1
|
Bugallo A, Sánchez M, Fernández-García M, Segurado M. S-phase checkpoint prevents leading strand degradation from strand-associated nicks at stalled replication forks. Nucleic Acids Res 2024; 52:5121-5137. [PMID: 38520409 PMCID: PMC11109941 DOI: 10.1093/nar/gkae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
The S-phase checkpoint is involved in coupling DNA unwinding with nascent strand synthesis and is critical to maintain replication fork stability in conditions of replicative stress. However, its role in the specific regulation of leading and lagging strands at stalled forks is unclear. By conditionally depleting RNaseH2 and analyzing polymerase usage genome-wide, we examine the enzymology of DNA replication during a single S-phase in the presence of replicative stress and show that there is a differential regulation of lagging and leading strands. In checkpoint proficient cells, lagging strand replication is down-regulated through an Elg1-dependent mechanism. Nevertheless, when checkpoint function is impaired we observe a defect specifically at the leading strand, which was partially dependent on Exo1 activity. Further, our genome-wide mapping of DNA single-strand breaks reveals that strand discontinuities highly accumulate at the leading strand in HU-treated cells, whose dynamics are affected by checkpoint function and Exo1 activity. Our data reveal an unexpected role of Exo1 at the leading strand and support a model of fork stabilization through prevention of unrestrained Exo1-dependent resection of leading strand-associated nicks after fork stalling.
Collapse
Affiliation(s)
- Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Mar Sánchez
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - María Fernández-García
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
- Departamento de Microbiología y Genética (USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| |
Collapse
|
2
|
Gu M, Lu Q, Liu Y, Cui M, Si Y, Wu H, Chai T, Ling HQ. Requirement and functional redundancy of two large ribonucleotide reductase subunit genes for cell cycle, chloroplast biogenesis and photosynthesis in tomato. ANNALS OF BOTANY 2022; 130:173-187. [PMID: 35700127 PMCID: PMC9445600 DOI: 10.1093/aob/mcac078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Ribonucleotide reductase (RNR), functioning in the de novo synthesis of deoxyribonucleoside triphosphates (dNTPs), is crucial for DNA replication and cell cycle progression. In most plants, the large subunits of RNR have more than one homologous gene. However, the different functions of these homologous genes in plant development remain unknown. In this study, we obtained the mutants of two large subunits of RNR in tomato and studied their functions. METHODS The mutant ylc1 was obtained by ethyl methyl sulfonate (EMS) treatment. Through map-based cloning, complementation and knock-out experiments, it was confirmed that YLC1 encodes a large subunit of RNR (SlRNRL1). The expression level of the genes related to cell cycle progression, chloroplast biogenesis and photosynthesis was assessed by RNA-sequencing. In addition, we knocked out SlRNRL2 (a SlRNRL1 homologue) using CRISPR-Cas9 technology in the tomato genome, and we down-regulated SlRNRL2 expression in the genetic background of slrnrl1-1 using a tobacco rattle virus-induced gene silencing (VIGS) system. KEY RESULTS The mutant slrnrl1 exhibited dwarf stature, chlorotic young leaves and smaller fruits. Physiological and transcriptomic analyses indicated that SlRNRL1 plays a crucial role in the regulation of cell cycle progression, chloroplast biogenesis and photosynthesis in tomato. The slrnrl2 mutant did not exhibit any visible phenotype. SlRNRL2 has a redundant function with SlRNRL1, and the double mutant slrnrl1slrnrl2 is lethal. CONCLUSIONS SlRNRL1 is essential for cell cycle progression, chloroplast biogenesis and photosynthesis. In addition, SlRNRL1 and SlRNRL2 possess redundant functions and at least one of these RNRLs is required for tomato survival, growth and development.
