1
|
Yang KF, Zhang JY, Feng M, Yao K, Liu YY, Zhou MS, Jia H. Secretase promotes AD progression: simultaneously cleave Notch and APP. Front Aging Neurosci 2024; 16:1445470. [PMID: 39634655 PMCID: PMC11615878 DOI: 10.3389/fnagi.2024.1445470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Alzheimer's disease (AD) involves complex pathological mechanisms. Secretases include membrane protein extracellular structural domain proteases and intramembrane proteases that cleave the topology to type I or type II. Secretases can effectively regulate the activation of Notch and amyloid precursor protein (APP), key factors in the progression of AD and cancer. This article systematically summarizes the intracellular localization, cleavage sites and products, and biological functions of six subtypes of secretases (α-secretase, β-secretase, γ-secretase, δ-secretase, ε-secretase, and η-secretase), and for the first time, elucidates the commonalities and differences between these subtypes of secretases. We found that each subtype of secretase primarily cleaves APP and Notch as substrates, regulating Aβ levels through APP cleavage to impact the progression of AD, while also cleaving Notch receptors to affect cancer progression. Finally, we review the chemical structures, indications, and research stages of various secretase inhibitors, emphasizing the promising development of secretase inhibitors in the fields of cancer and AD.
Collapse
Affiliation(s)
- Ke-Fan Yang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Jing-Yi Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Mei Feng
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Kuo Yao
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Shenyang Medical College, Shenyang, China
| | - Yue-Yang Liu
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Ming-Sheng Zhou
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
| | - Hui Jia
- Science and Experimental Research Center of Shenyang Medical College, Shenyang, Liaoning, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Yoshida T, Yamasaki K, Tadagaki K, Kuwahara Y, Matsumoto A, Sofovic AE, Kondo N, Sakai T, Okuda T. Tumor necrosis factor‑related apoptosis‑inducing ligand is a novel transcriptional target of runt‑related transcription factor 1. Int J Oncol 2021; 60:6. [PMID: 34958111 PMCID: PMC8727134 DOI: 10.3892/ijo.2021.5296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1), which is also known as acute myeloid leukemia 1 (AML1), has been frequently found with genomic aberrations in human leukemia. RUNX1 encodes a transcription factor that can regulate the expression of hematopoietic genes. In addition, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) performs an important function for malignant tumors in immune surveillance. However, the regulatory mechanism of TRAIL expression remain to be fully elucidated. In the present study, tetradecanoylphorbol 13-acetate-treated megakaryocytic differentiated K562 cells was used to examine the effect of RUNX1 on TRAIL expression. Luciferase assay series of TRAIL promoters for the cells co-transfected with RUNX1 and core-binding factor β (CBFβ) expression vectors were performed to evaluate the nature of TRAIL transcriptional regulation. Electrophoresis mobility shift assay of the RUNX1 consensus sequence of the TRAIL promoter with recombinant RUNX1 and CBFβ proteins was also performed. BloodSpot database analysis for TRAIL expression in patients with acute myeloid leukemia were performed. The expression of TRAIL, its receptor Death receptor 4 and 5 and RUNX1 in K562 cells transfected with the RUNX1 expression vector and RUNX1 siRNA were evaluated by reverse transcription-quantitative PCR (RT-qPCR). TRAIL and RUNX1-ETO expression was also measured in Kasumi-1 cells transfected with RUNX1-ETO siRNA and in KG-1 cells transfected with RUNX1-ETO expression plasmid, both by RT-qPCR. Cell counting, lactate dehydrogenase assay and cell cycle analysis by flow cytometry were performed on Kasumi-1, KG-1, SKNO-1 and K562 cells treated with TRAIL and HDAC inhibitors sodium butyrate or valproic acid. The present study demonstrated that RUNX1 is a transcriptional regulator of TRAIL. It was initially found that the induction of TRAIL expression following the megakaryocytic differentiation of human leukemia cells was RUNX1-dependent. Subsequently, overexpression of RUNX1 was found to increase TRAIL mRNA expression by activating its promoter activity. Additional analyses revealed that RUNX1 regulated the expression of TRAIL in an indirect manner, because RUNX1 retained its ability to activate this promoter following the mutation of all possible RUNX1 consensus sites. Furthermore, TRAIL expression was reduced in leukemia cells carrying the t(8;21) translocation, where the RUNX1-ETO chimeric protein interfere with normal RUNX1 function. Exogenous treatment of recombinant TRAIL proteins was found to induce leukemia cell death. To conclude, the present study provided a novel mechanism, whereby TRAIL is a target gene of RUNX1 and TRAIL expression was inhibited by RUNX1-ETO. These results suggest that TRAIL is a promising agent for the clinical treatment of t(8;21) AML.
