1
|
Li Y, Liu H, Huo L, Lei M, Lakhtakia A. Compositional-Asymmetry-Induced Transition of Directional Liquid Transport on Tilted and Janusian Nanohair Arrays. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20418-20430. [PMID: 40099843 DOI: 10.1021/acsami.4c23088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Anisotropic wetting on certain surfaces endowed with structural asymmetry or compositional gradients commonly impedes the directional adjustment of liquid transport. We report here that directional liquid transport (DLT) against the tilt direction of nanohair and in the reverse direction was achieved on tilted-nanohair arrays (TNAs) and tilted-Janusian-nanohair arrays (TJNAs), respectively. Janusian compositional asymmetry on the surface of TJNAs was created by plasma polymer deposition on structurally asymmetric TNAs previously fabricated by Faraday-cage-assisted plasma nanotexturing. The structurally asymmetric TNAs led to DLT against the tilting direction due to the asymmetric wetting under the capillary imbibition between tilted nanohairs and the preferential coalescence of liquid against the tilt direction. The Janusian compositional asymmetry of TJNAs changing the capillarity imbibition condition between tilted nanohairs resulted in the transition of the liquid spreading direction along the tilt direction. The spreading direction along and against the tilt direction is predicted through a comprehensive analysis of the structural and compositional asymmetries of the TNAs and TJNAs.
Collapse
Affiliation(s)
- Yupeng Li
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Haodong Liu
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Huo
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Mingkai Lei
- Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
| | - Akhlesh Lakhtakia
- NanoMM-Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Liu X, Gao M, Li B, Liu R, Chong Z, Gu Z, Zhou K. Bioinspired Capillary Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310797. [PMID: 39139014 DOI: 10.1002/adma.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/29/2024] [Indexed: 08/15/2024]
Abstract
Inspired by the unidirectional liquid spreading on Nepenthes peristome, Araucaria leaf, butterfly wings, etc., various microfluidic devices have been developed for water collection, irrigation, physical/chemical reaction, and oil-water separation. Despite extensive progress, most natural and artificial structures fail to enhance the Laplace pressure difference or capillary force, thus suffering from a low unidirectional capillary height (<30 mm). In this work, asymmetric re-entrant structures with long overhangs and connected forward/lateral microchannels are fabricated by 3D printing, resulting in a significantly increased unidirectional capillary height of 102.3 mm for water, which approximately corresponds to the theoretical limit. The overhangs can partially overlap the forward microchannels of the front structures without direct contact, thus enhancing the Laplace pressure difference and capillary force simultaneously. Based on asymmetric and symmetric re-entrant structures, capillary transistors are proposed and realized to programmably adjust the capillary direction, height, and width, which are envisioned to function as switches/valves and amplifiers/attenuators for highly efficient liquid patterning, desalination, and biochemical microreaction in 3D space.
Collapse
Affiliation(s)
- Xiaojiang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Boyuan Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ruoyu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhejun Chong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Liu X, Li B, Gu Z, Zhou K. 4D Printing of Butterfly Scale-Inspired Structures for Wide-Angle Directional Liquid Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207640. [PMID: 37078893 DOI: 10.1002/smll.202207640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Unidirectional liquid transport has been extensively explored for water/fog harvesting, electrochemical sensing, and desalination. However, current research mainly focuses on linear liquid transport (transport angle α = 0°), which exhibits hindered lateral liquid spreading and low unidirectional transport efficiency. Inspired by the wide-angle (0° < α < 180°) liquid transport on butterfly wings, this work successfully achieves linear (α = 0°), wide-angle, and even ultra-wide-angle (α = 180°) liquid transport by four-dimensional (4D) printing of butterfly scale-inspired re-entrant structures. These asymmetric re-entrant structures can achieve unidirectional liquid transport, and their layout can control the Laplace pressure in the forward (structure-tilting) and lateral directions to adjust the transport angle. Specifically, high transport efficiency and programmable forward/lateral transport paths are simultaneously achieved by the ultra-wide-angle transport, where liquid fills the lateral path before being transported forward. Moreover, the ultra-wide-angle transport is also validated in 3D space, which provides an innovative platform for advanced biochemical microreaction, large-area evaporation, and self-propelled oil-water separation.
