1
|
Peterman EL, Ploessl DS, Galloway KE. Accelerating Diverse Cell-Based Therapies Through Scalable Design. Annu Rev Chem Biomol Eng 2024; 15:267-292. [PMID: 38594944 DOI: 10.1146/annurev-chembioeng-100722-121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.
Collapse
Affiliation(s)
- Emma L Peterman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Deon S Ploessl
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
2
|
Swain T, Pflueger C, Freytag S, Poppe D, Pflueger J, Nguyen T, Li J, Lister R. A modular dCas9-based recruitment platform for combinatorial epigenome editing. Nucleic Acids Res 2024; 52:474-491. [PMID: 38000387 PMCID: PMC10783489 DOI: 10.1093/nar/gkad1108] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/28/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi. This system is an interchangeable and reconfigurable docking platform fused to dCas9 that enables simultaneous recruitment of up to four different effectors, allowing precise control of effector composition and spatial ordering. We demonstrate the activity and specificity of the SSSavi system and, by testing it against existing multi-effector targeting systems, demonstrate its comparable efficacy. Furthermore, we demonstrate the importance of the spatial ordering of the recruited effectors for effective transcriptional regulation. Together, the SSSavi system enables exploration of combinatorial effector co-recruitment to enhance manipulation of chromatin contexts previously resistant to targeted editing.
Collapse
Affiliation(s)
- Tessa Swain
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Trung Viet Nguyen
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ji Kevin Li
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
3
|
Thu M, Yanai K, Shigeto H, Yamamura S, Watanabe K, Ohtsuki T. FRET probe for detecting two mutations in one EGFR mRNA. Analyst 2023; 148:2626-2632. [PMID: 37191032 DOI: 10.1039/d3an00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Technologies for visualizing and tracking RNA are essential in molecular biology, including in disease-related fields. In this study, we propose a novel probe set (DAt-probe and T-probe) that simultaneously detects two mutations in the same RNA using fluorescence resonance energy transfer (FRET). The DAt-probe carrying the fluorophore Atto488 and the quencher Dabcyl were used to detect a cancer mutation (exon19del), and the T-probe carrying the fluorophore Tamra was used to detect drug resistance mutations (T790M) in epidermal growth factor receptor (EGFR) mRNA. These probes were designed to induce FRET when both mutations were present in the mRNA. Gel electrophoresis confirmed that the two probes could efficiently bind to the mutant mRNA. We measured the FRET ratios using wild-type and double-mutant RNAs and found a significant difference between them. Even in living cells, the FRET probe could visualize mutant RNA. As a result, we conclude that this probe set provides a method for detecting two mutations in the single EGFR mRNA via FRET.
Collapse
Affiliation(s)
- Myat Thu
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| | - Kouta Yanai
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| | - Hajime Shigeto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Shohei Yamamura
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan
| | - Kazunori Watanabe
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| | - Takashi Ohtsuki
- Department of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.
| |
Collapse
|
4
|
Li L, Liu P, Sun L, Bin Zhou, Fei J. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Sci Rep 2016; 6:27788. [PMID: 27292714 PMCID: PMC4904408 DOI: 10.1038/srep27788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/23/2016] [Indexed: 12/12/2022] Open
Abstract
We designed a new type of polyadenylation-signal (PAS) trap vector system in living mice, the piggyBac (PB) (PAS-trapping (EGFP)) gene trapping vector, which takes advantage of the efficient transposition ability of PB and efficient gene trap and insertional mutagenesis of PAS-trapping. The reporter gene of PB(PAS-trapping (EGFP)) is an EGFP gene with its own promoter, but lacking a poly(A) signal. Transgenic mouse lines carrying PB(PAS-trapping (EGFP)) and protamine 1 (Prm1) promoter-driven PB transposase transgenes (Prm1-PBase) were generated by microinjection. Male mice doubly positive for PB(PAS-trapping (EGFP)) and Prm1-PBase were crossed with WT females, generating offspring with various insertion mutations. We found that 44.8% (26/58) of pups were transposon-positive progenies. New transposon integrations comprised 26.9% (7/26) of the transposon-positive progenies. We found that 100% (5/5) of the EGFP fluorescence-positive mice had new trap insertions mediated by a PB transposon in transcriptional units. The direction of the EGFP gene in the vector was consistent with the direction of the endogenous gene reading frame. Furthermore, mice that were EGFP-PCR positive, but EGFP fluorescent negative, did not show successful gene trapping. Thus, the novel PB(PAS-trapping (EGFP)) system is an efficient genome-wide gene-trap mutagenesis in mice.
Collapse
Affiliation(s)
- Limei Li
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangliang Sun
- Department of Endocrinology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, PR China
| | - Bin Zhou
- Department of vascular surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Fei
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Metastasis research institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| |
Collapse
|
5
|
Nafissi N, Foldvari M. Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools. Front Neurosci 2015; 9:355. [PMID: 26528114 PMCID: PMC4604245 DOI: 10.3389/fnins.2015.00355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023] Open
Abstract
Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.
Collapse
Affiliation(s)
| | - Marianna Foldvari
- School of Pharmacy and Waterloo Institute of Nanotechnology, University of WaterlooWaterloo, ON, Canada
| |
Collapse
|