Collapse
Affiliation(s)
- Tatsushi Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Kenta Yamasaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Kenjiro Tadagaki
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Akifumi Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Adèm Ejub Sofovic
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Noriko Kondo
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi‑Hirokoji, Kamigyo‑ku, Kyoto 602‑8566, Japan
| |
Collapse
|
4
|
Cao Y, Kong S, Xin Y, Meng Y, Shang S, Qi Y. Lestaurtinib potentiates TRAIL-induced apoptosis in glioma via CHOP-dependent DR5 induction. J Cell Mol Med 2020; 24:7829-7840. [PMID: 32441887 PMCID: PMC7348155 DOI: 10.1111/jcmm.15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/19/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
Lestaurtinib, also called CEP-701, is an inhibitor of tyrosine kinase, causes haematological remission in patients with AML possessing FLT3-ITD (FLT3 gene) internal tandem duplication and strongly inhibits tyrosine kinase FLT3. Treatment with lestaurtinib modulates various signalling pathways and leads to cell growth arrest and programmed cell death in several tumour types. However, the effect of lestaurtinib on glioma remains unclear. In this study, we examined lestaurtinib and TRAIL interactions in glioma cells and observed their synergistic activity on glioma cell apoptosis. While U87 and U251 cells showed resistance to TRAIL single treatment, they were sensitized to apoptosis induced by TRAIL in the presence of lestaurtinib because of increased death receptor 5 (DR5) levels through CHOP-dependent manner. We also demonstrated using a xenograft model of mouse that the tumour growth was absolutely suppressed because of the combined treatment compared to TRAIL or lestaurtinib treatment carried out singly. Our findings reveal a potential new strategy to improve antitumour activity induced by TRAIL in glioma cells using lestaurtinib through a mechanism dependent on CHOP.
Collapse
Affiliation(s)
- Yingxiao Cao
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Shiqi Kong
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yuling Xin
- Department of NeurosurgeryXingtai People’s HospitalXingtaiChina
| | - Yan Meng
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| | - Shuling Shang
- Department of Operating RoomXingtai People’s HospitalXingtaiChina
| | - Yanhui Qi
- Department of Intensive Care UnitXingtai People’s HospitalXingtaiChina
| |
Collapse
|
5
|
Brix DM, Bundgaard Clemmensen KK, Kallunki T. Zinc Finger Transcription Factor MZF1-A Specific Regulator of Cancer Invasion. Cells 2020; 9:cells9010223. [PMID: 31963147 PMCID: PMC7016646 DOI: 10.3390/cells9010223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients. This could be achieved by targeting the molecules regulating invasion. One of these is an oncogenic transcription factor, Myeloid Zinc Finger 1 (MZF1). Dysregulated transcription factors represent a unique, increasing group of drug targets that are responsible for aberrant gene expression in cancer and are important nodes driving cancer malignancy. Recent studies report of a central involvement of MZF1 in the invasion and metastasis of various solid cancers. In this review, we summarize the research on MZF1 in cancer including its function and role in lysosome-mediated invasion and in the expression of genes involved in epithelial to mesenchymal transition. We also discuss possible means to target it on the basis of the current knowledge of its function in cancer.
