1
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
2
|
Qin L, Sun K, Shi L, Xu Y, Zhang R. High-Fat Mouse Model to Explore the Relationship between Abnormal Lipid Metabolism and Enolase in Pancreatic Cancer. Mediators Inflamm 2023; 2023:4965223. [PMID: 37731842 PMCID: PMC10509005 DOI: 10.1155/2023/4965223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 09/22/2023] Open
Abstract
Malignant tumors have become a major social health problem that seriously threatens human health, among which pancreatic cancer has a high degree of malignancy, difficult diagnosis and treatment, short survival time, and high mortality. More and more attention has been paid to abnormal lipid metabolism as a momentous carcinogenesis mechanism. Here, we explored the relationship between abnormal lipid metabolism, enolase, and pancreatic cancer by clinical data analysis. A high-fat mouse model was constructed, and then, a subcutaneous tumorigenesis mouse model of carcinoma of pancreatic cells and a metastatic neoplasm mouse pattern of pancreatic carcinoma cells injected through the tail vein were constructed to explore whether abnormal lipid metabolism affects the progression of pancreatic cancer in mice. We constructed a high-lipid model of pancreatic carcinoma cell lines and knockdown and overexpressed enolase in pancreatic carcinoma cell lines and investigated whether high lipid regulates epithelial-mesenchymal transition (EMT) by upregulating enolase (ENO), thereby promoting the cells of pancreatic carcinoma to invade and migrate. Triglycerides, total cholesterol, free cholesterin, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and neuron-specific enolase (NSE) from pancreatic cancer patients and nonpancreatic cancer patients were tested. The differences in blood lipids between patients with and without pancreatic carcinoma were compared, and the correlation between blood lipids and neuron-specific enolase was analyzed. We confirmed that the serum triglyceride level of pancreatic cancer patients at initial diagnosis is overtopping nonpancreatic cancer patients, and the neuron-specific enolase level of patients with pancreatic carcinoma is better than nonpancreatic carcinoma sufferers. Triglyceride level is positively correlated with neuron-specific enolase level, and serum triglyceride level has predictive value for pancreatic cancer. Hyperlipidemia can promote tumor growth and increase the expression levels of ENO1, ENO2, and ENO3 in subcutaneous tumor formation of pancreatic cancer in mice. Additional hyperlipidemia promoted pancreatic carcinoma metastasis in the lung in mice injected through the tail vein, which confirmed that hyperlipidemia accelerated the process of EMT by increasing the expression of ENO1, ENO2, and ENO3, therefore promoting the pancreatic cancer cell metastasis.
Collapse
Affiliation(s)
- Lin Qin
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- School of Pharmaceutical Science, Kunming Medical University, Kunming, Yunnan 650500, China
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
- Yunnan Province Clinical Research Center for Metabolic diseases, Kunming, Yunnan 650000, China
- Yunnan Clinical Medical Center for Endocrine and Metabolic Diseases, Kunming, Yunnan 650000, China
| | - Kai Sun
- Affiliated Hospital of Yunnan University, Qingnian Road, Kunming, Yunnan 650000, China
| | - Li Shi
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Province Clinical Research Center for Metabolic diseases, Kunming, Yunnan 650000, China
- Yunnan Clinical Medical Center for Endocrine and Metabolic Diseases, Kunming, Yunnan 650000, China
| | - Yushan Xu
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, China
- Yunnan Province Clinical Research Center for Metabolic diseases, Kunming, Yunnan 650000, China
- Yunnan Clinical Medical Center for Endocrine and Metabolic Diseases, Kunming, Yunnan 650000, China
| | - Rongping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| |
Collapse
|
3
|
Xu Z, Chen Y, Wang Y, Han W, Xu W, Liao X, Zhang T, Wang G. Matrix stiffness, endothelial dysfunction and atherosclerosis. Mol Biol Rep 2023; 50:7027-7041. [PMID: 37382775 DOI: 10.1007/s11033-023-08502-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Abstract
Atherosclerosis (AS) is the leading cause of the human cardiovascular diseases (CVDs). Endothelial dysfunction promotes the monocytes infiltration and inflammation that participate fundamentally in atherogenesis. Endothelial cells (EC) have been recognized as mechanosensitive cells and have different responses to distinct mechanical stimuli. Emerging evidence shows matrix stiffness-mediated EC dysfunction plays a vital role in vascular disease, but the underlying mechanisms are not yet completely understood. This article aims to summarize the effect of matrix stiffness on the pro-atherosclerotic characteristics of EC including morphology, rigidity, biological behavior and function as well as the related mechanical signal. The review also discusses and compares the contribution of matrix stiffness-mediated phagocytosis of macrophages and EC to AS progression. These advances in our understanding of the relationship between matrix stiffness and EC dysfunction open the avenues to improve the prevention and treatment of now-ubiquitous atherosclerotic diseases.
Collapse
Affiliation(s)
- Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Chen
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wenbo Han
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Wenfeng Xu
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Tao Zhang
- Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection, Chongqing Key Laboratory of Nano/Micro Composite Material and Device, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing, 401331, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- Bioengineering College of Chongqing University, NO.174, Shazheng Street, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
4
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
5
|
Askari H, Sadeghinejad M, Fancher IS. Mechanotransduction and the endothelial glycocalyx: Interactions with membrane and cytoskeletal proteins to transduce force. CURRENT TOPICS IN MEMBRANES 2023; 91:43-60. [PMID: 37080680 DOI: 10.1016/bs.ctm.2023.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx is an extracellular matrix that coats the endothelium and extends into the lumen of blood vessels, acting as a barrier between the vascular wall and blood flowing through the vessel. This positioning of the glycocalyx permits a variety of its constituents, including the major endothelial proteoglycans glypican-1 and syndecan-1, as well as the major glycosaminoglycans heparan sulfate and hyaluronic acid, to contribute to the processes of mechanosensation and subsequent mechanotransduction following such stimuli as elevated shear stress. To coordinate the vast array of processes that occur in response to physical force, the glycocalyx interacts with a plethora of membrane and cytoskeletal proteins to carry out specific signaling pathways resulting in a variety of responses of endothelial cells and, ultimately, blood vessels to mechanical force. This review focuses on proposed glycocalyx-protein relationships whereby the endothelial glycocalyx interacts with a variety of membrane and cytoskeletal proteins to transduce force into a myriad of chemical signaling pathways. The established and proposed interactions at the molecular level are discussed in context of how the glycocalyx regulates membrane/cytoskeletal protein function in the many processes of endothelial mechanotransduction.
