016/j.tox.2019.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/28/2023]
|
3
|
Smith PJ, Darzynkiewicz Z, Errington RJ. Nuclear cytometry and chromatin organization. Cytometry A 2018; 93:771-784. [PMID: 30144297 DOI: 10.1002/cyto.a.23521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022]
Abstract
The nuclear-targeting chemical probe, for the detection and quantification of DNA within cells, has been a mainstay of cytometry-from the colorimetric Feulgen stain to smart fluorescent agents with tuned functionality. The level of nuclear structure and function at which the probe aims to readout, or indeed at which a DNA-targeted drug acts, is shadowed by a wide range of detection modalities and analytical methods. These methods are invariably limited in terms of the resolution attainable versus the volume occupied by targeted chromatin structures. The scalar challenge arises from the need to understand the extent and different levels of compaction of genomic DNA and how such structures can be re-modeled, reported, or even perturbed by both probes and drugs. Nuclear cytometry can report on the complex levels of chromatin order, disorder, disassembly, and even active disruption by probes and drugs. Nuclear probes can report defining features of clinical and therapeutic interest as in NETosis and other cell death processes. New cytometric approaches continue to bridge the scalar challenges of analyzing chromatin organization. Advances in super-resolution microscopy address the resolution and depth of analysis issues in cellular systems. Typical of recent insights into chromatin organization enabled by exploiting a DNA interacting probe is ChromEM tomography (ChromEMT). ChromEMT uses the unique properties of the anthraquinone-based cytometric dye DRAQ5™ to reveal that local and global 3D chromatin structures effect differences in compaction. The focus of this review is nuclear and chromatin cytometry, with linked reference to DNA targeting probes and drugs as exemplified by the anthracenediones.
Collapse
Affiliation(s)
- Paul J Smith
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, Valhalla, New York, 10595
| | - Rachel J Errington
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
4
|
Ito S, Shiraishi M, Tsuchihashi K, Takatsuka R, Yamamoto J, Kuraoka I, Iwai S. Fluorescence detection of DNA mismatch repair in human cells. Sci Rep 2018; 8:12181. [PMID: 30111891 PMCID: PMC6093906 DOI: 10.1038/s41598-018-30733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 01/23/2023] Open
Abstract
Mismatched base pairs, produced by nucleotide misincorporation by DNA polymerase, are repaired by the mismatch repair (MMR) pathway to maintain genetic integrity. We have developed a method for the fluorescence detection of the cellular MMR ability. A mismatch, which would generate a stop codon in the mRNA transcript unless it was repaired, was introduced into the gene encoding the enhanced green fluorescent protein (EGFP) in an expression plasmid. When MMR-proficient HeLa cells were transformed with this plasmid, the production of active EGFP was observed by fluorescence microscopy. It was assumed that the nick required to initiate the MMR pathway was produced non-specifically in the cells. In contrast, fluorescence was not detected for three types of MMR-deficient cells, LoVo, HCT116, and DLD-1, transformed with the same plasmid. In addition, the expression of a red fluorescent protein gene was utilized to avoid false-negative results. This simple fluorescence method may improve the detection of repair defects, as a biomarker for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shunsuke Ito
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Miyako Shiraishi
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Kazuki Tsuchihashi
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Reine Takatsuka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.,Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
5
|
Fujii N. Potential Strategies to Target Protein-Protein Interactions in the DNA Damage Response and Repair Pathways. J Med Chem 2017; 60:9932-9959. [PMID: 28654754 DOI: 10.1021/acs.jmedchem.7b00358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article discusses some insights about generating novel mechanistic inhibitors of the DNA damage response and repair (DDR) pathways by focusing on protein-protein interactions (PPIs) of the key DDR components. General requirements for PPI strategies, such as selecting the target PPI site on the basis of its functionality, are discussed first. Next, on the basis of functional rationale and biochemical feasibility to identify a PPI inhibitor, 26 PPIs in DDR pathways (BER, MMR, NER, NHEJ, HR, TLS, and ICL repair) are specifically discussed for inhibitor discovery to benefit cancer therapies using a DNA-damaging agent.
Collapse
Affiliation(s)
- Naoaki Fujii
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , 262 Danny Thomas Place, MS1000, Memphis, Tennessee 38105, United States
| |
Collapse
|
6
|
Tawarahara H, Kuraoka I, Iwai S. Facile preparation of a fluorescent probe to detect the cellular ability of nucleotide excision repair. Anal Biochem 2017; 526:71-74. [PMID: 28366639 DOI: 10.1016/j.ab.2017.03.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/26/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
We previously developed a method to detect the cellular ability of nucleotide excision repair, which functions to remove UV-induced lesions in DNA, using a plasmid-type fluorescent probe. A drawback to the popular use of this method was that the oligonucleotide containing the (6-4) photoproduct, which was used as a primer in the plasmid preparation, must be synthesized chemically. In this study, we prepared the probe using a post-synthetically UV-irradiated oligonucleotide as the primer. Transfection of cells demonstrated that this probe detected the repair ability of the cells in the same manner as the original probe.
Collapse
Affiliation(s)
- Hana Tawarahara
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Isao Kuraoka
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
7
|
Abstract
Fluorescent tools have revolutionized our ability to probe biological dynamics, particularly at the cellular level. Fluorescent sensors have been developed on several platforms, utilizing either small-molecule dyes or fluorescent proteins, to monitor proteins, RNA, DNA, small molecules, and even cellular properties, such as pH and membrane potential. We briefly summarize the impressive history of tool development for these various applications and then discuss the most recent noteworthy developments in more detail. Particular emphasis is placed on tools suitable for single-cell analysis and especially live-cell imaging applications. Finally, we discuss prominent areas of need in future fluorescent tool development-specifically, advancing our capability to analyze and integrate the plethora of high-content data generated by fluorescence imaging.
Collapse
Affiliation(s)
- Elizabeth A Specht
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303;
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| | - Esther Braselmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303;
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| | - Amy E Palmer
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303;
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303
| |
Collapse
|