1
|
Li K, Zhang Q. Eliminating the HIV tissue reservoir: current strategies and challenges. Infect Dis (Lond) 2024; 56:165-182. [PMID: 38149977 DOI: 10.1080/23744235.2023.2298450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Acquired immunodeficiency syndrome (AIDS) is still one of the most widespread and harmful infectious diseases in the world. The presence of reservoirs housing the human immunodeficiency virus (HIV) represents a significant impediment to the development of clinically applicable treatments on a large scale. The viral load in the blood can be effectively reduced to undetectable levels through antiretroviral therapy (ART), and a higher concentration of HIV is sequestered in various tissues throughout the body, forming the tissue reservoir - the source of viremia after interruption treatment. METHODS We take the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) as a guideline for this review. In June 2023, we used the Pubmed, Embase, and Scopus databases to search the relevant literature published in the last decade. RESULTS Here we review the current strategies and treatments for eliminating the HIV tissue reservoirs: early and intensive therapy, gene therapy (including ribozyme, RNA interference, RNA aptamer, zinc finger enzyme, transcriptional activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats/associated nuclease 9 (CRISPR/Cas9)), 'Shock and Kill', 'Block and lock', immunotherapy (including therapeutic vaccines, broadly neutralising antibodies (bNAbs), chimeric antigen receptor T-cell immunotherapy (CAR-T)), and haematopoietic stem cell transplantation (HSCT). CONCLUSION The existence of an HIV reservoir is the main obstacle to the complete cure of AIDS. Choosing the appropriate strategy to deplete the HIV reservoir and achieve a functional cure for AIDS is the focus and difficulty of current research. So far, there has been a lot of research and progress in reducing the HIV reservoir, but in general, the current research is still very preliminary. Much research is still needed to properly assess the reliability, effectiveness, and necessity of these strategies.
Collapse
Affiliation(s)
- Kangpeng Li
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qiang Zhang
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Berzal-Herranz A, Romero-López C. Aptamers' Potential to Fill Therapeutic and Diagnostic Gaps. Pharmaceuticals (Basel) 2024; 17:105. [PMID: 38256938 PMCID: PMC10818422 DOI: 10.3390/ph17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
More than 30 years ago, in 1990, three independent research groups published several papers demonstrating that genetics could be performed in vitro in the absence of living organisms or cells [...].
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| |
Collapse
|
3
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Moreno M, García-Sacristán A, Martín ME, González VM. Enzyme-Linked Oligonucleotide Assay (ELONA). Methods Mol Biol 2023; 2570:235-242. [PMID: 36156787 DOI: 10.1007/978-1-0716-2695-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aptamers are single-stranded oligonucleotides able to recognize a target with high affinity and specificity. Aptamers are used in different diagnostics applications, highlighting, among all, variations of the traditional enzyme-linked immunosorbent assay (ELISA). In this chapter, we show the procedures for the development of two types of indirect ELONA: a sandwich ELONA and a direct ELONA coupled to either real-time quantitative PCR as a direct and sensitive readout.
Collapse
Affiliation(s)
| | | | - M Elena Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Víctor M González
- Aptus Biotech SL, Madrid, Spain. .,Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
5
|
Biophysical Characterization of Novel DNA Aptamers against K103N/Y181C Double Mutant HIV-1 Reverse Transcriptase. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010285. [PMID: 35011517 PMCID: PMC8746315 DOI: 10.3390/molecules27010285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
The human immunodeficiency virus type-1 Reverse Transcriptase (HIV-1 RT) plays a pivotal role in essential viral replication and is the main target for antiviral therapy. The anti-HIV-1 RT drugs address resistance-associated mutations. This research focused on isolating the potential specific DNA aptamers against K103N/Y181C double mutant HIV-1 RT. Five DNA aptamers showed low IC50 values against both the KY-mutant HIV-1 RT and wildtype (WT) HIV-1 RT. The kinetic binding affinity forms surface plasmon resonance of both KY-mutant and WT HIV-1 RTs in the range of 0.06–2 μM and 0.15–2 μM, respectively. Among these aptamers, the KY44 aptamer was chosen to study the interaction of HIV-1 RTs-DNA aptamer complex by NMR experiments. The NMR results indicate that the aptamer could interact with both WT and KY-mutant HIV-1 RT at the NNRTI drug binding pocket by inducing a chemical shift at methionine residues. Furthermore, KY44 could inhibit pseudo-HIV particle infection in HEK293 cells with nearly 80% inhibition and showed low cytotoxicity on HEK293 cells. These together indicated that the KY44 aptamer could be a potential inhibitor of both WT and KY-mutant HIV-RT.