Collapse
|
6
|
Haftbaradaran Esfahani P, Westergren J, Lindfors L, Knöll R. Frequency-dependent signaling in cardiac myocytes. Front Physiol 2022; 13:926422. [PMID: 36117711 PMCID: PMC9478484 DOI: 10.3389/fphys.2022.926422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Recent experimental data support the view that signaling activity at the membrane depends on its geometric parameters such as surface area and curvature. However, a mathematical, biophysical concept linking shape to receptor signaling is missing. The membranes of cardiomyocytes are constantly reshaped due to cycles of contraction and relaxation. According to constant-volume behavior of cardiomyocyte contraction, the length shortening is compensated by Z-disc myofilament lattice expansion and dynamic deformation of membrane between two adjacent Z-discs. Both morphological changes are strongly dependent on the frequency of contraction. Here, we developed the hypothesis that dynamic geometry of cardiomyocytes could be important for their plasticity and signaling. This effect may depend on the frequency of the beating heart and may represent a novel concept to explain how changes in frequency affect cardiac signaling. Methods: This hypothesis is almost impossible to answer with experiments, as the in-vitro cardiomyocytes are almost two-dimensional and flattened rather than being in their real in-vivo shape. Therefore, we designed a COMSOL multiphysics program to mathematically model the dynamic geometry of a human cardiomyocyte and explore whether the beating frequency can modulate membrane signal transduction. Src kinase is an important component of cardiac mechanotransduction. We first presented that Src mainly localizes at costameres. Then, the frequency-dependent signaling effect was studied mathematically by numerical simulation of Src-mediated PDGFR signaling pathway. The reaction-convection-diffusion partial differential equation was formulated to simulate PDGFR pathway in a contracting sarcomeric disc for a range of frequencies from 1 to 4 Hz. Results: Simulations exhibits higher concentration of phospho-Src when a cardiomyocyte beats with higher rates. The calculated phospho-Src concentration at 4, 2, and 1 Hz beat rates, comparing to 0 Hz, was 21.5%, 9.4%, and 4.7% higher, respectively. Conclusion: Here we provide mathematical evidence for a novel concept in biology. Cell shape directly translates into signaling, an effect of importance particularly for the myocardium, where cells continuously reshape their membranes. The concept of locality of surface-to-volume ratios is demonstrated to lead to changes in membrane-mediated signaling and may help to explain the remarkable plasticity of the myocardium in response to biomechanical stress.
Collapse
Affiliation(s)
| | | | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, Stockholm, Sweden
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
- *Correspondence: Ralph Knöll,
| |
Collapse
|
7
|
Wang C, Qu K, Wang J, Qin R, Li B, Qiu J, Wang G. Biomechanical regulation of planar cell polarity in endothelial cells. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166495. [PMID: 35850177 DOI: 10.1016/j.bbadis.2022.166495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2023]
Abstract
Cell polarity refers to the uneven distribution of certain cytoplasmic components in a cell with a spatial order. The planar cell polarity (PCP), the cell aligns perpendicular to the polar plane, in endothelial cells (ECs) has become a research hot spot. The planar polarity of ECs has a positive significance on the regulation of cardiovascular dysfunction, pathological angiogenesis, and ischemic stroke. The endothelial polarity is stimulated and regulated by biomechanical force. Mechanical stimuli promote endothelial polarization and make ECs produce PCP to maintain the normal physiological and biochemical functions. Here, we overview recent advances in understanding the interplay and mechanism between PCP and ECs function involved in mechanical forces, with a focus on PCP signaling pathways and organelles in regulating the polarity of ECs. And then showed the related diseases caused by ECs polarity dysfunction. This study provides new ideas and therapeutic targets for the treatment of endothelial PCP-related diseases.
Collapse
Affiliation(s)
- Caihong Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Jing Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rui Qin
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bingyi Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
8
|
Nguyen DT, Smith AF, Jiménez JM. Stent strut streamlining and thickness reduction promote endothelialization. J R Soc Interface 2021; 18:20210023. [PMID: 34404229 PMCID: PMC8371379 DOI: 10.1098/rsif.2021.0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Stent thrombosis (ST) carries a high risk of myocardial infarction and death. Lack of endothelial coverage is an important prognostic indicator of ST after stenting. While stent strut thickness is a critical factor in ST, a mechanistic understanding of its effect is limited and the role of haemodynamics is unclear. Endothelialization was tested using a wound-healing assay and five different stent strut models ranging in height between 50 and 150 µm for circular arc (CA) and rectangular (RT) geometries and a control without struts. Under static conditions, all stent strut surfaces were completely endothelialized. Reversing pulsatile disturbed flow caused full endothelialization, except for the stent strut surfaces of the 100 and 150 µm RT geometries, while fully antegrade pulsatile undisturbed flow with a higher mean wall shear stress caused only the control and the 50 µm CA geometries to be fully endothelialized. Modest streamlining and decrease in height of the stent struts improved endothelial coverage of the peri-strut and stent strut surfaces in a haemodynamics dependent manner. This study highlights the impact of the stent strut height (thickness) and geometry (shape) on the local haemodynamics, modulating reendothelialization after stenting, an important factor in reducing the risk of stent thrombosis.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander F. Smith
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Juan M. Jiménez
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Le V, Mei L, Voyvodic PL, Zhao C, Busch DJ, Stachowiak JC, Baker AB. Molecular tension in syndecan-1 is regulated by extracellular mechanical cues and fluidic shear stress. Biomaterials 2021; 275:120947. [PMID: 34139507 DOI: 10.1016/j.biomaterials.2021.120947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 12/01/2022]
Abstract
The endothelium plays a central role in regulating vascular homeostasis and is key in determining the response to materials implanted in the vascular system. Endothelial cells are uniquely sensitive to biophysical cues from applied forces and their local cellular microenvironment. The glycocalyx is a layer of proteoglycans, glycoproteins and glycosaminoglycans that lines the luminal surface of the vascular endothelium, interacting directly with the components of the blood and the forces of blood flow. In this work, we examined the changes in mechanical tension of syndecan-1, a cell surface proteoglycan that is an integral part of the glycocalyx, in response to substrate stiffness and fluidic shear stress. Our studies demonstrate that syndecan-1 has higher mechanical tension in regions of cell adhesion, on and in response to nanotopographical cues. In addition, we found that substrate stiffness also regulated the mechanical tension of syndecan-1 and altered its binding to actin, myosin iiB and signaling intermediates including Src, PKA and FAK. Application of fluidic shear stress created a gradient in tension in syndecan-1 and led to enhanced association with actin, Src, myosin IIb and other cytoskeleton related molecules. Overall, our studies support that syndecan-1 is responsive to the mechanical environment of the cells and alters its association with actin and signaling intermediates in response to mechanical stimuli.
