1
|
Zaw Thin M, Moore C, Snoeks T, Kalber T, Downward J, Behrens A. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice. Nat Protoc 2023; 18:990-1015. [PMID: 36494493 DOI: 10.1038/s41596-022-00769-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturized versions of the clinical computed tomography scanners are ideally suited for carrying out translationally-relevant research in conditions that closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimized for low radiation dose, high-resolution and high-throughput computed tomography imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumor types, characterized by specific radiological features. For each animal, image acquisition takes 4-8 min, and data analysis typically requires 10-30 min. Researchers with basic training in animal handling, medical imaging and software analysis should be able to implement this protocol across a wide range of lung cancer models in mice for investigating the molecular mechanisms driving lung cancer development and the assessment of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK. .,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Snoeks
- Imaging Research Facility, The Francis Crick Institute, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging (CABI), University College London, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK. .,Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK.,Cancer Research UK Convergence Science Centre, Imperial College London, London, UK
| |
Collapse
|
2
|
Huang L, Bommireddy R, Munoz LE, Guin RN, Wei C, Ruggieri A, Menon AP, Li X, Shanmugam M, Owonikoko TK, Ramalingam SS, Selvaraj P. Expression of tdTomato and luciferase in a murine lung cancer alters the growth and immune microenvironment of the tumor. PLoS One 2021; 16:e0254125. [PMID: 34411144 PMCID: PMC8376001 DOI: 10.1371/journal.pone.0254125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 06/20/2021] [Indexed: 11/19/2022] Open
Abstract
Imaging techniques based on fluorescence and bioluminescence have been important tools in visualizing tumor progression and studying the effect of drugs and immunotherapies on tumor immune microenvironment in animal models of cancer. However, transgenic expression of foreign proteins may induce immune responses in immunocompetent syngeneic tumor transplant models and augment the efficacy of experimental drugs. In this study, we show that the growth rate of Lewis lung carcinoma (LL/2) tumors was reduced after transduction of tdTomato and luciferase (tdTomato/Luc) compared to the parental cell line. tdTomato/Luc expression by LL/2 cells altered the tumor microenvironment by increasing tumor-infiltrating lymphocytes (TILs) while inhibiting tumor-induced myeloid-derived suppressor cells (MDSCs). Interestingly, tdTomato/Luc expression did not alter the response of LL/2 tumors to anti-PD-1 and anti-CTLA-4 antibodies. These results suggest that the use of tdTomato/Luc-transduced cancer cells to conduct studies in immune competent mice may lead to cell-extrinsic tdTomato/Luc-induced alterations in tumor growth and tumor immune microenvironment that need to be taken into consideration when evaluating the efficacy of anti-cancer drugs and vaccines in immunocompetent animal models.
Collapse
Affiliation(s)
- Lei Huang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Luis E. Munoz
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rohini N. Guin
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Changyong Wei
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amanda Ruggieri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ashwathi P. Menon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Taofeek K. Owonikoko
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
3
|
Tang J, Chen Q, Zhang F, Zhang W, Duan S, Xiao D. [Peripheral blood exosomes from patients with multiple myeloma mediate bortezomib resistance in cultured multiple myeloma cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:485-489. [PMID: 31068294 DOI: 10.12122/j.issn.1673-4254.2019.04.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To investigate the role of exosome in mediating bortezomib (Btz) resistance in multiple myeloma cells in vitro and explore the underlying mechanisms. METHODS Peripheral blood samples were collected from 15 patients with multiple myeloma with Btz tolerance, and serum exosomes were isolated by ultracentrifugation and identified with electron microscopy, NTA and Western blotting. In vitro cultured multiple myeloma cells were treated with gradient concentrations of Btz to determine the optimal drug concentration for subsequent experiment. The cells were pretreated with different concentrations of exosomes, and their sensitivity to BTZ was assessed using MTS assay. We searched the exosome database Exocarta and used STRING to generate the network map and the protein interaction graph. RESULTS The diameters of the vesicles isolated from the peripheral blood of the patients were mostly below 200 nm with a mean particle size of 153 nm and a mode of 140.1 nm. The results of Western blotting showed that the isolated exosomes expressed the marker proteins CD63, Tsg101 and Alix. In cultured multiple myeloma cells, pretreatment with exosomes resulted in a decreased sensitivity of the cells to bortezomib, and longer treatment durations and higher exosome concentrations consistently enhanced the resistance of the cells to the same Btz concentration. Analysis of the Exocarta database identified human serum exosomal proteins ABCB1, ABCB4, PDCD6IP, and EGFR, among which EGFR served as a network node. CONCLUSIONS Exosome within a specific concentration range may serve as a signal carrier to mediate the resistance of multiple myeloma cells to Btz. EGFR likely plays a key role to promote exosome-mediated Btz resistance in myeloma cells.