Collapse
|
6
|
Aptamers in Virology-A Consolidated Review of the Most Recent Advancements in Diagnosis and Therapy. Pharmaceutics 2021; 13:pharmaceutics13101646. [PMID: 34683938 PMCID: PMC8540715 DOI: 10.3390/pharmaceutics13101646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
The use of short oligonucleotide or peptide molecules as target-specific aptamers has recently garnered substantial attention in the field of the detection and treatment of viral infections. Based on their high affinity and high specificity to desired targets, their use is on the rise to replace antibodies for the detection of viruses and viral antigens. Furthermore, aptamers inhibit intracellular viral transcription and translation, in addition to restricting viral entry into host cells. This has opened up a plethora of new targets for the research and development of novel vaccines against viruses. Here, we discuss the advances made in aptamer technology for viral diagnosis and therapy in the past decade.
Collapse
|
7
|
Torkamanian-Afshar M, Nematzadeh S, Tabarzad M, Najafi A, Lanjanian H, Masoudi-Nejad A. In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm. Mol Divers 2021; 25:1395-1407. [PMID: 33554306 DOI: 10.1007/s11030-021-10192-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/28/2021] [Indexed: 12/29/2022]
Abstract
Aptamers can be regarded as efficient substitutes for monoclonal antibodies in many diagnostic and therapeutic applications. Due to the tedious and prohibitive nature of SELEX (systematic evolution of ligands by exponential enrichment), the in silico methods have been developed to improve the enrichment processes rate. However, the majority of these methods did not show any effort in designing novel aptamers. Moreover, some target proteins may have not any binding RNA candidates in nature and a reductive mechanism is needed to generate novel aptamer pools among enormous possible combinations of nucleotide acids to be examined in vitro. We have applied a genetic algorithm (GA) with an embedded binding predictor fitness function to in silico design of RNA aptamers. As a case study of this research, all steps were accomplished to generate an aptamer pool against aminopeptidase N (CD13) biomarker. First, the model was developed based on sequential and structural features of known RNA-protein complexes. Then, utilizing RNA sequences involved in complexes with positive prediction results, as the first-generation, novel aptamers were designed and top-ranked sequences were selected. A 76-mer aptamer was identified with the highest fitness value with a 3 to 6 time higher score than parent oligonucleotides. The reliability of obtained sequences was confirmed utilizing docking and molecular dynamic simulation. The proposed method provides an important simplified contribution to the oligonucleotide-aptamer design process. Also, it can be an underlying ground to design novel aptamers against a wide range of biomarkers.
Collapse
Affiliation(s)
- Mahsa Torkamanian-Afshar
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Computer Technologies, Beykent University, Istanbul, Turkey
| | - Sajjad Nematzadeh
- Department of Computer Technologies, Beykent University, Istanbul, Turkey
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Kim TH, Lee SW. Aptamers for Anti-Viral Therapeutics and Diagnostics. Int J Mol Sci 2021; 22:ijms22084168. [PMID: 33920628 PMCID: PMC8074132 DOI: 10.3390/ijms22084168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Viral infections cause a host of fatal diseases and seriously affect every form of life from bacteria to humans. Although most viral infections can receive appropriate treatment thereby limiting damage to life and livelihood with modern medicine and early diagnosis, new types of viral infections are continuously emerging that need to be properly and timely treated. As time is the most important factor in the progress of many deadly viral diseases, early detection becomes of paramount importance for effective treatment. Aptamers are small oligonucleotide molecules made by the systematic evolution of ligands by exponential enrichment (SELEX). Aptamers are characterized by being able to specifically bind to a target, much like antibodies. However, unlike antibodies, aptamers are easily synthesized, modified, and are able to target a wider range of