Collapse
Affiliation(s)
| | | | - Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Man Cui
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoqi Si
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Tuanyao Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
3
|
Yeast Stn1 promotes MCM to circumvent Rad53 control of the S phase checkpoint. Curr Genet 2022; 68:165-179. [PMID: 35150303 PMCID: PMC8976814 DOI: 10.1007/s00294-022-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022]
Abstract
Treating yeast cells with the replication inhibitor hydroxyurea activates the S phase checkpoint kinase Rad53, eliciting responses that block DNA replication origin firing, stabilize replication forks, and prevent premature extension of the mitotic spindle. We previously found overproduction of Stn1, a subunit of the telomere-binding Cdc13–Stn1–Ten1 complex, circumvents Rad53 checkpoint functions in hydroxyurea, inducing late origin firing and premature spindle extension even though Rad53 is activated normally. Here, we show Stn1 overproduction acts through remarkably similar pathways compared to loss of RAD53, converging on the MCM complex that initiates origin firing and forms the catalytic core of the replicative DNA helicase. First, mutations affecting Mcm2 and Mcm5 block the ability of Stn1 overproduction to disrupt the S phase checkpoint. Second, loss of function stn1 mutations compensate rad53 S phase checkpoint defects. Third Stn1 overproduction suppresses a mutation in Mcm7. Fourth, stn1 mutants accumulate single-stranded DNA at non-telomeric genome locations, imposing a requirement for post-replication DNA repair. We discuss these interactions in terms of a model in which Stn1 acts as an accessory replication factor that facilitates MCM activation at ORIs and potentially also maintains MCM activity at replication forks advancing through challenging templates.
Collapse
|
4
|
Cerritelli SM, El Hage A. RNases H1 and H2: guardians of the stability of the nuclear genome when supply of dNTPs is limiting for DNA synthesis. Curr Genet 2020; 66:1073-1084. [PMID: 32886170 DOI: 10.1007/s00294-020-01086-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022]
Abstract
RNA/DNA hybrids are processed by RNases H1 and H2, while single ribonucleoside-monophosphates (rNMPs) embedded in genomic DNA are removed by the error-free, RNase H2-dependent ribonucleotide excision repair (RER) pathway. In the absence of RER, however, topoisomerase 1 (Top1) can cleave single genomic rNMPs in a mutagenic manner. In RNase H2-deficient mice, the accumulation of genomic rNMPs above a threshold of tolerance leads to catastrophic genomic instability that causes embryonic lethality. In humans, deficiencies in RNase H2 induce the autoimmune disorders Aicardi-Goutières syndrome and systemic lupus erythematosus, and cause skin and intestinal cancers. Recently, we reported that in Saccharomyces cerevisiae, the depletion of Rnr1, the major catalytic subunit of ribonucleotide reductase (RNR), which converts ribonucleotides to deoxyribonucleotides, leads to cell lethality in absence of RNases H1 and H2. We hypothesized that under replicative stress and compromised DNA repair that are elicited by an insufficient supply of deoxyribonucleoside-triphosphates (dNTPs), cells cannot survive the accumulation of persistent RNA/DNA hybrids. Remarkably, we found that cells lacking RNase H2 accumulate ~ 5-fold more genomic rNMPs in absence than in presence of Rnr1. When the load of genomic rNMPs is further increased in the presence of a replicative DNA polymerase variant that over-incorporates rNMPs in leading or lagging strand, cells missing both Rnr1 and RNase H2 suffer from severe growth defects. These are reversed in absence of Top1. Thus, in cells lacking RNase H2 and containing a limiting supply of dNTPs, there is a threshold of tolerance for the accumulation of genomic ribonucleotides that is tightly associated with Top1-mediated DNA damage. In this mini-review, we describe the implications of the loss of RNase H2, or RNases H1 and H2, on the integrity of the nuclear genome and viability of budding yeast cells that are challenged with a critically low supply of dNTPs. We further propose that our findings in budding yeast could pave the way for the study of the potential role of mammalian RNR in RNase H2-related diseases.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Aziz El Hage
