1
|
Mariette J, Noël A, Louis T, Montagné N, Chertemps T, Jacquin-Joly E, Marion-Poll F, Sandoz JC. Transcuticular calcium imaging as a tool for the functional study of insect odorant receptors. Front Mol Neurosci 2023; 16:1182361. [PMID: 37645702 PMCID: PMC10461100 DOI: 10.3389/fnmol.2023.1182361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/31/2023] Open
Abstract
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The "empty neuron system" of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis, a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Amélie Noël
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Thierry Louis
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Nicolas Montagné
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Emmanuelle Jacquin-Joly
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | - Frédéric Marion-Poll
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, IDEEV, CNRS, Université Paris-Saclay, IRD, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Cho S, Park TH. Advances in the Production of Olfactory Receptors for Industrial Use. Adv Biol (Weinh) 2023; 7:e2200251. [PMID: 36593488 DOI: 10.1002/adbi.202200251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/11/2022] [Indexed: 01/04/2023]
Abstract
In biological olfactory systems, olfactory receptors (ORs) can recognize and discriminate between thousands of volatile organic compounds with very high sensitivity and specificity. The superior properties of ORs have led to the development of OR-based biosensors that have shown promising potential in many applications over the past two decades. In particular, newly designed technologies in gene synthesis, protein expression, solubilization, purification, and membrane mimetics for membrane proteins have greatly opened up the previously inaccessible industrial potential of ORs. In this review, gene design, expression and solubilization strategies, and purification and reconstitution methods available for modern industrial applications are examined, with a focus on ORs. The limitations of current OR production technology are also estimated, and future directions for further progress are suggested.
Collapse
Affiliation(s)
- Seongyeon Cho
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
3
|
Li J, Liu X, Man Y, Chen Q, Pei D, Wu W. Cell-free expression, purification and characterization of Drosophila melanogaster odorant receptor OR42a and its co-receptor. Protein Expr Purif 2019; 159:27-33. [PMID: 30872132 DOI: 10.1016/j.pep.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/06/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Olfactory receptors (OR), a group of classic membrane proteins, plays a vital role in insect reproduction and acclimatization. Deciphering the molecular mechanism of insect olfaction could enhance pest control and environmental protection. Studies on ORs have faced a major bottleneck due to the notoriously strong hydrophobicity of ORs, which results in difficult expression in heterologous cell systems. Here, we demonstrated that insect ORs could be functionally produced using the E. coli cell-free protein synthesis system (CFPS), in which the highest yield of total ORs is 350 μg per 1 ml reaction. We tested the effects of detergent types and concentrations on soluble expression of ORs. The ORs showed a classic α-helical infrared spectrum. Quartz crystal microbalance (QCM) was used to demonstrate that ORs fold correctly and respond to their ligands. This is the first report that insect OR42a could be functionally produced in vitro. This approach may facilitate the development of biomimetic olfactory biosensors and may also be utilized for drug positioning and development, environmental protection and agriculture.
Collapse
Affiliation(s)
- Jianyong Li
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Xingping Liu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Yahui Man
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Qian Chen
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Di Pei
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Wenjian Wu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China.
| |
Collapse
|
4
|
|
5
|
Zhang S, Tao F, Qing R, Tang H, Skuhersky M, Corin K, Tegler L, Wassie A, Wassie B, Kwon Y, Suter B, Entzian C, Schubert T, Yang G, Labahn J, Kubicek J, Maertens B. QTY code enables design of detergent-free chemokine receptors that retain ligand-binding activities. Proc Natl Acad Sci U S A 2018; 115:E8652-E8659. [PMID: 30154163 PMCID: PMC6140526 DOI: 10.1073/pnas.1811031115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Structure and function studies of membrane proteins, particularly G protein-coupled receptors and multipass transmembrane proteins, require detergents. We have devised a simple tool, the QTY code (glutamine, threonine, and tyrosine), for designing hydrophobic domains to become water soluble without detergents. Here we report using the QTY code to systematically replace the hydrophobic amino acids leucine, valine, isoleucine, and phenylalanine in the seven transmembrane α-helices of CCR5, CXCR4, CCR10, and CXCR7. We show that QTY code-designed chemokine receptor variants retain their thermostabilities, α-helical structures, and ligand-binding activities in buffer and 50% human serum. CCR5QTY, CXCR4QTY, and CXCR7QTY also bind to HIV coat protein gp41-120. Despite substantial transmembrane domain changes, the detergent-free QTY variants maintain stable structures and retain their ligand-binding activities. We believe the QTY code will be useful for designing water-soluble variants of membrane proteins and other water-insoluble aggregated proteins.
