1
|
Sharma A, Dai K, Pol MD, Thomann R, Thomann Y, Roy SK, Pappas CG. Selective peptide bond formation via side chain reactivity and self-assembly of abiotic phosphates. Nat Commun 2025; 16:1306. [PMID: 39900576 PMCID: PMC11790832 DOI: 10.1038/s41467-025-56432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
In the realm of biology, peptide bonds are formed via reactive phosphate-containing intermediates, facilitated by compartmentalized environments that ensure precise coupling and folding. Herein, we use aminoacyl phosphate esters, synthetic counterparts of biological aminoacyl adenylates, that drive selective peptide bond formation through side chain-controlled reactivity and self-assembly. This strategy results in the preferential incorporation of positively charged amino acids from mixtures containing natural and non-natural amino acids during the spontaneous formation of amide bonds in water. Conversely, aminoacyl phosphate esters that lack assembly and exhibit fast reactivity result in random peptide coupling. By introducing structural modifications to the phosphate esters (ethyl vs. phenyl) while retaining aggregation, we are able to tune the selectivity by incorporating aromatic amino acid residues. This approach enables the synthesis of sequences tailored to the specific phosphate esters, overcoming limitations posed by certain amino acid combinations. Furthermore, we demonstrate that a balance between electrostatic and aromatic stacking interactions facilitates covalent self-sorting or co-assembly during oligomerization reactions using unprotected N-terminus aminoacyl phosphate esters. These findings suggest that self-assembly of abiotic aminoacyl phosphate esters can activate a selection mechanism enabling the departure from randomness during the autonomous formation of amide bonds in water.
Collapse
Affiliation(s)
- Arti Sharma
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Kun Dai
- DFG Cluster of Excellence livMatS @FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Mahesh D Pol
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- DFG Cluster of Excellence livMatS @FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Ralf Thomann
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg, Germany
| | - Yi Thomann
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Subhra Kanti Roy
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Charalampos G Pappas
- FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany.
- DFG Cluster of Excellence livMatS @FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Su M, Roberts SJ, Sutherland JD. RNA-directed peptide synthesis across a nicked loop. Nucleic Acids Res 2024; 52:11415-11422. [PMID: 39164017 PMCID: PMC11514466 DOI: 10.1093/nar/gkae702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
Ribosomal translation at the origin of life requires controlled aminoacylation to produce mono-aminoacyl esters of tRNAs. Herein, we show that transient annealing of short RNA oligo:amino acid mixed anhydrides to an acceptor strand enables the sequential transfer of aminoacyl residues to the diol of an overhang, first forming aminoacyl esters then peptidyl esters. Using N-protected aminoacyl esters prevents unwanted peptidyl ester formation in this manner. However, N-acyl-aminoacyl transfer is not stereoselective.
Collapse
Affiliation(s)
- Meng Su
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Samuel J Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
3
|
Lopez A, Vauchez A, Ajram G, Shvetsova A, Leveau G, Fiore M, Strazewski P. From the RNA-Peptide World: Prebiotic Reaction Conditions Compatible with Lipid Membranes for the Formation of Lipophilic Random Peptides in the Presence of Short Oligonucleotides, and More. Life (Basel) 2024; 14:108. [PMID: 38255723 PMCID: PMC10817532 DOI: 10.3390/life14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Deciphering the origins of life on a molecular level includes unravelling the numerous interactions that could occur between the most important biomolecules being the lipids, peptides and nucleotides. They were likely all present on the early Earth and all necessary for the emergence of cellular life. In this study, we intended to explore conditions that were at the same time conducive to chemical reactions critical for the origins of life (peptide-oligonucleotide couplings and templated ligation of oligonucleotides) and compatible with the presence of prebiotic lipid vesicles. For that, random peptides were generated from activated amino acids and analysed using NMR and MS, whereas short oligonucleotides were produced through solid-support synthesis, manually deprotected and purified using HPLC. After chemical activation in prebiotic conditions, the resulting mixtures were analysed using LC-MS. Vesicles could be produced through gentle hydration in similar conditions and observed using epifluorescence microscopy. Despite the absence of coupling or ligation, our results help to pave the way for future investigations on the origins of life that may gather all three types of biomolecules rather than studying them separately, as it is still too often the case.