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Cerritelli SM, Iranzo J, Sharma S, Chabes A, Crouch RJ, Tollervey D, El Hage A. High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase. Nucleic Acids Res 2020; 48:4274-4297. [PMID: 32187369 PMCID: PMC7192613 DOI: 10.1093/nar/gkaa103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cellular levels of ribonucleoside triphosphates (rNTPs) are much higher than those of deoxyribonucleoside triphosphates (dNTPs), thereby influencing the frequency of incorporation of ribonucleoside monophosphates (rNMPs) by DNA polymerases (Pol) into DNA. RNase H2-initiated ribonucleotide excision repair (RER) efficiently removes single rNMPs in genomic DNA. However, processing of rNMPs by Topoisomerase 1 (Top1) in absence of RER induces mutations and genome instability. Here, we greatly increased the abundance of genomic rNMPs in Saccharomyces cerevisiae by depleting Rnr1, the major subunit of ribonucleotide reductase, which converts ribonucleotides to deoxyribonucleotides. We found that in strains that are depleted of Rnr1, RER-deficient, and harbor an rNTP-permissive replicative Pol mutant, excessive accumulation of single genomic rNMPs severely compromised growth, but this was reversed in absence of Top1. Thus, under Rnr1 depletion, limited dNTP pools slow DNA synthesis by replicative Pols and provoke the incorporation of high levels of rNMPs in genomic DNA. If a threshold of single genomic rNMPs is exceeded in absence of RER and presence of limited dNTP pools, Top1-mediated genome instability leads to severe growth defects. Finally, we provide evidence showing that accumulation of RNA/DNA hybrids in absence of RNase H1 and RNase H2 leads to cell lethality under Rnr1 depletion.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87, Sweden
| | - Robert J Crouch
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - David Tollervey
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Aziz El Hage
- The Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Morafraile EC, Bugallo A, Carreira R, Fernández M, Martín-Castellanos C, Blanco MG, Segurado M. Exo1 phosphorylation inhibits exonuclease activity and prevents fork collapse in rad53 mutants independently of the 14-3-3 proteins. Nucleic Acids Res 2020; 48:3053-3070. [PMID: 32020204 PMCID: PMC7102976 DOI: 10.1093/nar/gkaa054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 01/04/2023] Open
Abstract
The S phase checkpoint is crucial to maintain genome stability under conditions that threaten DNA replication. One of its critical functions is to prevent Exo1-dependent fork degradation, and Exo1 is phosphorylated in response to different genotoxic agents. Exo1 seemed to be regulated by several post-translational modifications in the presence of replicative stress, but the specific contribution of checkpoint-dependent phosphorylation to Exo1 control and fork stability is not clear. We show here that Exo1 phosphorylation is Dun1-independent and Rad53-dependent in response to DNA damage or dNTP depletion, and in both situations Exo1 is similarly phosphorylated at multiple sites. To investigate the correlation between Exo1 phosphorylation and fork stability, we have generated phospho-mimic exo1 alleles that rescue fork collapse in rad53 mutants as efficiently as exo1-nuclease dead mutants or the absence of Exo1, arguing that Rad53-dependent phosphorylation is the mayor requirement to preserve fork stability. We have also shown that this rescue is Bmh1–2 independent, arguing that the 14-3-3 proteins are dispensable for fork stabilization, at least when Exo1 is downregulated. Importantly, our results indicated that phosphorylation specifically inhibits the 5' to 3'exo-nuclease activity, suggesting that this activity of Exo1 and not the flap-endonuclease, is the enzymatic activity responsible of the collapse of stalled replication forks in checkpoint mutants.