substances, including proteins and carbohydrates. With these advantages in mind, many studies on aptamer-based viral diagnosis and treatments are currently in progress. The use of aptamers for viral diagnosis requires a system that recognizes the binding of viral molecules to aptamers in samples of blood, serum, plasma, or in virus-infected cells. From a therapeutic perspective, aptamers target viral particles or host cell receptors to prevent the interaction between the virus and host cells or target intracellular viral proteins to interrupt the life cycle of the virus within infected cells. In this paper, we review recent attempts to use aptamers for the diagnosis and treatment of various viral infections.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
- Correspondence:
| |
Collapse
|
9
|
Goguen RP, Gatignol A, Scarborough RJ. Cloning and Detection of Aptamer-Ribozyme Conjugations. Methods Mol Biol 2021; 2167:253-267. [PMID: 32712924 DOI: 10.1007/978-1-0716-0716-9_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA aptamers can be used to target proteins or nucleic acids for therapeutic purposes and are candidates for RNA-mediated gene therapy. Like other small therapeutic RNAs, they can be expressed in cells from DNA templates that include a cellular promoter upstream of the RNA coding sequence. Secondary structures flanking aptamers can be used to enhance the activity or stability of these molecules. Notably, flanking self-cleaving ribozymes to remove extraneous nucleotides included during transcription as well as flanking hairpins to improve RNA stability have been used to increase the effect of therapeutic aptamers. Here we describe the cloning procedure of aptamers containing different flanking secondary structures and methods to compare their expression levels by a northern blot protocol optimized for the detection of small RNA molecules.
Collapse
Affiliation(s)
- Ryan P Goguen
- Lady Davis Institute for Medical Research, Montréal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, QC, Canada. .,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada. .,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, QC, Canada. .,Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
10
|
Fairén AG, Gómez-Elvira J, Briones C, Prieto-Ballesteros O, Rodríguez-Manfredi JA, López Heredero R, Belenguer T, Moral AG, Moreno-Paz M, Parro V. The Complex Molecules Detector (CMOLD): A Fluidic-Based Instrument Suite to Search for (Bio)chemical Complexity on Mars and Icy Moons. ASTROBIOLOGY 2020; 20:1076-1096. [PMID: 32856927 PMCID: PMC7116096 DOI: 10.1089/ast.2019.2167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca New York, USA
| | - Javier Gómez-Elvira
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | | | | | - Raquel López Heredero
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Tomás Belenguer
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | - Andoni G. Moral
- Payload & Space Science Department, Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
| | | | - Víctor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
11
|
Berzal-Herranz A, Romero-López C. Two Examples of RNA Aptamers with Antiviral Activity. Are Aptamers the Wished Antiviral Drugs? Pharmaceuticals (Basel) 2020; 13:157. [PMID: 32707768 PMCID: PMC7463695 DOI: 10.3390/ph13080157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The current Covid-19 pandemic has pointed out some major deficiencies of the even most advanced societies to fight against viral RNA infections. Once more, it has been demonstrated that there is a lack of efficient drugs to control RNA viruses. Aptamers are efficient ligands of a great variety of molecules including proteins and nucleic acids. Their specificity and mechanism of action make them very promising molecules for interfering with the function encoded in viral RNA genomes. RNA viruses store essential information in conserved structural genomic RNA elements that promote important steps for the consecution of the infective cycle. This work describes two well documented examples of RNA aptamers with antiviral activity against highly conserved structural domains of the HIV-1 and HCV RNA genome, respectively, performed in our laboratory. They are two good examples that illustrate the potential of the aptamers to fill the therapeutic gaps in the fight against RNA viruses.