Collapse
Affiliation(s)
- Augustin Lopez
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Antoine Vauchez
- Centre Commun de la Spectrométrie de Masse (CCSM), ICBMS, Bâtiment Edgar Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France;
| | - Ghinwa Ajram
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Anastasiia Shvetsova
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Gabrielle Leveau
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Michele Fiore
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| | - Peter Strazewski
- Laboratoire de Chimie Organique 2 (LCO2), Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR CNRS 5246), Bâtiment Edgar Lederer, Université Claude Bernard Lyon 1, Université de Lyon, 1 rue Victor Grignard, 69100 Villeurbanne, France (M.F.)
| |
Collapse
|
4
|
Root-Bernstein R, Baker AG, Rhinesmith T, Turke M, Huber J, Brown AW. "Sea Water" Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides. Life (Basel) 2023; 13:265. [PMID: 36836628 PMCID: PMC9959757 DOI: 10.3390/life13020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
The standard approach to exploring prebiotic chemistry is to use a small number of highly purified reactants and to attempt to optimize the conditions required to produce a particular end product. However, purified reactants do not exist in nature. We have previously proposed that what drives prebiotic evolution are complex chemical ecologies. Therefore, we have begun to explore what happens if one substitutes "sea water", with its complex mix of minerals and salts, for distilled water in the classic Miller experiment. We have also adapted the apparatus to permit it to be regassed at regular intervals so as to maintain a relatively constant supply of methane, hydrogen, and ammonia. The "sea water" used in the experiments was created from Mediterranean Sea salt with the addition of calcium phosphate and magnesium sulfate. Tests included several types of mass spectrometry, an ATP-monitoring device capable of measuring femtomoles of ATP, and a high-sensitivity cAMP enzyme-linked immunoadsorption assay. As expected, amino acids appeared within a few days of the start of the experiment and accumulated thereafter. Sugars, including glucose and ribose, followed as did long-chain fatty acids (up to C20). At three-to-five weeks after starting the experiment, ATP was repeatedly detected. Thus, we have shown that it is possible to produce a "one-pot synthesis" of most of the key chemical prerequisites for living systems within weeks by mimicking more closely the complexity of real-world chemical ecologies.
Collapse
Affiliation(s)
| | - Andrew G. Baker
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Tyler Rhinesmith
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Miah Turke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jack Huber
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Adam W. Brown
- Department of Art, Art History and Design, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Guo X, Su M. The Origin of Translation: Bridging the Nucleotides and Peptides. Int J Mol Sci 2022; 24:ijms24010197. [PMID: 36613641 PMCID: PMC9820756 DOI: 10.3390/ijms24010197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extant biology uses RNA to record genetic information and proteins to execute biochemical functions. Nucleotides are translated into amino acids via transfer RNA in the central dogma. tRNA is essential in translation as it connects the codon and the cognate amino acid. To reveal how the translation emerged in the prebiotic context, we start with the structure and dissection of tRNA, followed by the theory and hypothesis of tRNA and amino acid recognition. Last, we review how amino acids assemble on the tRNA and further form peptides. Understanding the origin of life will also promote our knowledge of artificial living systems.
Collapse
Affiliation(s)
- Xuyuan Guo
- School of Genetics and Microbiology, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, D02 PN40 Dublin, Ireland
| | - Meng Su
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Correspondence:
| |
Collapse
|
6
|
Janzen E, Shen Y, Vázquez-Salazar A, Liu Z, Blanco C, Kenchel J, Chen IA. Emergent properties as by-products of prebiotic evolution of aminoacylation ribozymes. Nat Commun 2022; 13:3631. [PMID: 35752631 PMCID: PMC9233669 DOI: 10.1038/s41467-022-31387-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/16/2022] [Indexed: 11/24/2022] Open
Abstract
Systems of catalytic RNAs presumably gave rise to important evolutionary innovations, such as the genetic code. Such systems may exhibit particular tolerance to errors (error minimization) as well as coding specificity. While often assumed to result from natural selection, error minimization may instead be an emergent by-product. In an RNA world, a system of self-aminoacylating ribozymes could enforce the mapping of amino acids to anticodons. We measured the activity of thousands of ribozyme mutants on alternative substrates (activated analogs for tryptophan, phenylalanine, leucine, isoleucine, valine, and methionine). Related ribozymes exhibited shared preferences for substrates, indicating that adoption of additional amino acids by existing ribozymes would itself lead to error minimization. Furthermore, ribozyme activity was positively correlated with specificity, indicating that selection for increased activity would also lead to increased specificity. These results demonstrate that by-products of ribozyme evolution could lead to adaptive value in specificity and error tolerance.