Collapse
Affiliation(s)
- Esther C Morafraile
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Alberto Bugallo
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | - Raquel Carreira
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Fernández
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain
| | | | - Miguel G Blanco
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) - Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mónica Segurado
- Instituto de Biología Funcional y Genómica (CSIC/USAL), Campus Miguel de Unamuno, Salamanca 37007, Spain.,Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, Salamanca 37007, Spain
| |
Collapse
|
7
|
Julius J, Peng J, McCulley A, Caridi C, Arnak R, See C, Nugent CI, Feng W, Bachant J. Inhibition of spindle extension through the yeast S phase checkpoint is coupled to replication fork stability and the integrity of centromeric DNA. Mol Biol Cell 2019; 30:2771-2789. [PMID: 31509480 PMCID: PMC6789157 DOI: 10.1091/mbc.e19-03-0156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
Collapse
Affiliation(s)
- Jeff Julius
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Jie Peng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Andrew McCulley
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Chris Caridi
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Remigiusz Arnak
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Colby See
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Constance I Nugent
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Jeff Bachant
- Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521
| |
Collapse
|
8
|
Pasero P, Vindigni A. Nucleases Acting at Stalled Forks: How to Reboot the Replication Program with a Few Shortcuts. Annu Rev Genet 2018; 51:477-499. [PMID: 29178820 DOI: 10.1146/annurev-genet-120116-024745] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a lifetime, a human being synthesizes approximately 2×1016 meters of DNA, a distance that corresponds to 130,000 times the distance between the Earth and the Sun. This daunting task is executed by thousands of replication forks, which progress along the chromosomes and frequently stall when they encounter DNA lesions, unusual DNA structures, RNA polymerases, or tightly-bound protein complexes. To complete DNA synthesis before the onset of mitosis, eukaryotic cells have evolved complex mechanisms to process and restart arrested forks through the coordinated action of multiple nucleases, topoisomerases, and helicases. In this review, we discuss recent advances in understanding the role and regulation of nucleases acting at stalled forks with a focus on the nucleolytic degradation of nascent DNA, a process commonly referred to as fork resection. We also discuss the effects of deregulated fork resection on genomic instability and on the unscheduled activation of the interferon response under replication stress conditions.
Collapse
Affiliation(s)
- Philippe Pasero
- Institute of Human Genetics, CNRS UMR9002, University of Montpellier, 34396 Montpellier, France;
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA;
| |
Collapse
|
9
|
Frattini C, Villa-Hernández S, Pellicanò G, Jossen R, Katou Y, Shirahige K, Bermejo R. Cohesin Ubiquitylation and Mobilization Facilitate Stalled Replication Fork Dynamics. Mol Cell 2017; 68:758-772.e4. [PMID: 29129641 DOI: 10.1016/j.molcel.2017.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/11/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
Replication fork integrity is challenged in conditions of stress and protected by the Mec1/ATR checkpoint to preserve genome stability. Still poorly understood in fork protection is the role played by the structural maintenance of chromosomes (SMC) cohesin complex. We uncovered a role for the Rsp5Bul2 ubiquitin ligase in promoting survival to replication stress by preserving stalled fork integrity. Rsp5Bul2 physically interacts with cohesin and the Mec1 kinase, thus promoting checkpoint-dependent cohesin ubiquitylation and cohesin-mediated fork protection. Ubiquitylation mediated by Rsp5Bul2 promotes cohesin mobilization from chromatin neighboring stalled forks, likely by stimulating the Cdc48/p97 ubiquitin-selective segregase, and its timely association to nascent chromatids. This Rsp5Bul2 fork protection mechanism requires the Wpl1 cohesin mobilizer as well as the function of the Eco1 acetyltransferase securing sister chromatid entrapment. Our data indicate that ubiquitylation facilitates cohesin dynamic interfacing with replication forks within a mechanism preserving stalled-fork functional architecture.
Collapse
Affiliation(s)
- Camilla Frattini
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sara Villa-Hernández
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Grazia Pellicanò
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Rachel Jossen
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Yuki Katou
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi Bunkyo-Ku, Tokyo, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi Bunkyo-Ku, Tokyo, Japan
| | - Rodrigo Bermejo