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC), Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain;
| | | |
Collapse
|
12
|
Dey S, Sczepanski JT. In vitro selection of l-DNA aptamers that bind a structured d-RNA molecule. Nucleic Acids Res 2020; 48:1669-1680. [PMID: 31950158 PMCID: PMC7038948 DOI: 10.1093/nar/gkz1236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 12/22/2022] Open
Abstract
The development of structure-specific RNA binding reagents remains a central challenge in RNA biochemistry and drug discovery. Previously, we showed in vitro selection techniques could be used to evolve l-RNA aptamers that bind tightly to structured d-RNAs. However, whether similar RNA-binding properties can be achieved using aptamers composed of l-DNA, which has several practical advantages compared to l-RNA, remains unknown. Here, we report the discovery and characterization of the first l-DNA aptamers against a structured RNA molecule, precursor microRNA-155, thereby establishing the capacity of DNA and RNA molecules of the opposite handedness to form tight and specific ‘cross-chiral’ interactions with each other. l-DNA aptamers bind pre-miR-155 with low nanomolar affinity and high selectivity despite the inability of l-DNA to interact with native d-RNA via Watson–Crick base pairing. Furthermore, l-DNA aptamers inhibit Dicer-mediated processing of pre-miRNA-155. The sequence and structure of l-DNA aptamers are distinct from previously reported l-RNA aptamers against pre-miR-155, indicating that l-DNA and l-RNA interact with the same RNA sequence through unique modes of recognition. Overall, this work demonstrates that l-DNA may be pursued as an alternative to l-RNA for the generation of RNA-binding aptamers, providing a robust and practical approach for targeting structured RNAs.
Collapse
Affiliation(s)
- Sougata Dey
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
13
|
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020; 25:molecules25030680. [PMID: 32033448 PMCID: PMC7036789 DOI: 10.3390/molecules25030680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.
Collapse
|
14
|
Moreno M, Fernández-Algar M, Fernández-Chamorro J, Ramajo J, Martínez-Salas E, Briones C. A Combined ELONA-(RT)qPCR Approach for Characterizing DNA and RNA Aptamers Selected against PCBP-2. Molecules 2019; 24:molecules24071213. [PMID: 30925703 PMCID: PMC6480920 DOI: 10.3390/molecules24071213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 11/21/2022] Open
Abstract
Improvements in Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology and DNA sequencing methods have led to the identification of a large number of active nucleic acid molecules after any aptamer selection experiment. As a result, the search for the fittest aptamers has become a laborious and time-consuming task. Herein, we present an optimized approach for the label-free characterization of DNA and RNA aptamers in parallel. The developed method consists in an Enzyme-Linked OligoNucleotide Assay (ELONA) coupled to either real-time quantitative PCR (qPCR, for DNA aptamers) or reverse transcription qPCR (RTqPCR, for RNA aptamers), which allows the detection of aptamer-target interactions in the high femtomolar range. We have applied this methodology to the affinity analysis of DNA and RNA aptamers selected against the poly(C)-binding protein 2 (PCBP-2). In addition, we have used ELONA-(RT)qPCR to quantify the dissociation constant (Kd) and maximum binding capacity (Bmax) of 16 high affinity DNA and RNA aptamers. The Kd values of the high affinity DNA aptamers were compared to those derived from colorimetric ELONA performed in parallel. Additionally, Electrophoretic Mobility Shift Assays (EMSA) were used to confirm the binding of representative PCBP-2-specific RNA aptamers in solution. We propose this ELONA-(RT)qPCR approach as a general strategy for aptamer characterization, with a broad applicability in biotechnology and biomedicine.
Collapse
Affiliation(s)
- Miguel Moreno
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | - María Fernández-Algar
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
| | | | - Jorge Ramajo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), 28049 Madrid, Spain.
| | | | - Carlos Briones
- Laboratory of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, 28850 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain.
| |
Collapse
|
15
|
Berzal-Herranz A, Romero-López C, Berzal-Herranz B, Ramos-Lorente S. Potential of the Other Genetic Information Coded by the Viral RNA Genomes as Antiviral Target. Pharmaceuticals (Basel) 2019; 12:38. [PMID: 30871174 PMCID: PMC6469156 DOI: 10.3390/ph12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/05/2023] Open
Abstract
In addition to the protein coding information, viral RNA genomes code functional information in structurally conserved units termed functional RNA domains. These RNA domains play essential roles in the viral cycle (e.g., replication and translation). Understanding the molecular mechanisms behind their function is essential to understanding the viral infective cycle. Further, interfering with the function of the genomic RNA domains offers a potential means of developing antiviral strategies. Aptamers are good candidates for targeting structural RNA domains. Besides its potential as therapeutics, aptamers also provide an excellent tool for investigating the functionality of RNA domains in viral genomes. This review briefly summarizes the work carried out in our laboratory aimed at the structural and functional characterization of the hepatitis C virus (HCV) genomic RNA domains. It also describes the efforts we carried out for the development of antiviral aptamers targeting specific genomic domains of the HCV and the human immunodeficiency virus type-1 (HIV-1).