Collapse
Affiliation(s)
- Evan Janzen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Yuning Shen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Celia Blanco
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Josh Kenchel
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Irene A Chen
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA. .,Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Roberts SJ, Liu Z, Sutherland JD. Potentially Prebiotic Synthesis of Aminoacyl-RNA via a Bridging Phosphoramidate-Ester Intermediate. J Am Chem Soc 2022; 144:4254-4259. [PMID: 35230111 PMCID: PMC9097472 DOI: 10.1021/jacs.2c00772] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Translation
according to the genetic code is made possible by selectivity
both in aminoacylation of tRNA and in anticodon/codon recognition.
In extant biology, tRNAs are selectively aminoacylated by enzymes
using high-energy intermediates, but how this might have been achieved
prior to the advent of protein synthesis has been a largely unanswered
question in prebiotic chemistry. We have now elucidated a novel, prebiotically
plausible stereoselective aminoacyl-RNA synthesis, which starts from
RNA-amino acid phosphoramidates and proceeds via phosphoramidate-ester
intermediates that subsequently undergo conversion to aminoacyl-esters
by mild acid hydrolysis. The chemistry avoids the intermediacy of
high-energy mixed carboxy-phosphate anhydrides and is greatly favored
under eutectic conditions, which also potentially allow for the requisite
pH fluctuation through the variable solubility of CO2 in
solid/liquid water.
Collapse
Affiliation(s)
- Samuel J Roberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| |
Collapse
|
8
|
Nonenzymatic assembly of active chimeric ribozymes from aminoacylated RNA oligonucleotides. Proc Natl Acad Sci U S A 2022; 119:2116840119. [PMID: 35140183 PMCID: PMC8851484 DOI: 10.1073/pnas.2116840119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 02/07/2023] Open
Abstract
The emergence of a primordial ribosome from the RNA world would have required access to aminoacylated RNA substrates. The spontaneous generation of such substrates without enzymes is inefficient, and it remains unclear how they could be selected for in a prebiotic milieu. In our study, we identify a possible role for aminoacylated RNA in ribozyme assembly, a longstanding problem in the origin-of-life research. We show that aminoacylation of short RNAs greatly accelerates their assembly into functional ribozymes by forming amino acid bridges in the phosphodiester backbone. Our work therefore addresses two key challenges within the origin-of-life field: we demonstrate assembly of functional ribozymes, and we identify a potential evolutionary benefit for RNA aminoacylation that is independent of coded peptide translation. Aminoacylated transfer RNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA world prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA world. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid–RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone and, in the case of an aminoacyl transferase, even in its catalytic center, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid–specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.
Collapse
|
9
|
Ying J, Ding R, Liu Y, Zhao Y. Prebiotic Chemistry in Aqueous Environment: A Review of Peptide Synthesis and Its Relationship with Genetic Code. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianxi Ying
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
| | - Ruiwen Ding
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
| | - Yan Liu
- College of Chemistry and Chemical Engineering Xiamen University, No. 422, Siming South Road Xiamen Fujian 361005 China
| | - Yufen Zhao
- Institute of Drug Discovery Technology Ningbo University, No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences Ningbo University No.818 Fenghua Road, Ningbo Zhejiang 315211 China
- College of Chemistry and Chemical Engineering Xiamen University, No. 422, Siming South Road Xiamen Fujian 361005 China
| |
Collapse
|
10
|
Radakovic A, Wright TH, Lelyveld VS, Szostak JW. A Potential Role for Aminoacylation in Primordial RNA Copying Chemistry. Biochemistry 2021; 60:477-488. [PMID: 33523633 PMCID: PMC9634692 DOI: 10.1021/acs.biochem.0c00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Aminoacylated tRNAs
are the substrates for ribosomal protein synthesis
in all branches of life, implying an ancient origin for aminoacylation
chemistry. In the 1970s, Orgel and colleagues reported potentially
prebiotic routes to aminoacylated nucleotides and their RNA-templated
condensation to form amino acid-bridged dinucleotides. However, it
is unclear whether such reactions would have aided or impeded non-enzymatic
RNA replication. Determining whether aminoacylated RNAs could have
been advantageous in evolution prior to the emergence of protein synthesis
remains a key challenge. We therefore tested the ability of aminoacylated
RNA to participate in both templated primer extension and ligation
reactions. We find that at low magnesium concentrations that favor
fatty acid-based protocells, these reactions proceed orders of magnitude
more rapidly than when initiated from the cis-diol
of unmodified RNA. We further demonstrate that amino acid-bridged
RNAs can act as templates in a subsequent round of copying. Our results
suggest that aminoacylation facilitated non-enzymatic RNA replication,
thus outlining a potentially primordial functional link between aminoacylation
chemistry and RNA replication.