Collapse
Affiliation(s)
- Shuguang Zhang
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Fei Tao
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 200240 Shanghai, China
| | - Rui Qing
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hongzhi Tang
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiaotong University, 200240 Shanghai, China
| | - Michael Skuhersky
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Karolina Corin
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Lotta Tegler
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Asmamaw Wassie
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brook Wassie
- Center for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | | | - Ge Yang
- Centre for Structural Systems Biology, Research Center Juelich, D-22607 Hamburg, Germany
| | - Jörg Labahn
- Centre for Structural Systems Biology, Research Center Juelich, D-22607 Hamburg, Germany
| | | | | |
Collapse
|
6
|
Zhang X, Cheng J, Wu L, Mei Y, Jaffrezic-Renault N, Guo Z. An overview of an artificial nose system. Talanta 2018; 184:93-102. [PMID: 29674088 DOI: 10.1016/j.talanta.2018.02.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 12/22/2022]
Abstract
The present review describes recent advances in the development of an artificial nose system based on olfactory receptors and various sensing platforms. The kind of artificial nose, the production of olfactory receptors, the sensor platform for signal conversion and the application of the artificial nose system based on olfactory receptors and various sensing platforms are presented. The associated transduction modes are also discussed. The paper presents a review of the latest achievements and a critical evaluation of the state of the art in the field of artificial nose systems.
Collapse
Affiliation(s)
- Xiu Zhang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Lei Wu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China
| | - Yong Mei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| | - Nicole Jaffrezic-Renault
- Institute of Analytical Sciences, UMR-CNRS 5280, University of Lyon, 5, La Doua Street, Villeurbanne 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, PR China.
| |
Collapse
|
7
|
TRPA1-FGFR2 binding event is a regulatory oncogenic driver modulated by miRNA-142-3p. Nat Commun 2017; 8:947. [PMID: 29038531 PMCID: PMC5643494 DOI: 10.1038/s41467-017-00983-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/08/2017] [Indexed: 01/09/2023] Open
Abstract
Recent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD), where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein–protein interactions mediated via its C-terminal proline-rich motif. Here we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline-rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2, hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p. TRPA1 has been reported to contribute lung cancer adenocarcinoma (LUAD), but the mechanisms are unclear. Here the authors propose that TRPA1/FGFR2 interaction is functional in LUAD and show that astrocytes oppose brain metastasis by mediating the downregulation of TRPA1 through exosome-delivered miRNA-142-3p.
Collapse
|
8
|
From Gene to Function: Cell-Free Electrophysiological and Optical Analysis of Ion Pumps in Nanodiscs. Biophys J 2017; 113:1331-1341. [PMID: 28450130 DOI: 10.1016/j.bpj.2017.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/14/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Nanodiscs that hold a lipid bilayer surrounded by a boundary of scaffold proteins have emerged as a powerful tool for membrane protein solubilization and analysis. By combining nanodiscs and cell-free expression technologies, even completely detergent-free membrane protein characterization protocols can be designed. Nanodiscs are compatible with various techniques, and due to their bilayer environment and increased stability, they are often superior to detergent micelles or liposomes for membrane protein solubilization. However, transport assays in nanodiscs have not been conducted so far, due to limitations of the two-dimensional nature of nanodisc membranes that offers no compartmentalization. Here, we study Krokinobacter eikastus rhodopsin-2 (KR2), a microbial light-driven sodium or proton pump, with noncovalent mass-spectrometric, electrophysiological, and flash photolysis measurements after its cotranslational insertion into nanodiscs. We demonstrate the feasibility of adsorbing nanodiscs containing KR2 to an artificial bilayer. This allows us to record light-induced capacitive currents that reflect KR2's ion transport activity. The solid-supported membrane assay with nanodisc samples provides reliable control over the ionic condition and information of the relative ion activity of this promiscuous pump. Our strategy is complemented with flash photolysis data, where the lifetimes of different photointermediates were determined at different ionic conditions. The advantage of using identical samples to three complementary approaches allows for a comprehensive comparability. The cell-free synthesis in combination with nanodiscs provides a defined hydrophobic lipid environment minimizing the detergent dependence often seen in assays with membrane proteins. KR2 is a promising tool for optogenetics, thus directed engineering to modify ion selectivity can be highly beneficial. Our approach, using the fast generation of functional ion pumps incorporated into nanodiscs and their subsequent analysis by several biophysical techniques, can serve as a versatile screening and engineering platform. This may open new avenues for the study of ion pumps and similar electrogenic targets.