Collapse
Affiliation(s)
- Juxian Tang
- Department of Hematology, Third Affiliated Hospital of Southern Medical University/Academy of Orthopedics of Guangdong Province, Guangzhou 510630, China
| | - Qi Chen
- Department of Hematology, Third Affiliated Hospital of Southern Medical University/Academy of Orthopedics of Guangdong Province, Guangzhou 510630, China
| | - Feng Zhang
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Wenjun Zhang
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Sirong Duan
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Duan Xiao
- 2 Department of Rehabilitation, First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Mousavi N, Truelsen SLB, Hagel G, Jorgensen LN, Harling H, Timmermans V, Melchior LC, Thysen AH, Heegaard S, Thastrup J. KRAS mutations in the parental tumour accelerate in vitro growth of tumoroids established from colorectal adenocarcinoma. Int J Exp Pathol 2019; 100:12-18. [PMID: 30884019 DOI: 10.1111/iep.12308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of the present study was to characterize a patient-derived in vitro 3D model (ie tumoroid) established from colorectal adenocarcinoma. This study investigated the growth rate of tumoroids and whether the Kirsten rat sarcoma (KRAS) mutations in the parental tumour accelerate this rate. The tumoroids were established from surgical resections of primary and metastatic colorectal adenocarcinoma from 26 patients. The in vitro growth rate of these tumoroids was monitored by automated imaging and recorded as relative growth rate. The KRAS hotspot mutations were investigated on the parental tumours by Ion Torrent™ next-generation sequencing. The KRAS mutations were detected in 58% of the parental tumours, and a significantly higher growth rate was observed for tumoroids established from the KRAS-mutated tumours compared to wild-type tumours (P < 0.0001). The average relative growth rate (log10) on day 10 was 0.360 ± 0.180 (mean ± SD) for the KRAS-mutated group and 0.098 ± 0.135 (mean ± SD) for the KRAS wild-type group. These results showed that the presence of KRAS mutations in parental tumours is associated with an acceleration of the growth rate of tumoroids. The future perspective for such a model could be the implementation of chemoassays for personalized medicine.
Collapse
Affiliation(s)
- Nabi Mousavi
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Henrik Harling
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Vera Timmermans
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Steffen Heegaard
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Manni I, de Latouliere L, Gurtner A, Piaggio G. Transgenic Animal Models to Visualize Cancer-Related Cellular Processes by Bioluminescence Imaging. Front Pharmacol 2019; 10:235. [PMID: 30930779 PMCID: PMC6428995 DOI: 10.3389/fphar.2019.00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Preclinical animal models are valuable tools to improve treatments of malignant diseases, being an intermediate step of experimentation between cell culture and human clinical trials. Among different animal models frequently used in cancer research are mouse and, more recently, zebrafish models. Indeed, most of the cellular pathways are highly conserved between human, mouse and zebrafish, thus rendering these models very attractive. Recently, several transgenic reporter mice and zebrafishes have been generated in which the luciferase reporter gene are placed under the control of a promoter whose activity is strictly related to specific cancer cellular processes. Other mouse models have been generated by the cDNA luciferase knockin in the locus of a gene whose expression/activity has increased in cancer. Using BioLuminescence Imaging (BLI), we have now the opportunity to spatiotemporal visualize cell behaviors, among which proliferation, apoptosis, migration and immune responses, in any body district in living animal in a time frame process. We provide here a review of the available models to visualized cancer and cancer-associated events in living animals by BLI and as they have been successful in identifying new stages of early tumor progression, new interactions between different tissues and new therapeutic responsiveness.