Collapse
Affiliation(s)
- Aleksandar Radakovic
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tom H Wright
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Victor S Lelyveld
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Jack W Szostak
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Wu LF, Liu Z, Sutherland JD. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water. Chem Commun (Camb) 2021; 57:73-76. [PMID: 33242043 PMCID: PMC7808311 DOI: 10.1039/d0cc06042a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
A novel mechanism enabling selective peptide elongation by coupling α-amino acids over other potentially competing prebiotic amines under acidic aqueous condition is suggested. It proceeds via the generation of a carboxylic acid anhydride intermediate with subsequent intramolecular formation of the amide bond.
Collapse
Affiliation(s)
- Long-Fei Wu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
12
|
Liu Z, Wu LF, Xu J, Bonfio C, Russell DA, Sutherland JD. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat Chem 2020; 12:1023-1028. [PMID: 33093680 DOI: 10.1038/s41557-020-00564-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/21/2020] [Indexed: 11/09/2022]
Abstract
Life is an out-of-equilibrium system sustained by a continuous supply of energy. In extant biology, the generation of the primary energy currency, adenosine 5'-triphosphate and its use in the synthesis of biomolecules require enzymes. Before their emergence, alternative energy sources, perhaps assisted by simple catalysts, must have mediated the activation of carboxylates and phosphates for condensation reactions. Here, we show that the chemical energy inherent to isonitriles can be harnessed to activate nucleoside phosphates and carboxylic acids through catalysis by acid and 4,5-dicyanoimidazole under mild aqueous conditions. Simultaneous activation of carboxylates and phosphates provides multiple pathways for the generation of reactive intermediates, including mixed carboxylic acid-phosphoric acid anhydrides, for the synthesis of peptidyl-RNAs, peptides, RNA oligomers and primordial phospholipids. Our results indicate that unified prebiotic activation chemistry could have enabled the joining of building blocks in aqueous solution from a common pool and enabled the progression of a system towards higher complexity, foreshadowing today's encapsulated peptide-nucleic acid system.
Collapse
Affiliation(s)
- Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Long-Fei Wu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Jianfeng Xu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - David A Russell
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
13
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|
15
|
Pressman AD, Liu Z, Janzen E, Blanco C, Müller UF, Joyce GF, Pascal R, Chen IA. Mapping a Systematic Ribozyme Fitness Landscape Reveals a Frustrated Evolutionary Network for Self-Aminoacylating RNA. J Am Chem Soc 2019; 141:6213-6223. [PMID: 30912655 PMCID: PMC6548421 DOI: 10.1021/jacs.8b13298] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Molecular
evolution can be conceptualized as a walk over a “fitness
landscape”, or the function of fitness (e.g., catalytic activity)
over the space of all possible sequences. Understanding evolution
requires knowing the structure of the fitness landscape and identifying
the viable evolutionary pathways through the landscape. However, the
fitness landscape for any catalytic biomolecule is largely unknown.
The evolution of catalytic RNA is of special interest because RNA
is believed to have been foundational to early life. In particular,
an essential activity leading to the genetic code would be the reaction
of ribozymes with activated amino acids, such as 5(4H)-oxazolones, to form aminoacyl-RNA. Here we combine in vitro selection
with a massively parallel kinetic assay to map a fitness landscape
for self-aminoacylating RNA, with nearly complete coverage of sequence
space in a central 21-nucleotide region. The method (SCAPE: sequencing
to measure catalytic activity paired with in vitro evolution) shows
that the landscape contains three major ribozyme families (landscape
peaks). An analysis of evolutionary pathways shows that, while local
optimization within a ribozyme family would be possible, optimization
of activity over the entire landscape would be frustrated by large
valleys of low activity. The sequence motifs associated with each
peak represent different solutions to the problem of catalysis, so
the inability to traverse the landscape globally corresponds to an
inability to restructure the ribozyme without losing activity. The
frustrated nature of the evolutionary network suggests that chance
emergence of a ribozyme motif would be more important than optimization
by natural selection.