Collapse
|
9
|
Shinoda T, Shinya N, Ito K, Ishizuka-Katsura Y, Ohsawa N, Terada T, Hirata K, Kawano Y, Yamamoto M, Tomita T, Ishibashi Y, Hirabayashi Y, Kimura-Someya T, Shirouzu M, Yokoyama S. Cell-free methods to produce structurally intact mammalian membrane proteins. Sci Rep 2016; 6:30442. [PMID: 27465719 PMCID: PMC4964339 DOI: 10.1038/srep30442] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/04/2016] [Indexed: 01/19/2023] Open
Abstract
The crystal structures of four membrane proteins, from bacteria or a unicellular alga, have been solved with samples produced by cell-free protein synthesis. In this study, for mammalian membrane protein production, we established the precipitating and soluble membrane fragment methods: membrane proteins are synthesized with the Escherichia coli cell-free system in the presence of large and small membrane fragments, respectively, and are simultaneously integrated into the lipid environments. We applied the precipitating membrane fragment method to produce various mammalian membrane proteins, including human claudins, glucosylceramide synthase, and the γ-secretase subunits. These proteins were produced at levels of about 0.1–1.0 mg per ml cell-free reaction under the initial conditions, and were obtained as precipitates by ultracentrifugation. Larger amounts of membrane proteins were produced by the soluble membrane fragment method, collected in the ultracentrifugation supernatants, and purified directly by column chromatography. For several proteins, the conditions of the membrane fragment methods were further optimized, such as by the addition of specific lipids/detergents. The functional and structural integrities of the purified proteins were confirmed by analyses of their ligand binding activities, size-exclusion chromatography profiles, and/or thermal stabilities. We successfully obtained high-quality crystals of the complex of human claudin-4 with an enterotoxin.
Collapse
Affiliation(s)
- Takehiro Shinoda
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Naoko Shinya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Kaori Ito
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Yoshiko Ishizuka-Katsura
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Noboru Ohsawa
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Takaho Terada
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| | - Kunio Hirata
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masaki Yamamoto
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Taisuke Tomita
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Ishibashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Tomomi Kimura-Someya
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan.,RIKEN Structural Biology Laboratory, Yokohama 230-0045, Japan
| |
Collapse
|
10
|
Bio-nanocapsule-based scaffold improves the sensitivity and ligand-binding capacity of mammalian receptors on the sensor chip. Biotechnol J 2016; 11:805-13. [DOI: 10.1002/biot.201500443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/13/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
|
11
|
Gonzalez F, Witzgall P, Walker WB. Protocol for Heterologous Expression of Insect Odourant Receptors in Drosophila. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV. Towards an understanding of the structural basis for insect olfaction by odorant receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:31-41. [PMID: 26416146 DOI: 10.1016/j.ibmb.2015.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Insects have co-opted a unique family of seven transmembrane proteins for odour sensing. Odorant receptors are believed to have evolved from gustatory receptors somewhere at the base of the Hexapoda and have expanded substantially to become the dominant class of odour recognition elements within the Insecta. These odorant receptors comprise an obligate co-receptor, Orco, and one of a family of highly divergent odorant "tuning" receptors. The two subunits are thought to come together at some as-yet unknown stoichiometry to form a functional complex that is capable of both ionotropic and metabotropic signalling. While there are still no 3D structures for these proteins, site-directed mutagenesis, resonance energy transfer, and structural modelling efforts, all mainly on Drosophila odorant receptors, are beginning to inform hypotheses of their structures and how such complexes function in odour detection. Some of the loops, especially the second extracellular loop that has been suggested to form a lid over the binding pocket, and the extracellular regions of some transmembrane helices, especially the third and to a less extent the sixth and seventh, have been implicated in ligand recognition in tuning receptors. The possible interaction between Orco and tuning receptor subunits through the final intracellular loop and the adjacent transmembrane helices is thought to be important for transducing ligand binding into receptor activation. Potential phosphorylation sites and a calmodulin binding site in the second intracellular loop of Orco are also thought to be involved in regulating channel gating. A number of new methods have recently been developed to express and purify insect odorant receptor subunits in recombinant expression systems. These approaches are enabling high throughput screening of receptors for agonists and antagonists in cell-based formats, as well as producing protein for the application of biophysical methods to resolve the 3D structure of the subunits and their complexes.