Collapse
Affiliation(s)
- Victoria Le
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Peter L Voyvodic
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chi Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - David J Busch
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Wang TY, Chang MM, Li YSJ, Huang TC, Chien S, Wu CC. Maintenance of HDACs and H3K9me3 Prevents Arterial Flow-Induced Venous Endothelial Damage. Front Cell Dev Biol 2021; 9:642150. [PMID: 33898431 PMCID: PMC8063156 DOI: 10.3389/fcell.2021.642150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 01/11/2023] Open
Abstract
The transition of flow microenvironments from veins to arteries in vein graft surgery induces “peel-off” of venous endothelial cells (vECs) and results in restenosis. Recently, arterial laminar shear stress (ALS) and oscillatory shear stress (OS) have been shown to affect the cell cycle and inflammation through epigenetic controls such as histone deacetylation by histone deacetylases (HDACs) and trimethylation on lysine 9 of histone 3 (H3K9me3) in arterial ECs. However, the roles of H3K9me3 and HDAC in vEC damage under ALS are not known. We hypothesized that the different responses of HDACs and H3K9me3 might cause vEC damage under the transition of venous flow to arterial flow. We found that arterial ECs showed high expression of H3K9me3 protein and were retained in the G0 phase of the cell cycle after being subjected to ALS. vECs became round under ALS with a decrease in the expression of H3K9me3, HDAC3, and HDAC5, and an increase in the expression of vascular cell adhesion molecule 1 (VCAM-1). Inhibition of HDACs activity by a specific inhibitor, phenylbutyrate, in arterial ECs caused similar ALS-induced inflammation and cell loss as observed in vECs. Activation of HDACs and H3K9me3 by ITSA-1, an HDAC activator, could prevent ALS-induced peel-off and reduced VCAM-1 expression in vECs. Moreover, shear stress modulates EC morphology by the regulation of focal adhesion kinase (FAK) expression. ITSA-1 or EGF could increase phosphorylated (p)-FAK expression in vECs under ALS. We found that perturbation of the activity of p-FAK and increase in p-FAK expression restored ALS-induced H3K9me3 expression in vECs. Hence, the abnormal mechanoresponses of H3K9me3 and HDAC in vECs after being subjected to ALS could be reversed by ITSA-1 or EGF treatment: this offers a strategy to prevent vein graft failure.
Collapse
Affiliation(s)
- Ting-Yun Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Shuan Julie Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Tchao R. Cell membrane rupture: a novel test reveals significant variations among different brands of tissue culture flasks. BMC Res Notes 2021; 14:38. [PMID: 33499912 PMCID: PMC7836507 DOI: 10.1186/s13104-021-05453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/15/2021] [Indexed: 11/30/2022] Open
Abstract
Objectives Loss of cytoplasmic molecules including protein controls, due to cell membrane rupture can cause errors and irreproducibility in research data. Previous results have shown that during the washing of a monolayer of cells with a balanced salt solution, the fluid force causes cell membrane rupture on some areas of the flasks/dishes. This fact shows the non-uniformity of the polystyrene surface in terms of cell culture. There is at present no simple test to monitor that surface. This paper presents a novel biologically based assay to determine the degree of heterogeneity of flasks supplied by various manufacturers. Results This paper shows that significant variation exists in polystyrene surface heterogeneity among several brands of tissue culture flasks, varying from 4 to 20% of the flask surface. There is also large variability within the production lot of a manufacturer. The assay method involves loading the cells with a cytoplasmic fluorescent marker that is released upon cell membrane rupture. Cell membrane rupture also causes the loss of marker proteins such as GAPDH used in Westernblots. This novel assay method can be used to monitor the batch consistency and the manufacturing process of flasks/dishes. It may also be used to test new biomaterials.
Collapse
Affiliation(s)
- Ruy Tchao
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Hlavac N, Guilhaume-Corrêa F, VandeVord PJ. Mechano-stimulation initiated by extracellular adhesion and cationic conductance pathways influence astrocyte activation. Neurosci Lett 2020; 739:135405. [PMID: 32979460 DOI: 10.1016/j.neulet.2020.135405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022]
Abstract
Traumatic brain injury (TBI) represents a major cause of long-term disability worldwide. Primary damage to brain tissue leads to complex secondary injury mechanisms involving inflammation, oxidative stress and cellular activation/reactivity. The molecular pathways that exacerbate brain cell dysfunction after injury are not well understood and provide challenges to developing TBI therapeutics. This study aimed to delineate mechanisms of astrocyte activation induced by mechano-stimulation, specifically involving extracellular adhesion and cationic transduction. An in vitro model was employed to investigate 2D and 3D cultures of primary astrocytes, in which cells were exposed to a single high-rate overpressure known to cause upregulation of structural and proliferative markers within 72 h of exposure. An inhibitor of focal adhesion kinase (FAK) phosphorylation, TAE226, was used to demonstrate a relationship between extracellular adhesion perturbations and structural reactivity in the novel 3D model. TAE226 mitigated upregulation of glial fibrillary acidic protein in 3D cultures by 72 h post-exposure. Alternatively, incubation with gadolinium (a cationic channel blocker) during overpressure, demonstrated a role for cationic transduction in reducing the increased levels of proliferating cell nuclear antigen that occur at 24 h post-stimulation. Furthermore, early changes in mitochondrial polarization at 15 min and in endogenous ATP levels at 4-6 h occur post-overpressure and may be linked to later changes in cell phenotype. By 24 h, there was evidence of increased amine metabolism and increased nicotinamide adenine dinucleotide phosphate oxidase (NOX4) production. The overproduction of NOX4 was counteracted by gadolinium during overpressure exposure. Altogether, the results of this study indicated that both extracellular adhesion (via FAK activation) and cationic conductance (via ion channels) contribute to early patterns of astrocyte activation following overpressure stimulation. Mechano-stimulation pathways are linked to bioenergetic and metabolic disruptions in astrocytes that influence downstream oxidative stress, aberrant proliferative capacity and structural reactivity.