Collapse
Affiliation(s)
- Abe D Pressman
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States.,Program in Chemical Engineering , University of California , Santa Barbara , California 93106 , United States
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology , Cambridge Biomedical Campus , Cambridge CB2 0QH , U.K.,IBMM, CNRS, University of Montpellier, ENSCM , 34090 Montpellier , France
| | - Evan Janzen
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States.,Program in Biomolecular Sciences and Engineering , University of California , Santa Barbara , California 93106 , United States
| | - Celia Blanco
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry , University of California , San Diego , California 92093 , United States
| | - Gerald F Joyce
- Salk Institute for Biological Studies , La Jolla , California 92037 , United States
| | - Robert Pascal
- IBMM, CNRS, University of Montpellier, ENSCM , 34090 Montpellier , France
| | - Irene A Chen
- Department of Chemistry and Biochemistry 9510 , University of California , Santa Barbara , California 93106 , United States.,Program in Biomolecular Sciences and Engineering , University of California , Santa Barbara , California 93106 , United States
| |
Collapse
|
16
|
How Prebiotic Chemistry and Early Life Chose Phosphate. Life (Basel) 2019; 9:life9010026. [PMID: 30832398 PMCID: PMC6462974 DOI: 10.3390/life9010026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
The very specific thermodynamic instability and kinetic stability of phosphate esters and anhydrides impart them invaluable properties in living organisms in which highly efficient enzyme catalysts compensate for their low intrinsic reactivity. Considering their role in protein biosynthesis, these properties raise a paradox about early stages: How could these species be selected in the absence of enzymes? This review is aimed at demonstrating that considering mixed anhydrides or other species more reactive than esters and anhydrides can help in solving the paradox. The consequences of this approach for chemical evolution and early stages of life are analysed.
Collapse
|
17
|
Liu Z, Ajram G, Rossi JC, Pascal R. The Chemical Likelihood of Ribonucleotide-α-Amino acid Copolymers as Players for Early Stages of Evolution. J Mol Evol 2019; 87:83-92. [PMID: 30788531 PMCID: PMC6443614 DOI: 10.1007/s00239-019-9887-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/17/2019] [Indexed: 11/25/2022]
Abstract
How ribosomal translation could have evolved remains an open question in most available scenarios for the early developments of life. Rather than considering RNA and peptides as two independent systems, this work is aimed at assessing the possibility of formation and stability of co-polymers or co-oligomers of α-amino acids and nucleotides from which translation might have evolved. Here we show that the linkages required to build such mixed structures have lifetimes of several weeks to months at neutral pH and 20 °C owing to the mutual protecting effect of both neighboring phosphoramidate and ester functional groups increasing their stability by factors of about 1 and 3 orders of magnitude, respectively. This protecting effect is reversible upon hydrolysis allowing the possibility of subsequent reactions. These copolymer models, for which an abiotic synthesis pathway is supported by experiments, form a basis from which both polymerization and translation could have logically evolved. Low temperatures were identified as a critical parameter for the kinetic stability of the aminoacylated nucleotide facilitating the synthesis of the model. This observation independently supports the views that any process involving RNA aminoacyl esters, outstandingly including the emergence of translation, was more probable at 0 °C or below and might be considered a kinetic marker constraining the environment in which translation has evolved.
Collapse
Affiliation(s)
- Ziwei Liu
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Ghinwa Ajram
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Robert Pascal
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
18
|
Banwell EF, Piette BMAG, Taormina A, Heddle JG. Reciprocal Nucleopeptides as the Ancestral Darwinian Self-Replicator. Mol Biol Evol 2019; 35:404-416. [PMID: 29126321 PMCID: PMC5850689 DOI: 10.1093/molbev/msx292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Even the simplest organisms are too complex to have spontaneously arisen fully formed, yet precursors to first life must have emerged ab initio from their environment. A watershed event was the appearance of the first entity capable of evolution: the Initial Darwinian Ancestor. Here, we suggest that nucleopeptide reciprocal replicators could have carried out this important role and contend that this is the simplest way to explain extant replication systems in a mathematically consistent way. We propose short nucleic acid templates on which amino-acylated adapters assembled. Spatial localization drives peptide ligation from activated precursors to generate phosphodiester-bond-catalytic peptides. Comprising autocatalytic protein and nucleic acid sequences, this dynamical system links and unifies several previous hypotheses and provides a plausible model for the emergence of DNA and the operational code.