Collapse
Affiliation(s)
- Ditte Marie Brix
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Danish Medicines Council, Dampfærgevej 27-29, 2100 Copenhagen, Denmark
| | - Knut Kristoffer Bundgaard Clemmensen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-35-25-7746
| |
Collapse
|
6
|
Fang E, Wang X, Yang F, Hu A, Wang J, Li D, Song H, Hong M, Guo Y, Liu Y, Li H, Huang K, Zheng L, Tong Q. Therapeutic Targeting of MZF1-AS1/PARP1/E2F1 Axis Inhibits Proline Synthesis and Neuroblastoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900581. [PMID: 31592410 PMCID: PMC6774027 DOI: 10.1002/advs.201900581] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/26/2019] [Indexed: 05/28/2023]
Abstract
Proline synthesis plays an important role in the metabolic reprogramming that contributes to tumor progression. However, the mechanisms regulating expression of proline synthetic genes in neuroblastoma (NB) remain elusive. Herein, through integrative screening of a public dataset and amino acid profiling analysis, myeloid zinc finger 1 (MZF1) and MZF1 antisense RNA 1 (MZF1-AS1) are identified as transcriptional regulators of proline synthesis and NB progression. Mechanistically, transcription factor MZF1 promotes the expression of aldehyde dehydrogenase 18 family member A1 and pyrroline-5-carboxylate reductase 1, while proline facilitates the aggressiveness of NB cells. In addition, MZF1-AS1 binds poly(ADP-ribose) polymerase 1 (PARP1) to facilitate its interaction with E2F transcription factor 1 (E2F1), resulting in transactivation of E2F1 and upregulation of MZF1 and other oncogenic genes associated with tumor progression. Administration of a small peptide blocking MZF1-AS1-PARP1 interaction or lentivirus-mediated short hairpin RNA targeting MZF1-AS1 suppresses the proline synthesis, tumorigenesis, and aggressiveness of NB cells. In clinical NB cases, high expression of MZF1-AS1, PARP1, E2F1, or MZF1 is associated with poor survival of patients. These results indicate that therapeutic targeting of MZF1-AS1/PARP1/E2F1 axis inhibits proline synthesis and NB progression.
Collapse
Affiliation(s)
- Erhu Fang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Xiaojing Wang
- Clinical Center of Human Genomic ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Feng Yang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Anpei Hu
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Jianqun Wang
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Dan Li
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Huajie Song
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Mei Hong
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Yanhua Guo
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Yang Liu
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Hongjun Li
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Kai Huang
- Clinical Center of Human Genomic ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Liduan Zheng
- Clinical Center of Human Genomic ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
- Department of PathologyUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| | - Qiangsong Tong
- Department of Pediatric SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
- Clinical Center of Human Genomic ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and Technology1277 Jiefang AvenueWuhan430022Hubei ProvinceP. R. China
| |
Collapse
|
7
|
Yu T, Wang L, Zhao C, Qian B, Yao C, He F, Zhu Y, Cai M, Li M, Zhao D, Zhang J, Wang Y, Qiu W. Sublytic C5b-9 induces proliferation of glomerular mesangial cells via ERK5/MZF1/RGC-32 axis activated by FBXO28-TRAF6 complex. J Cell Mol Med 2019; 23:5654-5671. [PMID: 31184423 PMCID: PMC6653533 DOI: 10.1111/jcmm.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Mesangioproliferative glomerulonephritis (MsPGN) is characterized by the proliferation of glomerular mesangial cells (GMCs) and accumulation of extracellular matrix (ECM), followed by glomerulosclerosis and renal failure of patients. Although our previous studies have demonstrated that sublytic C5b‐9 complex formed on the GMC membrane could trigger GMC proliferation and ECM expansion of rat Thy‐1 nephritis (Thy‐1N) as an animal model of MsPGN, their mechanisms are still not fully elucidated. In the present studies, we found that the levels of response gene to complement 32 (RGC‐32), myeloid zinc finger 1 (MZF1), phosphorylated extracellular signal‐regulated kinase 5 (phosphorylated ERK5, p‐ERK5), F‐box only protein 28 (FBXO28) and TNF receptor‐associated factor 6 (TRAF6) were all markedly up‐regulated both in the renal tissues of rats with Thy‐1N (in vivo) and in the GMCs upon sublytic C5b‐9 stimulation (in vitro). Further in vitro experiments revealed that up‐regulated