Collapse
Affiliation(s)
- Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Luisa de Latouliere
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
6
|
Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev 2018; 45:6048-6077. [PMID: 27711774 DOI: 10.1039/c6cs00296j] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioluminescence (BL) is a spectacular phenomenon involving light emission by live organisms. It is caused by the oxidation of a small organic molecule, luciferin, with molecular oxygen, which is catalysed by the enzyme luciferase. In nature, there are approximately 30 different BL systems, of which only 9 have been studied to various degrees in terms of their reaction mechanisms. A vast range of in vitro and in vivo analytical techniques have been developed based on BL, including tests for different analytes, immunoassays, gene expression assays, drug screening, bioimaging of live organisms, cancer studies, the investigation of infectious diseases and environmental monitoring. This review aims to cover the major existing applications for bioluminescence in the context of the diversity of luciferases and their substrates, luciferins. Particularly, the properties and applications of d-luciferin, coelenterazine, bacterial, Cypridina and dinoflagellate luciferins and their analogues along with their corresponding luciferases are described. Finally, four other rarely studied bioluminescent systems (those of limpet Latia, earthworms Diplocardia and Fridericia and higher fungi), which are promising for future use, are also discussed.
Collapse
Affiliation(s)
- Zinaida M Kaskova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Aleksandra S Tsarkova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| | - Ilia V Yampolsky
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia. and Pirogov Russian National Research Medical University, Ostrovitianova 1, Moscow 117997, Russia
| |
Collapse
|
7
|
Dhadve A, Thakur B, Ray P. Dual Modality Imaging of Promoter Activity as a Surrogate for Gene Expression and Function. Methods Mol Biol 2018; 1790:1-12. [PMID: 29858779 DOI: 10.1007/978-1-4939-7860-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Molecular functional imaging with optical reporter genes (both bioluminescence and fluorescence) is a rapidly evolving method that allows noninvasive, sensitive, real-time monitoring of many cellular events in live cells and whole organisms. These reporter genes with optical signatures when expressed from gene-specific promoters or Cis/Trans elements mimic the endogenous expression pattern without perturbing cellular physiology. With advanced recombinant molecular biology techniques, several strategies for optimal expression from constitutive or inducible, tissue-specific and weak promoters have been developed and used for dynamic and functional imaging. In this chapter, we provide an overview of the applications of this powerful technology for imaging gene expression in living cells and rodent models.
Collapse
Affiliation(s)
- Ajit Dhadve
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Bhushan Thakur
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, India
| | - Pritha Ray
- Imaging Cell Signaling & Therapeutics Lab, Tata Memorial Centre (TMC), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, Maharashtra, India. .,Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
8
|
Moon H, Ju HL, Chung SI, Cho KJ, Eun JW, Nam SW, Han KH, Calvisi DF, Ro SW. Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail. Gastroenterology 2017; 153:1378-1391.e6. [PMID: 28734833 DOI: 10.1053/j.gastro.2017.07.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Transforming growth factor beta (TGF-β) suppresses early stages of tumorigenesis, but also contributes to migration and metastasis of cancer cells. A large number of human tumors contain mutations that inactivate its receptors, or downstream proteins such as Smad transcription factors, indicating that the TGF-β signaling pathway prevents tumor growth. We investigated the effects of TGF-β inhibition on liver tumorigenesis in mice. METHODS C57BL/6 mice received hydrodynamic tail-vein injections of transposons encoding HRASG12V and a short hairpin RNA (shRNA) to down-regulate p53, or those encoding HRASG12V and MYC, or those encoding HRASG12V and TAZS89A, to induce liver tumor formation; mice were also given injections of transposons encoding SMAD7 or shRNA against SMAD2, SMAD3, SMAD4, or SNAI1 (Snail), with or without ectopic expression of Snail. Survival times were compared, and livers were weighted and examined for tumors. Liver tumor tissues were analyzed by quantitative reverse-transcription PCR, RNA sequencing, immunoblots, and immunohistochemistry. We