- Instituto de Biología Funcional y Genómica (IBFG-CSIC), Universidad de Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain; Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Maicher A, Gazy I, Sharma S, Marjavaara L, Grinberg G, Shemesh K, Chabes A, Kupiec M. Rnr1, but not Rnr3, facilitates the sustained telomerase-dependent elongation of telomeres. PLoS Genet 2017; 13:e1007082. [PMID: 29069086 PMCID: PMC5673236 DOI: 10.1371/journal.pgen.1007082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/06/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Ribonucleotide reductase (RNR) provides the precursors for the generation of dNTPs, which are required for DNA synthesis and repair. Here, we investigated the function of the major RNR subunits Rnr1 and Rnr3 in telomere elongation in budding yeast. We show that Rnr1 is essential for the sustained elongation of short telomeres by telomerase. In the absence of Rnr1, cells harbor very short, but functional, telomeres, which cannot become elongated by increased telomerase activity or by tethering of telomerase to telomeres. Furthermore, we demonstrate that Rnr1 function is critical to prevent an early onset of replicative senescence and premature survivor formation in telomerase-negative cells but dispensable for telomere elongation by Homology-Directed-Repair. Our results suggest that telomerase has a "basal activity" mode that is sufficient to compensate for the “end-replication-problem” and does not require the presence of Rnr1 and a different "sustained activity" mode necessary for the elongation of short telomeres, which requires an upregulation of dNTP levels and dGTP ratios specifically through Rnr1 function. By analyzing telomere length and dNTP levels in different mutants showing changes in RNR complex composition and activity we provide evidence that the Mec1ATR checkpoint protein promotes telomere elongation by increasing both dNTP levels and dGTP ratios through Rnr1 upregulation in a mechanism that cannot be replaced by its homolog Rnr3. Telomeres protect the ends of eukaryotic chromosomes and as such determine the replicative capacity of a cell. In budding yeast and approximately 80% of human tumors the enzyme telomerase maintains telomere length by adding newly synthesized repeats to telomeres using dNTPs generated by Ribonucleotide reductase (RNR) complexes. Similarly, telomerase activity can restore telomere length after more severe telomere shortenings that result from collapsed replication forks or lead to telomere over-elongation in the absence of negative regulators of telomerase. Here we provide evidence for two activity modes of telomerase that differentially depend on the major RNR subunit Rnr1. We demonstrate that telomere maintenance and a compensation of the "end-replication-problem" is possible under conditions where Rnr1 activity is absent but that a sustained elongation of short telomeres fully depends on Rnr1 activity. We show that the Rnr1-homolog, Rnr3, cannot compensate for this telomeric function of Rnr1 even when overall cellular dNTP values are restored.
Collapse
Affiliation(s)
- André Maicher
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Inbal Gazy
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Gilad Grinberg
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Keren Shemesh
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Martin Kupiec
- Dept. of Molecular Microbiology & Biotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
11
|
Chaudhury I, Koepp DM. Degradation of Mrc1 promotes recombination-mediated restart of stalled replication forks. Nucleic Acids Res 2017; 45:2558-2570. [PMID: 27956499 PMCID: PMC5389566 DOI: 10.1093/nar/gkw1249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022] Open
Abstract
The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. Replication stress or DNA damage triggers fork stalling and checkpoint signaling to activate repair pathways. Recovery from checkpoint activation is critical for cell survival following DNA damage. Recovery from the S-phase checkpoint includes inactivation of checkpoint signaling and restart of stalled replication forks. Previous studies demonstrated that degradation of Mrc1, the Saccharomyces cerevisiae ortholog of human Claspin, is facilitated by the SCFDia2 ubiquitin ligase and is important for cell cycle re-entry after DNA damage-induced S-phase checkpoint activation. Here, we show that degradation of Mrc1 facilitated by the SCFDia2 complex is critical to restart stalled replication forks during checkpoint recovery. Using DNA fiber analysis, we showed that Dia2 functions with the Sgs1 and Mph1 helicases (orthologs of human BLM and FANCM, respectively) in the recombination-mediated fork restart pathway. In addition, Dia2 physically interacts with Sgs1 upon checkpoint activation. Importantly, failure to target Mrc1 for degradation during recovery inhibits Sgs1 chromatin association, but this can be alleviated by induced proteolysis of Mrc1 after checkpoint activation. Together, these studies provide new mechanistic insights into how cells recover from activation of the S-phase checkpoint.