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Beatriz Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| | - Sara Ramos-Lorente
- Instituto de Parasitología y Biomedicina López-Neyra, (IPBLN-CSIC); Av. del Conocimiento 17, PTS Granada, Armilla, 18016 Granada, Spain.
| |
Collapse
|
16
|
Blanco C, Janzen E, Pressman A, Saha R, Chen IA. Molecular Fitness Landscapes from High-Coverage Sequence Profiling. Annu Rev Biophys 2019; 48:1-18. [PMID: 30601678 DOI: 10.1146/annurev-biophys-052118-115333] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The function of fitness (or molecular activity) in the space of all possible sequences is known as the fitness landscape. Evolution is a random walk on the fitness landscape, with a bias toward climbing hills. Mapping the topography of real fitness landscapes is fundamental to understanding evolution, but previous efforts were hampered by the difficulty of obtaining large, quantitative data sets. The accessibility of high-throughput sequencing (HTS) has transformed this study, enabling large-scale enumeration of fitness for many mutants and even complete sequence spaces in some cases. We review the progress of high-throughput studies in mapping molecular fitness landscapes, both in vitro and in vivo, as well as opportunities for future research. Such studies are rapidly growing in number. HTS is expected to have a profound effect on the understanding of real molecular fitness landscapes.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Abe Pressman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , , .,Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Ranajay Saha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA; , , , ,
| | - Irene A Chen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
17
|
Yoon S, Rossi JJ. Aptamers: Uptake mechanisms and intracellular applications. Adv Drug Deliv Rev 2018; 134:22-35. [PMID: 29981799 PMCID: PMC7126894 DOI: 10.1016/j.addr.2018.07.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023]
Abstract
The structural flexibility and small size of aptamers enable precise recognition of cellular elements for imaging and therapeutic applications. The process by which aptamers are taken into cells depends on their targets but is typically clathrin-mediated endocytosis or macropinocytosis. After internalization, most aptamers are transported to endosomes, lysosomes, endoplasmic reticulum, Golgi apparatus, and occasionally mitochondria and autophagosomes. Intracellular aptamers, or “intramers,” have versatile functions ranging from intracellular RNA imaging, gene regulation, and therapeutics to allosteric modulation, which we discuss in this review. Immune responses to therapeutic aptamers and the effects of G-quadruplex structure on aptamer function are also discussed.
Collapse
|
18
|
Pan Q, Luo F, Liu M, Zhang XL. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases. J Infect 2018; 77:83-98. [PMID: 29746951 PMCID: PMC7112547 DOI: 10.1016/j.jinf.2018.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/02/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
The entire human population is at risk of infectious diseases worldwide. Thus far, the diagnosis and treatment of human infectious diseases at the molecular and nanoscale levels have been extremely challenging tasks because of the lack of effective probes to identify and recognize biomarkers of pathogens. Oligonucleotide aptamers are a class of small nucleic acid ligands that are composed of single-stranded DNA (ssDNA) or RNA and act as affinity probes or molecular recognition elements for a variety of targets. These aptamers have an exciting potential for diagnose and/or treatment of specific diseases. In this review, we highlight areas where aptamers have been developed as diagnostic and therapeutic agents for both bacterial and viral infectious diseases as well as aptamer-based detection.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Fengling Luo
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Min Liu
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Department of Immunology School of Basic Medical Sciences, Medical Research Institute and Hubei Province Key Laboratory of Allergy Wuhan University School of Medicine, Donghu Road 185#, Wuhan 430071, PR China.
| |
Collapse
|
19
|
Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front Microbiol 2018; 8:2629. [PMID: 29354113 PMCID: PMC5759354 DOI: 10.3389/fmicb.2017.02629] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.