FBXO28 and TRAF6 could form protein complex binding to ERK5 and enhance ERK5 K63‐ubiquitination and subsequent phosphorylation. Subsequently, ERK5 activation contributed to MZF1 expression and MZF1‐dependent RGC‐32 up‐regulation, finally resulting in GMC proliferative response. Furthermore, the MZF1‐binding element within RGC‐32 promoter and the functions of FBXO28 domains were identified. Additionally, knockdown of renal FBXO28, TRAF6, ERK5, MZF1 and RGC‐32 genes respectively markedly reduced GMC proliferation and ECM production in Thy‐1N rats. Together, these findings indicate that sublytic C5b‐9 induces GMC proliferative changes in rat Thy‐1N through ERK5/MZF1/RGC‐32 axis activated by the FBXO28‐TRAF6 complex, which might provide a new insight into MsPGN pathogenesis.
Collapse
Affiliation(s)
- Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lulu Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunlei Yao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yufeng Zhu
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mengyuan Cai
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing medical University, Nanjing, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing medical University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
MZF1 and SCAND1 Reciprocally Regulate CDC37 Gene Expression in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11060792. [PMID: 31181782 PMCID: PMC6627353 DOI: 10.3390/cancers11060792] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022] Open
Abstract
Cell division control 37 (CDC37) increases the stability of heat shock protein 90 (HSP90) client proteins and is thus essential for numerous intracellular oncogenic signaling pathways, playing a key role in prostate oncogenesis. Notably, elevated expression of CDC37 was found in prostate cancer cells, although the regulatory mechanisms through which CDC37 expression becomes increased are unknown. Here we show both positive and negative regulation of CDC37 gene transcription by two members of the SREZBP-CTfin51-AW1-Number 18 cDNA (SCAN) transcription factor family—MZF1 and SCAND1, respectively. Consensus DNA-binding motifs for myeloid zinc finger 1 (MZF1/ZSCAN6) were abundant in the CDC37 promoter region. MZF1 became bound to these regulatory sites and trans-activated the CDC37 gene whereas MZF1 depletion decreased CDC37 transcription and reduced the tumorigenesis of prostate cancer cells. On the other hand, SCAND1, a zinc fingerless SCAN box protein that potentially inhibits MZF1, accumulated at MZF1-binding sites in the CDC37 gene, negatively regulated the CDC37 gene and inhibited tumorigenesis. SCAND1 was abundantly expressed in normal prostate cells but was reduced in prostate cancer cells, suggesting a potential tumor suppressor role of SCAND1 in prostate cancer. These findings indicate that CDC37, a crucial protein in prostate cancer progression, is regulated reciprocally by MZF1 and SCAND1.
Collapse
|
9
|
Huang M, Chen Y, Han D, Lei Z, Chu X. Role of the zinc finger and SCAN domain-containing transcription factors in cancer. Am J Cancer Res 2019; 9:816-836. [PMID: 31218096 PMCID: PMC6556609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023] Open
Abstract
Transcription factors are key determinants of gene expression that recognize and bind to short DNA sequence motifs, thereby regulating many biological processes including differentiation, development, and metabolism. Transcription factors are increasingly recognized for their roles in cancer progression. Here, we describe a subfamily of zinc finger transcription factors named zinc finger and SCAN domain containing (ZSCAN) transcription factors. In this review, we summarize the identified members of the ZSCAN family of transcription factors and their roles in cancer progression. Due to the complex regulation mechanisms, ZSCAN transcription factors may show promotive or prohibitive efforts in angiogenesis, cell apoptosis, cell differentiation, cell migration and invasion, cell proliferation, stem cell properties, and chemotherapy sensitivity. The upstream regulation mechanisms of their varied expression levels may include gene mutation, DNA methylation, alternative splicing, and miRNA regulation. What's more, to clarify their diverse functions, we summarize the modulation mechanisms of their activity in downstream genes transcription, including protein-protein interactions mediated by their SCAN box, recruitment of co-regulating molecules and post-translational modifications. A better understanding of the widespread regulatory mode of these transcription factors will provide further insight into the mechanism of transcriptional regulation and suggest novel therapeutic strategies against tumor progression.