Collapse
Affiliation(s)
- Nora Hlavac
- Virginia Tech, Department of Biomedical Engineering and Mechanics, Blacksburg, VA, USA
| | | | - Pamela J VandeVord
- Virginia Tech, Department of Biomedical Engineering and Mechanics, Blacksburg, VA, USA; Salem Veterans Affairs Medical Center, Department of Research, Salem, VA, USA.
| |
Collapse
|
13
|
Zhuang F, Bao H, Shi Q, Li J, Jiang Z, Wang Y, Qi Y. Endothelial microparticles induced by cyclic stretch activate Src and modulate cell apoptosis. FASEB J 2020; 34:13586-13596. [DOI: 10.1096/fj.202000581r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Fei Zhuang
- Institute of Mechanobiology & Medical Engineering School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Han Bao
- Institute of Mechanobiology & Medical Engineering School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Qian Shi
- Institute of Mechanobiology & Medical Engineering School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Jing Li
- Department of Bioinformatics and Biostatistics School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Zong‐Lai Jiang
- Institute of Mechanobiology & Medical Engineering School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Yingxiao Wang
- Department of Bioengineering University of California San Diego CA USA
| | - Ying‐Xin Qi
- Institute of Mechanobiology & Medical Engineering School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education School of Biological Science and Medical Engineering Beihang University Beijing China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing China
| |
Collapse
|
14
|
Junaid A, Schoeman J, Yang W, Stam W, Mashaghi A, van Zonneveld AJ, Hankemeier T. Metabolic response of blood vessels to TNFα. eLife 2020; 9:54754. [PMID: 32749215 PMCID: PMC7476757 DOI: 10.7554/elife.54754] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
TNFα signaling in the vascular endothelium elicits multiple inflammatory responses that drive vascular destabilization and leakage. Bioactive lipids are main drivers of these processes. In vitro mechanistic studies of bioactive lipids have been largely based on two-dimensional endothelial cell cultures that, due to lack of laminar flow and the growth of the cells on non-compliant stiff substrates, often display a pro-inflammatory phenotype. This complicates the assessment of inflammatory processes. Three-dimensional microvessels-on-a-chip models provide a unique opportunity to generate endothelial microvessels in a more physiological environment. Using an optimized targeted liquid chromatography–tandem mass spectrometry measurements of a panel of pro- and anti-inflammatory bioactive lipids, we measure the profile changes upon administration of TNFα. We demonstrate that bioactive lipid profiles can be readily detected from three-dimensional microvessels-on-a-chip and display a more dynamic, less inflammatory response to TNFα, that resembles more the human situation, compared to classical two-dimensional endothelial cell cultures. In a range of conditions called autoimmune diseases, the immune system attacks the body rather than foreign elements. This can cause inflammation that is harmful for many organs. In particular, immune cells can produce excessive amounts of a chemical messenger called tumor necrosis factor alpha (TNFα for short), which can lead to the release of fatty molecules that damage blood vessels. This process is normally studied in blood vessels cells that are grown on a dish, without any blood movement. However, in this rigid 2D environment, the cells become ‘stressed’ and show higher levels of inflammation than in the body. This makes it difficult to assess the exact role that TNFα plays in disease. A new technology is addressing this issue by enabling scientist to culture blood vessels cells in dishes coated with gelatin. This allows the cells to organize themselves in 3D, creating tiny blood vessels in which fluids can flow. However, it was unclear whether these ‘microvessels-on-a-chip’ were better models to study the role of TNFα compared to cells grown on a plate. Here, Junaid et al. compared the levels of inflammation in blood vessels cells grown in the two environments, showing that cells are less inflamed when they are cultured in 3D. In addition, when the artificial 3D-blood vessels were exposed to TNFα, they responded more like real blood vessels than the 2D models. Finally, experiments showed that it was possible to monitor the release of fatty molecules in this environment. Together, this work suggests that microvessels-on-a-chip are better models to study how TNFα harms blood vessels. Next, systems and protocols could be develop to allow automated mass drug testing in microvessels-on-a-chip. This would help scientists to quickly screen thousands of drugs and find candidates that can protect blood vessels from TNFα.
Collapse
Affiliation(s)
- Abidemi Junaid
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands.,Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Johannes Schoeman
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Wei Yang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Alireza Mashaghi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
15
|
Xie F, Shao S, Zhang B, Deng S, Ur Rehman Aziz A, Liao X, Liu B. Differential phosphorylation regulates the shear stress-induced polar activity of Rho-specific guanine nucleotide dissociation inhibitor α. J Cell Physiol 2020; 235:6978-6989. [PMID: 32003021 DOI: 10.1002/jcp.29594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/13/2020] [Indexed: 11/06/2022]
Abstract
The activity of Rho-specific guanine nucleotide dissociation inhibitor α (RhoGDIα) is regulated by its own phosphorylation at different amino acid sites. These phosphorylation sites may have a crucial role in local Rho GTPases activation during cell migration. This paper is designed to explore the influence of phosphorylation on shear stress-induced spatial RhoGDIα activation. Based on the fluorescence resonance energy transfer biosensor sl-RhoGDIα, which was constructed to test the RhoGDIα activity in living cells, new RhoGDIα phosphomimetic mutation (sl-S101E/S174E, sl-Y156E, sl-S101E, sl-S174E) and phosphorylation-deficient mutation (sl-S101A/S174A, sl-Y156A, sl-S101A, sl-S174A) biosensors were designed to test their effects on RhoGDIα activation upon shear stress application in human umbilical vein endothelial cells (HUVECs). The results showed lower RhoGDIα activity at the downstream of HUVECs (the region from the edge of the nucleus to the edge of the cell along with the flow). The overall decrease in RhoGDIα activity was inhibited by Y156A-mutant, whereas the polarized RhoGDIα and Rac1 activity were blocked by S101A/S174A mutant. It is concluded that the Tyr156 phosphorylation mainly mediates shear stress-induced overall RhoGDIα activity, while Ser101/Ser174 phosphorylation mediates its polarization. This study demonstrates that differential phosphorylation of RhoGDIα regulates shear stress-induced spatial RhoGDIα activation, which could be a potential target to control cell migration.