Collapse
Affiliation(s)
- Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Azman M Embarek
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Ruscito A, McConnell EM, Koudrina A, Velu R, Mattice C, Hunt V, McKeague M, DeRosa MC. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target. ACTA ACUST UNITED AC 2017; 9:233-268. [PMID: 29241295 DOI: 10.1002/cpch.28] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Erin M McConnell
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Anna Koudrina
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Ranganathan Velu
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | | | - Vernon Hunt
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| | - Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Maria C DeRosa
- Chemistry Department, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Jauset-Rubio M, El-Shahawi MS, Bashammakh AS, Alyoubi AO, O′Sullivan CK. Advances in aptamers-based lateral flow assays. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Kabza AM, Sczepanski JT. An l-RNA Aptamer with Expanded Chemical Functionality that Inhibits MicroRNA Biogenesis. Chembiochem 2017; 18:1824-1827. [PMID: 28696509 DOI: 10.1002/cbic.201700362] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/07/2023]
Abstract
To facilitate isolation of l-aptamers with novel RNA-binding properties, we employed a cationic nucleotide, 5-aminoallyluridine, during the mirror image in vitro selection process. Through this effort, we identified a modified l-RNA aptamer (MlRA) capable of binding oncogenic precursor microRNA 19a (pre-miR-19a) with exceptional affinity, and we showed that cationic modification is absolutely critical for binding. Furthermore, formation of the MlRA-pre-miR-19a complex inhibited Dicer-mediated cleavage of the pre-miR, thus blocking formation of the mature functional microRNA. The MlRA reported here not only represents the first l-aptamer to be evolved by using modified nucleotides but also the first modified aptamer (of any type) to be selected against a structured RNA target. Our results demonstrate that functionalized l-aptamers, which are intrinsically nuclease-resistant, provide an attractive approach for developing robust RNA-binding reagents.
Collapse
Affiliation(s)
- Adam M Kabza
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
23
|
Fernández-Sanlés A, Ríos-Marco P, Romero-López C, Berzal-Herranz A. Functional Information Stored in the Conserved Structural RNA Domains of Flavivirus Genomes. Front Microbiol 2017; 8:546. [PMID: 28421048 PMCID: PMC5376627 DOI: 10.3389/fmicb.2017.00546] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/15/2017] [Indexed: 02/05/2023] Open
Abstract
The genus Flavivirus comprises a large number of small, positive-sense single-stranded, RNA viruses able to replicate in the cytoplasm of certain arthropod and/or vertebrate host cells. The genus, which has some 70 member species, includes a number of emerging and re-emerging pathogens responsible for outbreaks of human disease around the world, such as the West Nile, dengue, Zika, yellow fever, Japanese encephalitis, St. Louis encephalitis, and tick-borne encephalitis viruses. Like other RNA viruses, flaviviruses have a compact RNA genome that efficiently stores all the information required for the completion of the infectious cycle. The efficiency of this storage system is attributable to supracoding elements, i.e., discrete, structural units with essential functions. This information storage system overlaps and complements the protein coding sequence and is highly conserved across the genus. It therefore offers interesting potential targets for novel therapeutic strategies. This review summarizes our knowledge of the features of flavivirus genome functional RNA domains. It also provides a brief overview of the main achievements reported in the design of antiviral nucleic acid-based drugs targeting functional genomic RNA elements.
Collapse
Affiliation(s)
| | | | | | - Alfredo Berzal-Herranz
- Department of Molecular Biology, Instituto de Parasitología y Biomedicina “López-Neyra,” Consejo Superior de Investigaciones Científicas (IPBLN-CSIC)Granada, Spain
| |
Collapse
|
24
|
González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals (Basel) 2016; 9:78. [PMID: 27999271 PMCID: PMC5198053 DOI: 10.3390/ph9040078] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 02/05/2023] Open
Abstract
Appropriate diagnosis is the key factor for treatment of viral diseases. Time is the most important factor in rapidly developing and epidemiologically dangerous diseases, such as influenza, Ebola and SARS. Chronic viral diseases such as HIV-1 or HCV are asymptomatic or oligosymptomatic and the therapeutic success mainly depends on early detection of the infective agent. Over the last years, aptamer technology has been used in a wide range of diagnostic and therapeutic applications and, concretely, several strategies are currently being explored using aptamers against virus proteins. From a diagnostics point of view, aptamers are being designed as a bio-recognition element in diagnostic systems to detect viral proteins either in the blood (serum or plasma) or into infected cells. Another potential use of aptamers is for therapeutics of viral infections, interfering in the interaction between the virus and the host using aptamers targeting host-cell matrix receptors, or attacking the virus intracellularly, targeting proteins implicated in the viral replication cycle. In this paper, we review how aptamers working against viral proteins are discovered, with a focus on recent advances that improve the aptamers' properties as a real tool for viral infection detection and treatment.