Collapse
Affiliation(s)
- Xiaojiang Liu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Boyuan Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
4
|
Kim K, Park K, Nam H, Kim GH, Hong SK, Kim S, Woo H, Yoon S, Kim JH, Lim G. Fabrication of Oblique Submicron-Scale Structures Using Synchrotron Hard X-ray Lithography. Polymers (Basel) 2021; 13:polym13071045. [PMID: 33810563 PMCID: PMC8037242 DOI: 10.3390/polym13071045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
Oblique submicron-scale structures are used in various aspects of research, such as the directional characteristics of dry adhesives and wettability. Although deposition, etching, and lithography techniques are applied to fabricate oblique submicron-scale structures, these approaches have the problem of the controllability or throughput of the structures. Here, we propose a simple X-ray-lithography method, which can control the oblique angle of submicron-scale structures with areas on the centimeter scale. An X-ray mask was fabricated by gold film deposition on slanted structures. Using this mask, oblique ZEP520A photoresist structures with slopes of 20° and 10° and widths of 510 nm and 345 nm were fabricated by oblique X-ray exposure, and the possibility of polydimethylsiloxane (PDMS) molding was also confirmed. In addition, through double exposure with submicron- and micron-scale X-ray masks, dotted-line patterns were produced as an example of multiscale patterning.
Collapse
Affiliation(s)
- Kanghyun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (K.K.); (S.K.H.); (S.K.); (H.W.); (S.Y.)
| | - Kyungjin Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
| | - Hyoryung Nam
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
| | - Geon Hwee Kim
- School of Mechanical Engineering, Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Korea;
| | - Seong Kyung Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (K.K.); (S.K.H.); (S.K.); (H.W.); (S.Y.)
| | - Suhyeon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (K.K.); (S.K.H.); (S.K.); (H.W.); (S.Y.)
| | - Hyeonsu Woo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (K.K.); (S.K.H.); (S.K.); (H.W.); (S.Y.)
| | - Seungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (K.K.); (S.K.H.); (S.K.); (H.W.); (S.Y.)
| | - Jong Hyun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (K.K.); (S.K.H.); (S.K.); (H.W.); (S.Y.)
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea
- Correspondence: (J.H.K.); (G.L.)
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (K.K.); (S.K.H.); (S.K.); (H.W.); (S.Y.)
- Correspondence: (J.H.K.); (G.L.)
| |
Collapse
|
5
|
Zhu Q, Zhao X, Zhang X, Zhu A, Gao R, Zhang Y, Wang Y, Chen L. Au nanocone array with 3D hotspots for biomarker chips. CrystEngComm 2020. [DOI: 10.1039/d0ce00786b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
AFP-L3 is one of the most important biomarkers for the early diagnosis of liver cancer.
Collapse
Affiliation(s)
- Qi Zhu
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Xiaoyu Zhao
- School of Material and Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou 310012
- P.R. China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Aonan Zhu
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Renxian Gao
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Yongjun Zhang
- School of Material and Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou 310012
- P.R. China
| | - Yaxin Wang
- School of Material and Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou 310012
- P.R. China
| | - Lei Chen
- College of Chemistry
- Jilin Normal University
- Siping
- P.R. China
| |
Collapse
|
6
|
Li J, Song Y, Zheng H, Feng S, Xu W, Wang Z. Designing biomimetic liquid diodes. SOFT MATTER 2019; 15:1902-1915. [PMID: 30758033 DOI: 10.1039/c9sm00072k] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Just as the innovation of electronic diodes that allow the current to flow in one direction provides a foundation for the development of digital technologies, the engineering of surfaces or devices that allow the directional and spontaneous transport of fluids, termed liquid diodes, is highly desired in a wide spectrum of applications ranging from medical microfluidics, advanced printing, heat management and water collection to oil-water separation. Recent advances in manufacturing, visualization techniques, and biomimetics have led to exciting progress in the design of various liquid diodes. In spite of exciting progress, formulating a general framework broad enough to guide the design, optimization and fabrication of engineered liquid diodes remains a challenging task to date. In this review, we first present an overview of the development of biological and engineered liquid diodes to elucidate how to control the surface chemistry and topography to regulate the transport of liquids without the need for external energy. Then the latest design strategies allowing for the creation of longitudinal and transverse liquid diodes are discussed and compared. We also define some figures of merit such as the rectification coefficient and the transport velocity and distance to quantify the performance of liquid diodes. Finally, we highlight perspectives on the development of engineered liquid diodes that transcend nature and adapt to various practical applications.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | | | | | | | | | | |
Collapse
|
7
|
Li Y, He L, Zhang X, Zhang N, Tian D. External-Field-Induced Gradient Wetting for Controllable Liquid Transport: From Movement on the Surface to Penetration into the Surface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703802. [PMID: 29052911 DOI: 10.1002/adma.201703802] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/02/2017] [Indexed: 06/07/2023]
Abstract
External-field-responsive liquid transport has received extensive research interest owing to its important applications in microfluidic devices, biological medical, liquid printing, separation, and so forth. To realize different levels of liquid transport on surfaces, the balance of the dynamic competing processes of gradient wetting and dewetting should be controlled to achieve good directionality, confined range, and selectivity of liquid wetting. Here, the recent progress in external-field-induced gradient wetting is summarized for controllable liquid transport from movement on the surface to penetration into the surface, particularly for liquid motion on, patterned wetting into, and permeation through films on superwetting surfaces with external field cooperation (e.g., light, electric fields, magnetic fields, temperature, pH, gas, solvent, and their combinations). The selected topics of external-field-induced liquid transport on the different levels of surfaces include directional liquid motion on the surface based on the wettability gradient under an external field, partial entry of a liquid into the surface to achieve patterned surface wettability for printing, and liquid-selective permeation of the film for separation. The future prospects of external-field-responsive liquid transport are also discussed.
Collapse
Affiliation(s)
- Yan Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Linlin He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Na Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Dongliang Tian
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
8
|
Contraires E, Teisseire J, Søndergård E, Barthel E. Wetting against the nap - how asperity inclination determines unidirectional spreading. SOFT MATTER 2016; 12:6067-6072. [PMID: 27373469 DOI: 10.1039/c6sm00523c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have carried out wetting experiments on textured surfaces with high aspect ratio asperities in the Wenzel state. When inclination is imparted to the asperities, we observe a strictly unidirectional spreading opposite to the direction in which the asperities point. The advancing contact angle decreases markedly as inclination increases. A crude numerical analysis successfully accounts for this behaviour, highlighting the interplay between Gibbs pinning at the top of the structures and imbibition along the valleys between them. In Gibbs pinning non-linearities play a major role and we find that simple line averaging - i.e. a rule of mixture - cannot account for this evolution except for weak surface perturbations, i.e. large inclinations.
Collapse
Affiliation(s)
- Elise Contraires
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR5513, CNRS, Ecole Centrale de Lyon, 36 avenue Guy de Collongue, FR-69134 Ecully cedex, France
| | - Jérémie Teisseire
- Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France and PCRS, Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France
| | - Elin Søndergård
- Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain Recherche, 39 quai Lucien Lefranc, 93303 Aubervilliers, France
| | - Etienne Barthel
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI) ParisTech, PSL Research University, Sciences et Ingénierie de la matière Molle, CNRS UMR 7615, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France and Sorbonne-Universités, UPMC Univ. Paris 06, SIMM, 10, Rue Vauquelin, F-75231 Paris Cedex 05, France
| |
Collapse
|
9
|
Jokinen V. Directional imbibition on a chemically patterned silicon micropillar array. SOFT MATTER 2016; 12:1100-1106. [PMID: 26576647 DOI: 10.1039/c5sm01746g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Directional imbibition of oils (hexadecane, tetradecane, and dodecane) and water is demonstrated on a chemically patterned silicon micropillar array. Four different directional imbibition types are shown: unidirectional, two types of bidirectional and tridirectional imbibition. The surfaces consist of a silicon micropillar array with an overlaid surface chemistry pattern. This configuration leads to anisotropic wetting behaviour into various directions of the advancing meniscus. Due to the free energy landscape obtained, the advancing meniscus gets pinned in some directions (determined by the surface chemistry pattern) while it is free to move to the remaining directions. The conditions for directional imbibition and design criteria for the surfaces are derived and discussed.
Collapse
Affiliation(s)
- Ville Jokinen
- School of Chemical Technology, Aalto University, Micronova, Tietotie 3, 02150 Espoo, Finland.
| |
Collapse
|