Collapse
Affiliation(s)
- Fei Xie
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Shuai Shao
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Baohong Zhang
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Sha Deng
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Aziz Ur Rehman Aziz
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Bo Liu
- Liaoning Key Lab of IC & BME System, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
16
|
Guo Y, Steele HE, Li BY, Na S. Fluid flow-induced activation of subcellular AMPK and its interaction with FAK and Src. Arch Biochem Biophys 2019; 679:108208. [PMID: 31760124 DOI: 10.1016/j.abb.2019.108208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
AMP-activated protein kinase (AMPK) is a metabolic energy sensor that plays a critical role in cancer cell survival and growth. While the physical microenvironment is believed to influence tumor growth and progression, its role in AMPK regulation remains largely unknown. In the present study, we evaluated AMPK response to mechanical forces and its interaction with other mechano-responsive signaling proteins, FAK and Src. Using genetically encoded biosensors that can detect AMPK activities at different subcellular locations (cytosol, plasma membrane, nucleus, mitochondria, and Golgi apparatus), we observed that AMPK responds to shear stress in a subcellular location-dependent manner in breast cancer cells (MDA-MB-231). While normal epithelial cells (MCF-10A) also similarly responded to shear stress, they are less sensitive to shear stress compared to MDA-MB-231 cells. Inhibition of FAK and Src significantly decreased the basal activity level of AMPK at all five subcellular locations in MDA-MB-231 cells and selectively blocked shear stress-induced AMPK activation. Moreover, testing with cytoskeletal drugs revealed that myosin II might be the critical mediator of shear stress-induced AMPK activation in MDA-MB-231 cells. These findings suggest that breast cancer cells and normal epithelial cells may have different mechanosensitivity in AMPK signaling and that FAK and Src as well as the myosin II-dependent signaling pathway are involved in subcellular AMPK mechanotransduction in breast cancer cells.
Collapse
Affiliation(s)
- Yunxia Guo
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA; Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hannah E Steele
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Sungsoo Na
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Chuang YC, Yu Y, Wei MT, Chang CC, Ricotta V, Feng KC, Wang L, Bherwani AK, Ou-Yang HD, Simon M, Zhang L, Rafailovich M. Regulating substrate mechanics to achieve odontogenic differentiation for dental pulp stem cells on TiO 2 filled and unfilled polyisoprene. Acta Biomater 2019; 89:60-72. [PMID: 30836198 DOI: 10.1016/j.actbio.2019.02.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/12/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022]
Abstract
We have shown that materials other than hydrogels commonly used in tissue engineering can be effective in enabling differentiation of dental pulp stem cells (DPSC). Here we demonstrate that a hydrophobic elastomer, polyisoprene (PI), a component of Gutta-percha, normally used to obturate the tooth canal, can also be used to initiate differentiation of the pulp. We showed that PI substrates without additional coating promote cell adhesion and differentiation, while their moduli can be easily adjusted either by varying the coating thickness or incorporation of inorganic particles. DPSC plated on those PI substrates were shown, using SPM and hysitron indentation, to adjust their moduli to conform to differentially small changes in the substrate modulus. In addition, optical tweezers were used to separately measure the membrane and cytoplasm moduli of DPSC, with and without Rho kinase inhibitor. The results indicated that the changes in modulus were attributed predominantly to changes within the cytoplasm, rather than the cell membrane. CLSM was used to identify cell morphology. Differentiation, as determined by qRT-PCR, of the upregulation of OCN, and COL1α1 as well as biomineralization, characterized by SEM/EDAX, was observed on hard PI substrates in the absence of induction factors, i.e. dexamethasone, with moduli 3-4 MPa, regardless of preparation. SEM showed that even though biomineralization was deposited on both spun cast thin PI and filled thick PI substrates, the minerals were aggregated into large clusters on thin PI, and uniformly distributed on filled thick PI, where it was templated within banded collagen fibers. STATEMENT OF SIGNIFICANCE: This manuscript demonstrates the potential of polyisoprene (PI), an elastomeric polymer, for use in tissue engineering. We show how dental pulp stem cells adjust their moduli continuously to match infinitesimally small changes in substrate mechanics, till a critical threshold is reached when they will differentiate. The lineage of differentiation then becomes a sensitive function of both mechanics and morphology for a given chemical composition. Since PI is a major component of Gutta-percha, the FDA approved material commonly used for obturating the root canal, this work suggests that it can easily be adapted for in vivo use in dental regeneration.
Collapse
|
18
|
Hlavac N, VandeVord PJ. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol 2019; 10:99. [PMID: 30853931 PMCID: PMC6395392 DOI: 10.3389/fneur.2019.00099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Primary blast neurotrauma represents a unique injury paradigm characterized by high-rate overpressure effects on brain tissue. One major hallmark of blast neurotrauma is glial reactivity, notably prolonged astrocyte activation. This cellular response has been mainly defined in primary blast neurotrauma by increased intermediate filament expression. Because the intermediate filament networks physically interface with transmembrane proteins for junctional support, it was hypothesized that cell junction regulation is altered in the reactive phenotype as well. This would have implications for downstream transcriptional regulation via signal transduction pathways like nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Therefore, a custom high-rate overpressure simulator was built for in vitro testing using mechanical conditions based on intracranial pressure measurements in a rat model of blast neurotrauma. Primary rat astrocytes were exposed to isolated high-rate mechanical stimulation to study cell junction dynamics in relation to their mechano-activation. First, a time course for "classical" features of reactivity was devised by evaluation of glial fibrillary acidic protein (GFAP) and proliferating cell nuclear antigen (PCNA) expression. This was followed by gene and protein expression for both gap junction (connexins) and anchoring junction proteins (integrins and cadherins). Signal transduction analysis was carried out by nuclear localization of two molecules, NF-κB p65 and mitogen-activated protein kinase (MAPK) p38. Results indicated significant increases in connexin-43 expression and PCNA first at 24 h post-overpressure (p < 0.05), followed by structural reactivity (via increased GFAP, p < 0.05) corresponding to increased anchoring junction dynamics at 48 h post-overpressure (p < 0.05). Moreover, increased phosphorylation of focal adhesion kinase (FAK) was observed in addition to increased nuclear localization of both p65 and p38 (p < 0.05) during the period of structural reactivity. To evaluate the transcriptional activity of p65 in the nucleus, electrophoretic mobility shift assay was conducted for a binding site on the promoter region for intracellular adhesion molecule-1 (ICAM-1), an antagonist of tight junctions. A significant increase in the interaction of nuclear proteins with the NF-κB site on the ICAM-1 corresponded to increased gene and protein expression of ICAM-1 (p < 0.05). Altogether, these results indicate multiple targets and corresponding signaling pathways which involve cell junction dynamics in the mechano-activation of astrocytes following high-rate overpressure.