analyzed gene expression levels in human hepatocellular carcinoma samples deposited in The Cancer Genome Atlas. A cell proliferation assay was performed using human liver cancer cell lines (HepG2 and Huh7) stably expressing Snail or shRNA against Snail. RESULTS TGF-β inhibition via overexpression of SMAD7 (or knockdown of SMAD2, SMAD3, or SMAD4) consistently reduced formation and growth of liver tumors in mice that expressed activated RAS plus shRNA against p53, or in mice that expressed activated RAS and TAZ. TGF-β signaling activated transcription of the Snail gene in liver tumors induced by HRASG12V and shRNA against p53, and by activated RAS and TAZ. Knockdown of Snail reduced liver tumor formation in both tumor models. Ectopic expression of Snail restored liver tumorigenesis suppressed by disruption of TGF-β signaling. In human hepatocellular carcinoma, Snail expression correlated with TGF-β activation. Ectopic expression of Snail increased cellular proliferation, whereas Snail knockdown led to reduced proliferation in human hepatocellular carcinoma cells. CONCLUSIONS In analyses of transgenic mice, we found TGF-β signaling to be required for formation of liver tumors upon expression of activated RAS and shRNA down-regulating p53, and upon expression of activated RAS and TAZ. Snail is the TGF-β target that is required for hepatic tumorigenesis in these models.
Collapse
Affiliation(s)
- Hyuk Moon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, South Korea
| | - Hye-Lim Ju
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sook In Chung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Joo Cho
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 Project for Medical Science College of Medicine, Yonsei University, Seoul, South Korea
| | - Jung Woo Eun
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Diego F Calvisi
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Simon Weonsang Ro
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Chung SI, Moon H, Ju HL, Cho KJ, Kim DY, Han KH, Eun JW, Nam SW, Ribback S, Dombrowski F, Calvisi DF, Ro SW. Hepatic expression of Sonic Hedgehog induces liver fibrosis and promotes hepatocarcinogenesis in a transgenic mouse model. J Hepatol 2016; 64:618-27. [PMID: 26471504 DOI: 10.1016/j.jhep.2015.10.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/15/2015] [Accepted: 10/01/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Liver fibrosis is an increasing health concern worldwide and a major risk factor for hepatocellular carcinoma (HCC). Although the involvement of Hedgehog signaling in hepatic fibrosis has been known for some time, the causative role of activated Hedgehog signaling in liver fibrosis has not been verified in vivo. METHODS Using hydrodynamics-based transfection, a transgenic mouse model has been developed that expresses Sonic Hedgehog (SHH), a ligand for Hedgehog signaling, in the liver. Levels of hepatic fibrosis and fibrosis-related gene expression were assessed in the model. Hepatic expression of SHH was induced in a murine model for hepatocellular adenoma (HCA) and tumor development was subsequently investigated. RESULTS The transgenic mice revealed SHH expression in 2-5% of hepatocytes. Secreted SHH activated Hedgehog signaling in numerous cells of various types in the tissues. Hepatic expression of SHH led to fibrosis, activation of hepatic stellate cells, and an upregulation of various fibrogenic genes. Liver injury and hepatocyte apoptosis were observed in SHH mice. Persistent expression of SHH for up to 13months failed to induce tumors in the liver; however, it promoted liver tumor development induced by other oncogenes. By employing a HCA model induced by P53(R172H) and KRAS(G12D), we found that the SHH expression promoted the transition from HCA to HCC. CONCLUSIONS SHH expression in the liver induces liver fibrosis with concurrent activation of hepatic stellate cells and fibrogenic genes. It can also enhance hepatocarcinogenesis induced by other oncogenes.
Collapse
Affiliation(s)
- Sook In Chung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyuk Moon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye-Lim Ju
- Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyung Joo Cho
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Woo Eun
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Suk Woo Nam
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Silvia Ribback
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Diego F Calvisi
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Simon Weonsang Ro
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Liver Cirrhosis Clinical Research Center, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|