Collapse
Affiliation(s)
- Indrajit Chaudhury
- Department of Genetics, Cell Biology and Development, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455 USA
| | - Deanna M Koepp
- Department of Genetics, Cell Biology and Development, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
12
|
Hilton BA, Liu J, Cartwright BM, Liu Y, Breitman M, Wang Y, Jones R, Tang H, Rusinol A, Musich PR, Zou Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes. FASEB J 2017; 31:3882-3893. [PMID: 28515154 DOI: 10.1096/fj.201700014r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder that is caused by a point mutation in the LMNA gene, resulting in production of a truncated farnesylated-prelamin A protein (progerin). We previously reported that XPA mislocalized to the progerin-induced DNA double-strand break (DSB) sites, blocking DSB repair, which led to DSB accumulation, DNA damage responses, and early replication arrest in HGPS. In this study, the XPA mislocalization to DSBs occurred at stalled or collapsed replication forks, concurrent with a significant loss of PCNA at the forks, whereas PCNA efficiently bound to progerin. This PCNA sequestration likely exposed ds-ssDNA junctions at replication forks for XPA binding. Depletion of XPA or progerin each significantly restored PCNA at replication forks. Our results suggest that although PCNA is much more competitive than XPA in binding replication forks, PCNA sequestration by progerin may shift the equilibrium to favor XPA binding. Furthermore, we demonstrated that progerin-induced apoptosis could be rescued by XPA, suggesting that XPA-replication fork binding may prevent apoptosis in HGPS cells. Our results propose a mechanism for progerin-induced genome instability and accelerated replicative senescence in HGPS.-Hilton, B. A., Liu, J., Cartwright, B. M., Liu, Y., Breitman, M., Wang, Y., Jones, R., Tang, H., Rusinol, A., Musich, P. R., Zou, Y. Progerin sequestration of PCNA promotes replication fork collapse and mislocalization of XPA in laminopathy-related progeroid syndromes.
Collapse
Affiliation(s)
- Benjamin A Hilton
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ji Liu
- Department of Biochemistry and Molecular Biology, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | - Brian M Cartwright
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yiyong Liu
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Maya Breitman
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Youjie Wang
- Ministry of Education (MOE) Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rowdy Jones
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Hui Tang
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Antonio Rusinol
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Phillip R Musich
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Yue Zou
- Department of Biomedical Sciences, J. H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA;
| |
Collapse
|
13
|
Common Chemical Inductors of Replication Stress: Focus on Cell-Based Studies. Biomolecules 2017; 7:biom7010019. [PMID: 28230817 PMCID: PMC5372731 DOI: 10.3390/biom7010019] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 01/01/2023] Open
Abstract
DNA replication is a highly demanding process regarding the energy and material supply and must be precisely regulated, involving multiple cellular feedbacks. The slowing down or stalling of DNA synthesis and/or replication forks is referred to as replication stress (RS). Owing to the complexity and requirements of replication, a plethora of factors may interfere and challenge the genome stability, cell survival or affect the whole organism. This review outlines chemical compounds that are known inducers of RS and commonly used in laboratory research. These compounds act on replication by direct interaction with DNA causing DNA crosslinks and bulky lesions (cisplatin), chemical interference with the metabolism of deoxyribonucleotide triphosphates (hydroxyurea), direct inhibition of the activity of replicative DNA polymerases (aphidicolin) and interference with enzymes dealing with topological DNA stress (camptothecin, etoposide). As a variety of mechanisms can induce RS, the responses of mammalian cells also vary. Here, we review the activity and mechanism of action of these compounds based on recent knowledge, accompanied by examples of induced phenotypes, cellular readouts and commonly used doses.
Collapse
|
14
|
S-phase checkpoint regulations that preserve replication and chromosome integrity upon dNTP depletion. Cell Mol Life Sci 2017; 74:2361-2380. [PMID: 28220209 PMCID: PMC5487892 DOI: 10.1007/s00018-017-2474-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/23/2017] [Indexed: 11/18/2022]
Abstract
DNA replication stress, an important source of genomic instability, arises upon different types of DNA replication perturbations, including those that stall replication fork progression. Inhibitors of the cellular pool of deoxynucleotide triphosphates (dNTPs) slow down DNA synthesis throughout the genome. Following depletion of dNTPs, the highly conserved replication checkpoint kinase pathway, also known as the S-phase checkpoint, preserves the functionality and structure of stalled DNA replication forks and prevents chromosome fragmentation. The underlying mechanisms involve pathways extrinsic to replication forks, such as those involving regulation of the ribonucleotide reductase activity, the temporal program of origin firing, and cell cycle transitions. In addition, the S-phase checkpoint modulates the function of replisome components to promote replication integrity. This review summarizes the various functions of the replication checkpoint in promoting replication fork stability and genome integrity in the face of replication stress caused by dNTP depletion.
Collapse
|