Collapse
Affiliation(s)
- Víctor M González
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - M Elena Martín
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain.
| | - Gerónimo Fernández
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ana García-Sacristán
- Aptus Biotech SL, c/Faraday, 7, Parque Científico de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
25
|
Cell-targeting aptamers act as intracellular delivery vehicles. Appl Microbiol Biotechnol 2016; 100:6955-69. [PMID: 27350620 DOI: 10.1007/s00253-016-7686-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Aptamers are single-stranded nucleic acids or peptides identified from a randomized combinatorial library through specific interaction with the target of interest. Targets can be of any size, from small molecules to whole cells, attesting to the versatility of aptamers for binding a wide range of targets. Aptamers show drug properties that are analogous to antibodies, with high specificity and affinity to their target molecules. Aptamers can penetrate disease-causing microbial and mammalian cells. Generated aptamers that target surface biomarkers act as cell-targeting agents and intracellular delivery vehicles. Within this context, the "cell-internalizing aptamers" are widely investigated via the process of cell uptake with selective binding during in vivo systematic evolution of ligands by exponential enrichment (SELEX) or by cell-internalization SELEX, which targets cell surface antigens to be receptors. These internalizing aptamers are highly preferable for the localization and functional analyses of multiple targets. In this overview, we discuss the ways by which internalizing aptamers are generated and their successful applications. Furthermore, theranostic approaches featuring cell-internalized aptamers are discussed with the purpose of analyzing and diagnosing disease-causing pathogens.
Collapse
|
26
|
Ruscito A, DeRosa MC. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications. Front Chem 2016; 4:14. [PMID: 27242994 PMCID: PMC4861895 DOI: 10.3389/fchem.2016.00014] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/23/2016] [Indexed: 11/13/2022] Open
Abstract
Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed.
Collapse
Affiliation(s)
| | - Maria C DeRosa
- Department of Chemistry, Carleton University Ottawa, ON, Canada
| |
Collapse
|
27
|
Tabarzad M, Jafari M. Trends in the Design and Development of Specific Aptamers Against Peptides and Proteins. Protein J 2016; 35:81-99. [PMID: 26984473 DOI: 10.1007/s10930-016-9653-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aptamers are single stranded oligonucleotides, comparable to monoclonal antibodies (mAbs) in selectivity and affinity and have significant strategic properties in design, development and applications more than mAbs. Ease of design and development, simple chemical modification and the attachment of functional groups, easily handling and more adaptability with analytical methods, small size and adaptation with nanostructures are the valuable characteristics of aptamers in comparison to large protein based ligands. Among a broad range of targets that their specific aptamers developed, proteins and peptides have significant position according to the number of related studies performed so far. Since proteins control many of important physiological and pathological incidents in the living organisms, particularly human beings and because of the benefits of aptamers in clinical and analytical applications, aptamer related technologies in the field of proteins and peptides are under progress, exclusively. Currently, there is only one FDA approved therapeutic aptamer in the pharmaceutical market, which is specific to vascular endothelial growth factor and is prescribed for age related macular degenerative disease. Additionally, there are several aptamers in the different phases of clinical trials. Almost all of these aptamers are specific to clinically important peptide or protein targets. In addition, the application of protein specific aptamers in the design and development of targeted drug delivery systems and diagnostic biosensors is another interesting field of aptamer technology. In this review, significant efforts related to development and applications of aptamer technologies in proteins and peptides sciences were considered to emphasis on the importance of aptamers in medicinal and clinical applications.