Collapse
Affiliation(s)
- Eleanor F Banwell
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Anne Taormina
- Department for Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Jonathan G Heddle
- Heddle Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Bionanoscience and Biochemistry Laboratory, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
19
|
Liu Z, Mariani A, Wu L, Ritson D, Folli A, Murphy D, Sutherland J. Tuning the reactivity of nitriles using Cu(ii) catalysis - potentially prebiotic activation of nucleotides. Chem Sci 2018; 9:7053-7057. [PMID: 30310625 PMCID: PMC6137443 DOI: 10.1039/c8sc02513d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022] Open
Abstract
A synergistic system was established involving activating nucleotides with nitriles using Cu(ii) and protecting RNA degradation by byproducts of alpha-aminonitriles.
During the transition from prebiotic chemistry to biology, a period of solution-phase, non-enzymatic activation of (oligo)nucleotides must have occurred, and accordingly, a mechanism for phosphate activation must have existed. Herein, we detail results of an investigation into prebiotic phosphate activation chemistry using simple, prebiotically available nitriles whose reactivity is increased by Cu2+ ions. Furthermore, although Cu2+ ions are known to catalyse the hydrolysis of phosphodiester bonds, we found this deleterious activity to be almost completely suppressed by inclusion of amino acids or dipeptides, which may suggest a productive relationship between protein and RNA from the outset.
Collapse
Affiliation(s)
- Ziwei Liu
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Angelica Mariani
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Longfei Wu
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Dougal Ritson
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| | - Andrea Folli
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , UK
| | - Damien Murphy
- School of Chemistry , Cardiff University , Park Place , Cardiff CF10 3AT , UK
| | - John Sutherland
- MRC Laboratory of Molecular Biology , Francis Crick Avenue, Cambridge Biomedical Campus , CB2 0QH , UK .
| |
Collapse
|
20
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Chemical roots of biological evolution: the origins of life as a process of development of autonomous functional systems. Open Biol 2018; 7:rsob.170050. [PMID: 28446711 PMCID: PMC5413913 DOI: 10.1098/rsob.170050] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, an extension of the Darwinian framework is being considered for the study of prebiotic chemical evolution, shifting the attention from homogeneous populations of naked molecular species to populations of heterogeneous, compartmentalized and functionally integrated assemblies of molecules. Several implications of this shift of perspective are analysed in this critical review, both in terms of the individual units, which require an adequate characterization as self-maintaining systems with an internal organization, and also in relation to their collective and long-term evolutionary dynamics, based on competition, collaboration and selection processes among those complex individuals. On these lines, a concrete proposal for the set of molecular control mechanisms that must be coupled to bring about autonomous functional systems, at the interface between chemistry and biology, is provided.
Collapse
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain.,Department of Logic and Philosophy of Science, University of the Basque Country, 20018 Donostia - San Sebastián, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA, Associated to NASA Astrobiology Institute), 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain .,Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
21
|
Liu Z, Rigger L, Rossi JC, Sutherland JD, Pascal R. Mixed Anhydride Intermediates in the Reaction of 5(4H)-Oxazolones with Phosphate Esters and Nucleotides. Chemistry 2016; 22:14940-14949. [PMID: 27534830 PMCID: PMC5074369 DOI: 10.1002/chem.201602697] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Indexed: 12/13/2022]
Abstract
5(4H)‐Oxazolones can be formed through the activation of acylated α‐amino acids or of peptide C termini. They constitute potentially activated intermediates in the abiotic chemistry of peptides that preceded the origin of life or early stages of biology and are capable of yielding mixed carboxylic‐phosphoric anhydrides upon reaction with phosphate esters and nucleotides. Here, we present the results of a study aimed at investigating the chemistry that can be built through this interaction. As a matter of fact, the formation of mixed anhydrides with mononucleotides and nucleic acid models is shown to take place at positions involving a mono‐substituted phosphate group at the 3’‐ or 5’‐terminus but not at the internal phosphodiester linkages. In addition to the formation of mixed anhydrides, the subsequent intramolecular acyl or phosphoryl transfers taking place at the 3’‐terminus are considered to be particularly relevant to the common prebiotic chemistry of α‐amino acids and nucleotides.