Collapse
Affiliation(s)
- Nora Hlavac
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, VA, United States.,Department of Research, Salem Veterans Affairs Medical Center, Salem, VA, United States
| |
Collapse
|
19
|
Zhang B, Xie F, Aziz AUR, Shao S, Li W, Deng S, Liao X, Liu B. Heat Shock Protein 27 Phosphorylation Regulates Tumor Cell Migration under Shear Stress. Biomolecules 2019; 9:biom9020050. [PMID: 30704117 PMCID: PMC6406706 DOI: 10.3390/biom9020050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a multifunctional protein that undergoes significant changes in its expression and phosphorylation in response to shear stress stimuli, suggesting that it may be involved in mechanotransduction. However, the mechanism of HSP27 affecting tumor cell migration under shear stress is still not clear. In this study, HSP27-enhanced cyan fluorescent protein (ECFP) and HSP27-Ypet plasmids are constructed to visualize the self-polymerization of HSP27 in living cells based on fluorescence resonance energy transfer technology. The results show that shear stress induces polar distribution of HSP27 to regulate the dynamic structure at the cell leading edge. Shear stress also promotes HSP27 depolymerization to small molecules and then regulates polar actin accumulation and focal adhesion kinase (FAK) polar activation, which further promotes tumor cell migration. This study suggests that HSP27 plays an important role in the regulation of shear stress-induced HeLa cell migration, and it also provides a theoretical basis for HSP27 as a potential drug target for metastasis.
Collapse
Affiliation(s)
- Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| | - Xiaoling Liao
- Institute of Biomedical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|
20
|
Shao S, Liao X, Xie F, Deng S, Liu X, Ristaniemi T, Liu B. FRET biosensor allows spatio-temporal observation of shear stress-induced polar RhoGDIα activation. Commun Biol 2018; 1:224. [PMID: 30564745 PMCID: PMC6288100 DOI: 10.1038/s42003-018-0232-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022] Open
Abstract
Rho GDP-dissociation inhibitor α (RhoGDIα) is a known negative regulator of the Rho family that shuts off GDP/GTP cycling and cytoplasm/membrane translocation to regulate cell migration. However, to our knowledge, no reports are available that focus on how the RhoGDIα-Rho GTPases complex is activated by laminar flow through exploring the activation of RhoGDIα itself. Here, we constructed a new biosensor using fluorescence resonance energy transfer (FRET) technology to measure the spatio-temporal activation of RhoGDIα in its binding with Rho GTPases in living HeLa cells. Using this biosensor, we find that the dissociation of the RhoGDIα-Rho GTPases complex is increased by shear stress, and its dissociation rate varies with subcellular location. Moreover, this process is mediated by membrane fluidity, cytoskeleton and Src activity, which indicates that the regulation of RhoGDIα activation under shear stress application represents a relatively separate pathway from the shear stress-induced Rho pathway.
Collapse
Affiliation(s)
- Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, 401331 Chongqing, China
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Xue Liu
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, 401331 Chongqing, China
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| |
Collapse
|
21
|
Del Favero G, Zaharescu R, Marko D. Functional impairment triggered by altertoxin II (ATXII) in intestinal cells in vitro: cross-talk between cytotoxicity and mechanotransduction. Arch Toxicol 2018; 92:3535-3547. [PMID: 30276433 PMCID: PMC6290659 DOI: 10.1007/s00204-018-2317-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
Intestinal cells are able to continuously integrate response to multiple stimuli/stressors; these include the concomitant activation of “chemically driven” pathways, of paramount importance in the response to toxicants, as well as physical stimulation derived from motility. Altertoxin II (ATXII, 0.1, 1 and 10 µM), a mycotoxin produced by the food contaminant fungus Alternaria alternata was studied in HT-29 intestinal adenocarcinoma cells and in non-transformed intestinal epithelial cells, HCEC. One-hour incubation with ATXII was sufficient to trigger irreversible cytotoxicity in both cell types, as well as to modify cellular responses to concomitant pro-oxidant challenge (H2O2, 100–500 µM, DCF-DA assay) suggesting that even relatively short-time exposure of the intestinal cells could be sufficient to alter their functionality. Combination of ATXII (1 µM) with physical stimulation typical of the intestinal compartment (shear stress) revealed differential response of tumor-derived epithelial cells HT-29 in comparison to HCEC, in particular in the localization of the transcription factor Nrf2 (NF-E2-related factor 2). Moreover, ATXII reduced the migratory potential of HCEC as well as their membrane fluidity, but had no respective impact on HT-29 cells. Taken together, ATXII appeared to alter predominantly membrane functionality in HCEC thus hampering crucial functions for cellular motility/turnover, as well as barrier function of healthy intestinal cells and had very limited activity on the tumor counterparts.
Collapse
Affiliation(s)
- Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria.
| | - Ronita Zaharescu
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währingerstr. 38-40, 1090, Vienna, Austria
| |
Collapse
|
22
|
Li W, Yu X, Xie F, Zhang B, Shao S, Geng C, Aziz AUR, Liao X, Liu B. A Membrane-Bound Biosensor Visualizes Shear Stress-Induced Inhomogeneous Alteration of Cell Membrane Tension. iScience 2018; 7:180-190. [PMID: 30267679 PMCID: PMC6153118 DOI: 10.1016/j.isci.2018.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 09/03/2018] [Indexed: 01/10/2023] Open
Abstract
Cell membrane is the first medium from where a cell senses and responds to external stress stimuli. Exploring the tension changes in cell membrane will help us to understand intracellular force transmission. Here, a biosensor (named MSS) based on fluorescence resonance energy transfer is developed to visualize cell membrane tension. Validity of the biosensor is first verified for the detection of cell membrane tension. Results show a shear stress-induced heterogeneous distribution of membrane tension with the biosensor, which is strengthened by the disruption of microfilaments or enhancement of membrane fluidity, but weakened by the reduction of membrane fluidity or disruption of microtubules. These findings suggest that the MSS biosensor is a beneficial tool to visualize the changes and distribution of cell membrane tension. Besides, cell membrane tension does not display obvious polar distribution, indicating that cellular polarity changes do not first occur on the cell membrane during mechanical transmission. A FRET-based biosensor (named MSS) is developed to study cell membrane tension MSS is a beneficial tool to visualize the distribution of membrane tension Membrane tension is inhomogeneous in response to shear stress Membrane tension does not display polar distribution during mechanotransduction
Collapse
Affiliation(s)
- Wang Li
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xinlei Yu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Baohong Zhang
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Chunyang Geng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, Chongqing 400030, China
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, Dalian 116024, China.