Collapse
Affiliation(s)
- Mengxi Huang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Yanyan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Dong Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Zengjie Lei
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, Jiangsu Province, People’s Republic of China
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical UniversityNanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
10
|
Lee JH, Kim SS, Lee HS, Hong S, Rajasekaran N, Wang LH, Choi JS, Shin YK. Upregulation of SMAD4 by MZF1 inhibits migration of human gastric cancer cells. Int J Oncol 2016; 50:272-282. [PMID: 27922669 DOI: 10.3892/ijo.2016.3793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
SMAD4 is a tumor suppressor that is frequently inactivated in many types of cancer. The role of abnormal expression of SMAD4 has been reported in developmental processes and the progression of various human cancers. The expression level of SMAD4 has been related to the survival rate in gastric cancer patients. However, the molecular mechanism underlying transcriptional regulation of SMAD4 remains largely unknown. In the present study, we characterized the promoter region of SMAD4 and identified myeloid zinc finger 1 (MZF1), as a putative transcription factor. MZF1 directly bound to a core region of the SMAD4 promoter and stimulated transcriptional activity. We also found that the expression of MZF1 influences the migration ability of gastric adenocarcinoma cells. Collectively, our results showed that MZF1 has a role in cellular migration of gastric cancer cells via promoting an increase in intracellular SMAD4 levels. This study might provide new evidence for the molecular basis of the tumor suppressive effect of the MZF1-SMAD4 axis, a new therapeutic target in advanced human gastric cancer.
Collapse
Affiliation(s)
- Jin-Hee Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sung-Su Kim
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hun Seok Lee
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sungyoul Hong
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Nirmal Rajasekaran
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Li-Hui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, P.R. China
| | - Joon-Seok Choi
- Department of Pharmaceutical Microbiology, College of Pharmacy, Catholic University, Daegu, Republic of Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Repositioning of drugs for intervention in tumor progression and metastasis: Old drugs for new targets. Drug Resist Updat 2016; 26:10-27. [PMID: 27180307 DOI: 10.1016/j.drup.2016.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023]
Abstract
The increasing unraveling of the molecular basis of cancer offers manifold novel options for intervention strategies. However, the discovery and development of new drugs for potential clinical applications is a tremendously time-consuming and costly process. Translating a novel lead candidate compound into an approved clinical drug takes often more than a decade, and the success rate is very low due to versatile efforts including defining its pharmacokinetics, pharmacodynamics, side effects as well as lack of sufficient efficacy. Thus, strategies are needed to minimize time and costs, while maximizing success rates. A very attractive strategy for novel cancer therapeutic options is the repositioning of already approved drugs. These medicines, approved for the treatment of non-malignant disorders, have already passed some early costs and time, have been tested in humans and are ready for clinical trials as anti-cancer drugs. Here we discuss the repositioning of nonsteroidal anti-inflammatory drugs (NSAID), statins, anti-psychotic drugs, anti-helminthic drugs and vitamin D as anti-tumor agents. We focus on their novel actions and potential for inhibition of cancer growth and metastasis by interfering with target molecules and pathways, which drive these malignant processes. Furthermore, important pre-clinical and clinical data are reviewed herein, which elucidate their therapeutic mechanisms which enable their repositioning for cancer therapy and disruption of metastasis.
Collapse
|