Collapse
Affiliation(s)
- Ziwei Liu
- Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, École nationale supérieure de chimie de Montpellier (ENSCM), Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Lukas Rigger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Jean-Christophe Rossi
- Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, École nationale supérieure de chimie de Montpellier (ENSCM), Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Robert Pascal
- Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, École nationale supérieure de chimie de Montpellier (ENSCM), Place E. Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
22
|
Beaufils D, Jepaul S, Liu Z, Boiteau L, Pascal R. The Activation of Free Dipeptides Promoted by Strong Activating Agents in Water Does not Yield Diketopiperazines. ORIGINS LIFE EVOL B 2016; 46:19-30. [PMID: 26205652 DOI: 10.1007/s11084-015-9455-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
The activation of dipeptides was studied in the perspective of the abiotic formation of oligopeptides of significant length as a requirement for secondary structure formation. The formation of piperazin-2,5-diones (DKP), previously considered as a dead end when activating free dipeptides, was shown in this work to be efficiently suppressed when using strong activating agents (e.g., carbodiimides). This behaviour was explained by the fast formation of a 5(4H)-oxazolone intermediate at a rate that exceeds the time scale of the rotation of the peptide bond from the predominant trans-conformation into the cis-isomer required for DKP formation. No DKP was observed when using strong activating agents whereas phosphate mixed anhydrides or moderately activated esters were observed to predominantly yield DKP. The DKP side-reaction no longer constitutes a drawback for the C-terminus elongation of peptides. These results are considered as additional evidence that pathways involving strong activation are required to drive the emergence of living entities rather than close to equilibrium processes.
Collapse
Affiliation(s)
- Damien Beaufils
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS - University of Montpellier, DSBC, CC17006, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Sandra Jepaul
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS - University of Montpellier, DSBC, CC17006, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Ziwei Liu
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS - University of Montpellier, DSBC, CC17006, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Laurent Boiteau
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS - University of Montpellier, DSBC, CC17006, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Robert Pascal
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS - University of Montpellier, DSBC, CC17006, Place E. Bataillon, 34095, Montpellier Cedex 5, France.
| |
Collapse
|
23
|
Murillo-Sánchez S, Beaufils D, González Mañas JM, Pascal R, Ruiz-Mirazo K. Fatty acids' double role in the prebiotic formation of a hydrophobic dipeptide. Chem Sci 2016; 7:3406-3413. [PMID: 29997836 PMCID: PMC6007129 DOI: 10.1039/c5sc04796j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/09/2016] [Indexed: 02/06/2023] Open
Abstract
In search of a connection between prebiotic peptide chemistry and lipid compartments, the reaction of a 5(4H)-oxazolone with leucinamide was extensively explored under buffered aqueous conditions, where diverse amphiphiles and surfactants could form supramolecular assemblies. Significant increases in yield and changes in stereoselectivity were observed when fatty acids exceeded their critical aggregation concentration, self-assembling into vesicles in particular. This effect does not take place below the fatty acid solubility limit, or when other anionic amphiphiles/surfactants are used. Data from fluorimetric and Langmuir trough assays, complementary to the main HPLC results reported here, demonstrate that the dipeptide product co-localizes with fatty acid bilayers and monolayers. Additional experiments in organic solvents suggest that acid-base catalysis operates at the water-aggregate interface, linked to the continuous proton exchange dynamics that fatty acids undergo at pH values around their effective pKa. These simple amphiphiles could therefore play a dual role as enhancers of peptide chemistry under prebiotic conditions, providing soft and hydrophobic organic domains through self-assembly and actively inducing catalysis at their interface with the aqueous environment. Our results support a systems chemistry approach to life's origin.
Collapse
Affiliation(s)
| | - Damien Beaufils
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS/Université de Montpellier/ENSCM) , Montpellier , France .
| | | | - Robert Pascal
- Institut des Biomolécules Max Mousseron (IBMM, UMR 5247, CNRS/Université de Montpellier/ENSCM) , Montpellier , France .
| | - Kepa Ruiz-Mirazo
- Biophysics Unit (CSIC, UPV/EHU) , University of the Basque Country , Spain . .,Department of Logic and Philosophy of Science , University of the Basque Country , Spain
| |
Collapse
|
24
|
|
25
|
|