| |
Collapse
|
23
|
Xiao X, Ni Y, Yu C, Li L, Mao B, Yang Y, Zheng D, Silvestrini B, Cheng CY. Src family kinases (SFKs) and cell polarity in the testis. Semin Cell Dev Biol 2018; 81:46-53. [PMID: 29174914 PMCID: PMC5988912 DOI: 10.1016/j.semcdb.2017.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/02/2023]
Abstract
Non-receptor Src family kinases (SFKs), most notably c-Src and c-Yes, are recently shown to be expressed by Sertoli and/or germ cells in adult rat testes. Studies have shown that SFKs are involved in modulating the cell cytoskeletal function, and involved in endocytic vesicle-mediated protein endocytosis, transcytosis and/or recycling as well as intracellular protein degradation events. Furthermore, a knockdown to SFKs, in particular c-Yes, has shown to induce defects in spermatid polarity. These findings, coupled with emerging evidence in the field, thus prompt us to critically evaluate them to put forth a developing concept regarding the role of SFKs and cell polarity, which will become a basis to design experiments for future investigations.
Collapse
Affiliation(s)
- Xiang Xiao
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| | - Ya Ni
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Chenhuan Yu
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Linxi Li
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Baiping Mao
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
- The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzho, Zhejiang 325035, China
| | - Yue Yang
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | - Dongwang Zheng
- Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang 310013, China
| | | | - C. Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, 1230 York Ave, New York, New York 10065
| |
Collapse
|
24
|
He L, Tao J, Maity D, Si F, Wu Y, Wu T, Prasath V, Wirtz D, Sun SX. Role of membrane-tension gated Ca 2+ flux in cell mechanosensation. J Cell Sci 2018; 131:jcs208470. [PMID: 29361533 PMCID: PMC5868948 DOI: 10.1242/jcs.208470] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/12/2018] [Indexed: 01/10/2023] Open
Abstract
Eukaryotic cells are sensitive to mechanical forces they experience from the environment. The process of mechanosensation is complex, and involves elements such as the cytoskeleton and active contraction from myosin motors. Ultimately, mechanosensation is connected to changes in gene expression in the cell, known as mechanotransduction. While the involvement of the cytoskeleton in mechanosensation is known, the processes upstream of cytoskeletal changes are unclear. In this paper, by using a microfluidic device that mechanically compresses live cells, we demonstrate that Ca2+ currents and membrane tension-sensitive ion channels directly signal to the Rho GTPase and myosin contraction. In response to membrane tension changes, cells actively regulate cortical myosin contraction to balance external forces. The process is captured by a mechanochemical model where membrane tension, myosin contraction and the osmotic pressure difference between the cytoplasm and extracellular environment are connected by mechanical force balance. Finally, to complete the picture of mechanotransduction, we find that the tension-sensitive transcription factor YAP family of proteins translocate from the nucleus to the cytoplasm in response to mechanical compression.
Collapse
Affiliation(s)
- Lijuan He
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jiaxiang Tao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Debonil Maity
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Fangwei Si
- Department of Physics, University of California San Diego, San Diego, CA 92010, USA
| | - Yi Wu
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Tiffany Wu
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Vishnu Prasath
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Physical Sciences in Oncology Center (PSOC), Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
25
|
Shao S, Xiang C, Qin K, ur Rehman Aziz A, Liao X, Liu B. Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows. PLoS One 2017; 12:e0189088. [PMID: 29190756 PMCID: PMC5708838 DOI: 10.1371/journal.pone.0189088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 11/17/2017] [Indexed: 01/07/2023] Open
Abstract
Disturbed flow can eliminate the alignment of endothelial cells in the direction of laminar flow, and significantly impacts on atherosclerosis in collateral arteries near the bifurcation and high curvature regions. While shear stress induced Rac polarity has been shown to play crucial roles in cell polarity and migration, little is known about the spatiotemporal map of Rac under disturbed flow, and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs) for 30 minutes. A genetically-encoded PAK-PBD-GFP reporter was transfected into BAECs to visualize the real-time activation of Rac in living cell under fluorescence microscope. The imaging of the fluorescence intensity was analyzed by Matlab and the normalized data was converted into 3D spatiotemporal map. Then the changes of data upon chemical interference were fitted with logistic curve to explore the rule and mechanism of Rac polarity under laminar or disturbed flow. A polarized Rac activation was observed at the downstream edge along the laminar flow, which was enhanced by benzol alcohol-enhanced membrane fluidity but inhibited by nocodazole-disrupted microtubules or cholesterol-inhibited membrane fluidity, while no obvious polarized Rac activation could be found upon disturbed flow application. It is concluded that disturbed flow inhibits the flow-induced Rac polarized activation, which is related to the interaction of cell membrane and cytoskeleton, especially the microtubules.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
- Mathematical Information Technology, Faculty of Information Technology, Department of Math, University of Jyvaskyla. Jyvaskyla, Finland
| | - Cheng Xiang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Kairong Qin
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Aziz ur Rehman Aziz
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, Chongqing, China
| | - Bo Liu
- Department of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China
- * E-mail:
| |
Collapse
|
26
|
Durand N, Bastea LI, Döppler H, Eiseler T, Storz P. Src-mediated tyrosine phosphorylation of Protein Kinase D2 at focal adhesions regulates cell adhesion. Sci Rep 2017; 7:9524. [PMID: 28842658 PMCID: PMC5573332 DOI: 10.1038/s41598-017-10210-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Dependent on their cellular localization, Protein Kinase D (PKD) enzymes regulate different processes including Golgi transport, cell signaling and response to oxidative stress. The localization of PKD within cells is mediated by interaction with different lipid or protein binding partners. With the example of PKD2, we here show that phosphorylation events can also contribute to localization of subcellular pools of this kinase. Specifically, in the present study, we show that tyrosine phosphorylation of PKD2 at residue Y87 defines its localization to the focal adhesions and leads to activation. This phosphorylation occurs downstream of RhoA signaling and is mediated via Src. Moreover, mutation of this residue blocks PKD2's interaction with Focal Adhesion Kinase (FAK). The presence and regulation of PKD2 at focal adhesions identifies a novel function for this kinase as a modulator of cell adhesion and migration.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, D-89081, Ulm, Germany
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA.
| |
Collapse
|
27
|
Seong J, Huang M, Sim KM, Kim H, Wang Y. FRET-based Visualization of PDGF Receptor Activation at Membrane Microdomains. Sci Rep 2017; 7:1593. [PMID: 28487538 PMCID: PMC5431615 DOI: 10.1038/s41598-017-01789-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 03/31/2017] [Indexed: 11/09/2022] Open
Abstract
Platelet-derived growth factor receptor (PDGFR) senses extracellular growth factors and transfer the signals inside the cells regulating cell proliferation, migration and survival. It has been controversial at which membrane microdomains PDGFRs reside and how they control such diverse intracellular signaling pathways. Here, we developed a novel PDGFR biosensor based on fluorescence resonance energy transfer (FRET), which can detect the real-time PDGFR activity in live cells with high spatiotemporal resolutions. To study subcellular PDGFR activity at membrane microdomains, this PDGFR biosensor was further targeted in or outside lipid rafts via different lipid modification signals. The results suggest that, in response to PDGF stimulation, PDGFR activity is evenly distributed at different membrane microdomains, while integrin-mediated signaling events have inhibitory effects on the activation of PDGFR specifically located in lipid rafts but not outside rafts, implying the role of lipid microdomains as segregated signaling platforms.
