1
|
Brutkiewicz RR, Cao W, Morgan D, Reis RSD, Suryadevara V, Willette AA, Willette SA, Wyatt-Johnson SK, Duggan MR. What would it take to prove that a chronic infection is a causal agent in Alzheimer's disease? Trends Neurosci 2025:S0166-2236(25)00104-3. [PMID: 40527696 DOI: 10.1016/j.tins.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/18/2025] [Accepted: 05/19/2025] [Indexed: 06/19/2025]
Abstract
Accumulating evidence over several years suggests that microbial infections (e.g., bacteria, viruses, fungi) may play a role in the etiology of Alzheimer's disease (AD). In this review, we discuss the reported associations between a variety of microbes and the development of AD, as well as potential causal relationships between infections and AD risk. Having evaluated the current state of knowledge, we make specific recommendations for what it would take to present definitive evidence that chronic infections play a causal role in AD pathogenesis.
Collapse
Affiliation(s)
- Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Wei Cao
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Roberta Souza Dos Reis
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15263, USA
| | - Vidyani Suryadevara
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Auriel A Willette
- Department of Neurology, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | | - Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
2
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
3
|
Pramono D, Takeuchi D, Katsuki M, AbuEed L, Abdillah D, Kimura T, Kawasaki J, Miyake A, Nishigaki K. FeLIX is a restriction factor for mammalian retrovirus infection. J Virol 2024; 98:e0177123. [PMID: 38440982 PMCID: PMC11019853 DOI: 10.1128/jvi.01771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/11/2024] [Indexed: 03/06/2024] Open
Abstract
Endogenous retroviruses (ERVs) are remnants of ancestral viral infections. Feline leukemia virus (FeLV) is an exogenous and endogenous retrovirus in domestic cats. It is classified into several subgroups (A, B, C, D, E, and T) based on viral receptor interference properties or receptor usage. ERV-derived molecules benefit animals, conferring resistance to infectious diseases. However, the soluble protein encoded by the defective envelope (env) gene of endogenous FeLV (enFeLV) functions as a co-factor in FeLV subgroup T infections. Therefore, whether the gene emerged to facilitate viral infection is unclear. Based on the properties of ERV-derived molecules, we hypothesized that the defective env genes possess antiviral activity that would be advantageous to the host because FeLV subgroup B (FeLV-B), a recombinant virus derived from enFeLV env, is restricted to viral transmission among domestic cats. When soluble truncated Env proteins from enFeLV were tested for their inhibitory effects against enFeLV and FeLV-B, they inhibited viral infection. Notably, this antiviral machinery was extended to infection with the Gibbon ape leukemia virus, Koala retrovirus A, and Hervey pteropid gammaretrovirus. Although these viruses used feline phosphate transporter 1 (fePit1) and phosphate transporter 2 as receptors, the inhibitory mechanism involved competitive receptor binding in a fePit1-dependent manner. The shift in receptor usage might have occurred to avoid the inhibitory effect. Overall, these findings highlight the possible emergence of soluble truncated Env proteins from enFeLV as a restriction factor against retroviral infection and will help in developing host immunity and antiviral defense by controlling retroviral spread.IMPORTANCERetroviruses are unique in using reverse transcriptase to convert RNA genomes into DNA, infecting germ cells, and transmitting to offspring. Numerous ancient retroviral sequences are known as endogenous retroviruses (ERVs). The soluble Env protein derived from ERVs functions as a co-factor that assists in FeLV-T infection. However, herein, we show that the soluble Env protein exhibits antiviral activity and provides resistance to mammalian retrovirus infection through competitive receptor binding. In particular, this finding may explain why FeLV-B transmission is not observed among domestic cats. ERV-derived molecules can benefit animals in an evolutionary arms race, highlighting the double-edged-sword nature of ERVs.