Collapse
Affiliation(s)
- Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Vali Asr Avenue, Niayesh Junction, Tehran, PO Box: 14155-6153, Iran.
| | - Marzieh Jafari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Oliviero G, Stornaiuolo M, D'Atri V, Nici F, Yousif AM, D'Errico S, Piccialli G, Mayol L, Novellino E, Marinelli L, Grieco P, Carotenuto A, Noppen S, Liekens S, Balzarini J, Borbone N. Screening Platform toward New Anti-HIV Aptamers Set on Molecular Docking and Fluorescence Quenching Techniques. Anal Chem 2016; 88:2327-34. [PMID: 26810800 DOI: 10.1021/acs.analchem.5b04268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
By using a new rapid screening platform set on molecular docking simulations and fluorescence quenching techniques, three new anti-HIV aptamers targeting the viral surface glycoprotein 120 (gp120) were selected, synthesized, and assayed. The use of the short synthetic fluorescent peptide V35-Fluo mimicking the V3 loop of gp120, as the molecular target for fluorescence-quenching binding affinity studies, allowed one to measure the binding affinities of the new aptamers for the HIV-1 gp120 without the need to obtain and purify the full recombinant gp120 protein. The almost perfect correspondence between the calculated Kd and the experimental EC50 on HIV-infected cells confirmed the reliability of the platform as an alternative to the existing methods for aptamer selection and measuring of aptamer-protein equilibria.
Collapse
Affiliation(s)
- Giorgia Oliviero
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Mariano Stornaiuolo
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Valentina D'Atri
- University of Bordeaux , IECB, ARNA laboratory, Pessac, 33600, France.,INSERM , U869, ARNA laboratory, Bordeaux, 33000, France
| | - Fabrizia Nici
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Ali Munaim Yousif
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Stefano D'Errico
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Gennaro Piccialli
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy.,CNR , Institute of Protein Biochemistry, Napoli, 80131, Italy
| | - Luciano Mayol
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Ettore Novellino
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Luciana Marinelli
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Paolo Grieco
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Alfonso Carotenuto
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| | - Sam Noppen
- KU Leuven , Rega Institute for Medical Research, Leuven, 3000, Belgium
| | - Sandra Liekens
- KU Leuven , Rega Institute for Medical Research, Leuven, 3000, Belgium
| | - Jan Balzarini
- KU Leuven , Rega Institute for Medical Research, Leuven, 3000, Belgium
| | - Nicola Borbone
- University of Naples Federico II , Department of Pharmacy, Napoli, 80131, Italy
| |
Collapse
|
29
|
Kun Á, Szathmáry E. Fitness Landscapes of Functional RNAs. Life (Basel) 2015; 5:1497-517. [PMID: 26308059 PMCID: PMC4598650 DOI: 10.3390/life5031497] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/26/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022] Open
Abstract
The notion of fitness landscapes, a map between genotype and fitness, was proposed more than 80 years ago. For most of this time data was only available for a few alleles, and thus we had only a restricted view of the whole fitness landscape. Recently, advances in genetics and molecular biology allow a more detailed view of them. Here we review experimental and theoretical studies of fitness landscapes of functional RNAs, especially aptamers and ribozymes. We find that RNA structures can be divided into critical structures, connecting structures, neutral structures and forbidden structures. Such characterisation, coupled with theoretical sequence-to-structure predictions, allows us to construct the whole fitness landscape. Fitness landscapes then can be used to study evolution, and in our case the development of the RNA world.
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Kirchplatz 1, 82049 Munich/Pullach, Germany.
- MTA-ELTE-MTMT Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| | - Eörs Szathmáry
- Parmenides Center for the Conceptual Foundations of Science, Kirchplatz 1, 82049 Munich/Pullach, Germany.
- Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Eötvös University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
| |
Collapse
|
30
|
Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics. Molecules 2015; 20:6866-87. [PMID: 25913927 PMCID: PMC6272696 DOI: 10.3390/molecules20046866] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 01/07/2023] Open
Abstract
Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their performance among the research and development community. Given the early failures of some strong commercial efforts to gain government approval and bring aptamer-based products to market, it may seem that aptamers are doomed to take a backseat to antibodies forever. However, the key advantages of aptamers over antibodies coupled with niche market needs that only aptamers can fill and more recent published data still point to a bright commercial future for aptamers in areas such as infectious disease and cancer diagnostics and therapeutics. As more researchers and entrepreneurs become familiar with aptamers, it seems inevitable that aptamers will at least be considered for expanded roles in diagnostics and therapeutics. This review also examines new aptamer modifications and attempts to predict new aptamer applications that could revolutionize biomedical technology in the future and lead to marketed products.
Collapse
|