Collapse
Affiliation(s)
- Jihye Seong
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA. .,Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea. .,Biological Chemistry Program, Korea University of Science and Technology (UST), Daejeon, 34113, South Korea. .,Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Min Huang
- Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kyoung Mi Sim
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
| | - Hyunbin Kim
- Convergence Research Center for Diagnosis Treatment Care of Dementia, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.,Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea
| | - Yingxiao Wang
- Neuroscience Program, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Bioengineering, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
28
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
29
|
P2Y 2 receptor modulates shear stress-induced cell alignment and actin stress fibers in human umbilical vein endothelial cells. Cell Mol Life Sci 2016; 74:731-746. [PMID: 27652381 PMCID: PMC5272905 DOI: 10.1007/s00018-016-2365-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/28/2016] [Accepted: 09/12/2016] [Indexed: 10/25/2022]
Abstract
Endothelial cells release ATP in response to fluid shear stress, which activates purinergic (P2) receptor-mediated signaling molecules including endothelial nitric oxide (eNOS), a regulator of vascular tone. While P2 receptor-mediated signaling in the vasculature is well studied, the role of P2Y2 receptors in shear stress-associated endothelial cell alignment, cytoskeletal alterations, and wound repair remains ill defined. To address these aspects, human umbilical vein endothelial cell (HUVEC) monolayers were cultured on gelatin-coated dishes and subjected to a shear stress of 1 Pa. HUVECs exposed to either P2Y2 receptor antagonists or siRNA showed impaired fluid shear stress-induced cell alignment, and actin stress fiber formation as early as 6 h. Similarly, when compared to cells expressing the P2Y2 Arg-Gly-Asp (RGD) wild-type receptors, HUVECs transiently expressing the P2Y2 Arg-Gly-Glu (RGE) mutant receptors showed reduced cell alignment and actin stress fiber formation in response to shear stress as well as to P2Y2 receptor agonists in static cultures. Additionally, we observed reduced shear stress-induced phosphorylation of focal adhesion kinase (Y397), and cofilin-1 (S3) with receptor knockdown as well as in cells expressing the P2Y2 RGE mutant receptors. Consistent with the role of P2Y2 receptors in vasodilation, receptor knockdown and overexpression of P2Y2 RGE mutant receptors reduced shear stress-induced phosphorylation of AKT (S473), and eNOS (S1177). Furthermore, in a scratched wound assay, shear stress-induced cell migration was reduced by both pharmacological inhibition and receptor knockdown. Together, our results suggest a novel role for P2Y2 receptor in shear stress-induced cytoskeletal alterations in HUVECs.
Collapse
|
30
|
Liu AP. Biophysical Tools for Cellular and Subcellular Mechanical Actuation of Cell Signaling. Biophys J 2016; 111:1112-1118. [PMID: 27456131 DOI: 10.1016/j.bpj.2016.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/17/2016] [Accepted: 02/01/2016] [Indexed: 10/24/2022] Open
Abstract
The ability to spatially control cell signaling can help resolve fundamental biological questions. Optogenetic and chemical dimerization techniques along with fluorescent biosensors to report cell signaling activities have enabled researchers to both visualize and perturb biochemistry in living cells. A number of approaches based on mechanical actuation using force-field gradients have emerged as complementary technologies to manipulate cell signaling in real time. This review covers several technologies, including optical, magnetic, and acoustic control of cell signaling and behavior and highlights some studies that have led to novel insights. I will also discuss some future direction on repurposing mechanosensitive channel for mechanical actuation of spatial cell signaling.
Collapse
Affiliation(s)
- Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan; Biophysics Program, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
31
|
Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 2016; 36:340-62. [PMID: 26661193 PMCID: PMC4759676 DOI: 10.1177/0271678x15608644] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
Normal brain homeostasis depends on the integrity of the blood-brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood-brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, Marburg, Germany Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany German Research Centre for Cardiovascular Research, DZHK, Lübeck, Germany
| |
Collapse
|
32
|
Block MR, Destaing O, Petropoulos C, Planus E, Albigès-Rizo C, Fourcade B. Integrin-mediated adhesion as self-sustained waves of enzymatic activation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042704. [PMID: 26565269 DOI: 10.1103/physreve.92.042704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 06/05/2023]
Abstract
Integrin receptors mediate interaction between the cellular actin-cytoskeleton and extracellular matrix. Based on their activation properties, we propose a reaction-diffusion model where the kinetics of the two-state receptors is modulated by their lipidic environment. This environment serves as an activator variable, while a second variable plays the role of a scaffold protein and controls the self-sustained activation of the receptors. Due to receptor diffusion which couples dynamically the activator and the inhibitor, our model connects major classes of reaction diffusion systems for excitable media. Spot and rosette solutions, characterized by receptor clustering into localized static or dynamic structures, are organized into a phase diagram. It is shown that diffusion and kinetics of receptors determines the dynamics and the stability of these structures. We discuss this model as a precursor model for cell signaling in the context of podosomes forming actoadhesive metastructures, and we study how generic signaling defects influence their organization.
Collapse
Affiliation(s)
- M R Block
- Chromatine and Epigenetics, Institut Albert Bonniot, INSERM-CNRS U823, 38042 Grenoble Cedex, France
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - O Destaing
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - C Petropoulos
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - E Planus
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - C Albigès-Rizo
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
| | - B Fourcade
- Dysad, Institut Albert Bonniot, INSERM-CNRS U823, Université Joseph Fourier, 38042 Grenoble Cedex, France
- Laboratoire Joliot Curie, CNRS Ens-Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|