Collapse
MESH Headings
- Animals
- Cats
- Endogenous Retroviruses/genetics
- Endogenous Retroviruses/metabolism
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Leukemia Virus, Feline/classification
- Leukemia Virus, Feline/genetics
- Leukemia Virus, Feline/metabolism
- Leukemia Virus, Gibbon Ape/genetics
- Leukemia Virus, Gibbon Ape/metabolism
- Leukemia, Feline/genetics
- Leukemia, Feline/metabolism
- Leukemia, Feline/virology
- Phosphate Transport Proteins/genetics
- Phosphate Transport Proteins/metabolism
- Receptors, Virus/metabolism
- Retroviridae Infections/metabolism
- Retroviridae Infections/virology
- Solubility
- Female
Collapse
Affiliation(s)
- Didik Pramono
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Dai Takeuchi
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masato Katsuki
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Loai AbuEed
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Dimas Abdillah
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Tohru Kimura
- The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Junna Kawasaki
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Research Institute for Cell Design Medical Science, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
4
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
5
|
Convergent evolution of antiviral machinery derived from endogenous retrovirus truncated envelope genes in multiple species. Proc Natl Acad Sci U S A 2022; 119:e2114441119. [PMID: 35749360 PMCID: PMC9245640 DOI: 10.1073/pnas.2114441119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Host genetic resistance to viral infection controls the pathogenicity and epidemic dynamics of infectious diseases. Refrex-1 is a restriction factor against feline leukemia virus subgroup D (FeLV-D) and an endogenous retrovirus (ERV) in domestic cats (ERV-DC). Refrex-1 is encoded by a subset of ERV-DC loci with truncated envelope genes and secreted from cells as a soluble protein. Here, we identified the copper transporter CTR1 as the entry receptor for FeLV-D and genotype I ERV-DCs. We also identified CTR1 as a receptor for primate ERVs from crab-eating macaques and rhesus macaques, which were found in a search of intact envelope genes capable of forming infectious viruses. Refrex-1 counteracted infection by FeLV-D and ERV-DCs via competition for the entry receptor CTR1; the antiviral effects extended to primate ERVs with CTR1-dependent entry. Furthermore, truncated ERV envelope genes found in chimpanzee, bonobo, gorilla, crab-eating macaque, and rhesus macaque genomes could also block infection by feline and primate retroviruses. Genetic analyses showed that these ERV envelope genes were acquired in a species- or genus-specific manner during host evolution. These results indicated that soluble envelope proteins could suppress retroviral infection across species boundaries, suggesting that they function to control retroviral spread. Our findings revealed that several mammalian species acquired antiviral machinery from various ancient retroviruses, leading to convergent evolution for host defense.
Collapse
|
6
|
Establishment of CRFK cells for vaccine production by inactivating endogenous retrovirus with TALEN technology. Sci Rep 2022; 12:6641. [PMID: 35477976 PMCID: PMC9046391 DOI: 10.1038/s41598-022-10497-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Endogenous retroviruses (ERVs) are retroviral sequences present in the host genomes. Although most ERVs are inactivated, some are produced as replication-competent viruses from host cells. We previously reported that several live-attenuated vaccines for companion animals prepared using the Crandell-Rees feline kidney (CRFK) cell line were contaminated with a replication-competent feline ERV termed RD-114 virus. We also found that the infectious RD-114 virus can be generated by recombination between multiple RD-114 virus-related proviruses (RDRSs) in CRFK cells. In this study, we knocked out RDRS env genes using the genome-editing tool TAL Effector Nuclease (TALEN) to reduce the risk of contamination by infectious ERVs in vaccine products. As a result, we succeeded in establishing RDRS knockout CRFK cells (RDKO_CRFK cells) that do not produce infectious RD-114 virus. The growth kinetics of feline herpesvirus type 1, calicivirus, and panleukopenia virus in RDKO_CRFK cells differed from those in parental cells, but all of them showed high titers exceeding 107 TCID50/mL. Infectious RD-114 virus was undetectable in the viral stocks propagated in RDKO_CRFK cells. This study suggested that RDRS env gene-knockout CRFK cells will be useful as a cell line for the manufacture of live-attenuated vaccines or biological substances with no risk of contamination with infectious ERV.