Collapse
Affiliation(s)
- Colm Carraher
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Julie Dalziel
- Food Nutrition & Health Team, Food & Bio-based Products Group, AgResearch Private Bag 11008, Palmerston North 4442, New Zealand
| | - Melissa D Jordan
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - David L Christie
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Andrew V Kralicek
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
13
|
Shiao MS, Chang JM, Fan WL, Lu MYJ, Notredame C, Fang S, Kondo R, Li WH. Expression Divergence of Chemosensory Genes between Drosophila sechellia and Its Sibling Species and Its Implications for Host Shift. Genome Biol Evol 2015; 7:2843-58. [PMID: 26430061 PMCID: PMC4684695 DOI: 10.1093/gbe/evv183] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Drosophila sechellia relies exclusively on the fruits of Morinda citrifolia, which are toxic to most insects, including its sibling species Drosophila melanogaster and Drosophila simulans. Although several odorant binding protein (Obp) genes and olfactory receptor (Or) genes have been suggested to be associated with the D. sechellia host shift, a broad view of how chemosensory genes have contributed to this shift is still lacking. We therefore studied the transcriptomes of antennae, the main organ responsible for detecting food resource and oviposition, of D. sechellia and its two sibling species. We wanted to know whether gene expression, particularly chemosensory genes, has diverged between D. sechellia and its two sibling species. Using a very stringent definition of differential gene expression, we found a higher percentage of chemosensory genes differentially expressed in the D. sechellia lineage (7.8%) than in the D. simulans lineage (5.4%); for upregulated chemosensory genes, the percentages were 8.8% in D. sechellia and 5.2% in D. simulans. Interestingly, Obp50a exhibited the highest upregulation, an approximately 100-fold increase, and Or85c--previously reported to be a larva-specific gene--showed approximately 20-fold upregulation in D. sechellia. Furthermore, Ir84a (ionotropic receptor 84a), which has been proposed to be associated with male courtship behavior, was significantly upregulated in D. sechellia. We also found expression divergence in most of the chemosensory gene families between D. sechellia and the two sibling species. Our observations suggest that the host shift of D. sechellia was associated with the enrichment of differentially expressed, particularly upregulated, chemosensory genes.
Collapse
Affiliation(s)
- Meng-Shin Shiao
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jia-Ming Chang
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institute of Human Genetics (IGH), UPR 1142, CNRS, Montpellier, France
| | - Wen-Lang Fan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cedric Notredame
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Shu Fang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Rumi Kondo
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
14
|
Kovácsová G, Gustavsson E, Wang J, Kreir M, Peuker S, Westenhoff S. Cell-free expression of a functional pore-only sodium channel. Protein Expr Purif 2015; 111:42-7. [PMID: 25770647 PMCID: PMC4430601 DOI: 10.1016/j.pep.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 01/10/2023]
Abstract
Voltage-gated sodium channels participate in the propagation of action potentials in excitable cells. Eukaryotic Navs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane segments (S1-S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore domain with the selectivity filter. Prokaryotic Navs resemble these characteristics, but are truly tetrameric. They can typically be efficiently synthesized in bacteria, but production in vitro with cell-free synthesis has not been demonstrated. Here we report the cell-free expression and purification of a prokaryotic tetrameric pore-only sodium channel. We produced milligram quantities of the functional channel protein as characterized by size-exclusion chromatography, infrared spectroscopy and electrophysiological recordings. Cell-free expression enables advanced site-directed labelling, post-translational modifications, and special solubilization schemes. This enables next-generation biophysical experiments to study the principle of sodium ion selectivity and transport in sodium channels.
Collapse
Affiliation(s)
- Gabriela Kovácsová
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Jiajun Wang
- Nanion Technologies GmbH, Gabrielenstraße 9, 80636 Munich, Germany
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraße 9, 80636 Munich, Germany
| | - Sebastian Peuker
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden.
| | - Sebastian Westenhoff
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
15
|
Henrich E, Hein C, Dötsch V, Bernhard F. Membrane protein production in Escherichia coli cell-free lysates. FEBS Lett 2015; 589:1713-22. [PMID: 25937121 DOI: 10.1016/j.febslet.2015.04.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 01/01/2023]
Abstract
Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.
Collapse
Affiliation(s)
- Erik Henrich
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Christopher Hein
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe-University, Frankfurt-am-Main, Germany.
| |
Collapse
|