Collapse
|
7
|
Shimode S, Yamamoto T. Characterization of DNA methylation and promoter activity of long terminal repeat elements of feline endogenous retrovirus RDRS C2a. Virus Genes 2021; 58:70-74. [PMID: 34787790 DOI: 10.1007/s11262-021-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Endogenous retroviruses (ERVs) are genomic elements derived from retroviral infections in ancestral germ lines. Most ERVs are inactivated by genetic or epigenetic mechanisms, such as DNA methylation. RD-114-virus-related sequence (RDRS) C2a is a feline endogenous retrovirus present in all domestic cats; however, its expression and function are not clearly known. DNA methylation at CpG dinucleotides is a hallmark of silenced ERVs. This study aimed to investigate whether long terminal repeats (LTRs) of RDRS C2a function as a gene regulatory region. The DNA methylation status of RDRS C2a was examined by bisulfite sequencing, and CpG sites in 5' LTR of RDRS C2a were found hypomethylated, whereas those in 3' LTR were hypermethylated in feline cells. Several transcription factor-binding sites were identified in LTRs of RDRS C2a. Luciferase assay suggested that 5' LTR of RDRS C2a exhibited strong transcriptional activity, which was suppressed by in vitro DNA methylation. The study indicates that 5' LTR of RDRS C2a possibly functions as a promoter for itself or neighboring genes.
Collapse
Affiliation(s)
- Sayumi Shimode
- Genome Editing Innovation Center, Hiroshima University, 3-10-23 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan.
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| |
Collapse
|
8
|
Denner J. The origin of porcine endogenous retroviruses (PERVs). Arch Virol 2021; 166:1007-1013. [PMID: 33547957 DOI: 10.1007/s00705-020-04925-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and they produce viral particles that are able to infect human cells and therefore pose a special risk for xenotransplantation. In contrast to other pig microorganisms that also pose a risk, such as porcine cytomegalovirus and hepatitis E virus, PERVs cannot be eliminated from pigs by vaccines, antiviral drugs, early weaning, or embryo transfer. Since PERVs are relevant for xenotransplantation, their biology and origin are of great interest. Recent studies have shown that PERVs are the result of a transspecies transmission of precursor retroviruses from different animals and further evolution in the pig genome. PERVs acquired different long terminal repeats (LTRs), and recombination took place. In parallel, it has been shown that the activity of the LTRs and recombination in the envelope are important for the transmissibility and pathogenesis of PERVs. Transspecies transmission of retroviruses is common, a well-known example being the transmission of precursor retroviruses from non-human primates to humans, resulting in human immunodeficiency virus (HIV). Here, recent findings concerning the origin of PERVs, their LTRs, and recombination events that occurred during evolution are reviewed and compared with other findings regarding transspecies transmission of retroviruses.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Berlin, Germany. .,Institute for Virology, Free University, Berlin, Germany.
| |
Collapse
|
9
|
Casseb J, Janini LM, Barros Kanzaki LI, Lopes LR, Paiva AM. Is the human T-cell lymphotropic virus type 2 in the process of endogenization into the human genome? J Virus Erad 2020; 6:100009. [PMID: 33294211 PMCID: PMC7695812 DOI: 10.1016/j.jve.2020.100009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Human T-cell lymphotropic virus type 2 (HTLV-2) infection has been shown to be endemic among intravenous drug users in parts of North America, Europe and Southeast Asia and in a number of Amerindian populations. Despite a 65% genetic similarity and common host humoral response, the human T-cell lymphotropic viruses type 1 (HTLV-1) and 2 display different mechanisms of host interaction and capacity for disease development. While HTLV-1 pathogenicity is well documented, HTLV-2 etiology in human disease is not clearly established. From an evolutionary point of view, its introduction and integration into the germ cell chromosomes of host species could be considered as the final stage of parasitism and evasion from host immunity. The extraordinary abundance of endogenous viral sequences in all vertebrate species genomes, including the hominid family, provides evidence of this invasion. Some of these gene sequences still retain viral characteristics and the ability to replicate and hence are potentially able to elicit responses from the innate and adaptive host immunity, which could result in beneficial or pathogenic effects. Taken together, this data may indicate that HTLV-2 is more likely to progress towards endogenization as has happened to the human endogenous retroviruses millions of years ago. Thus, this intimate association (HTLV-2/human genome) may provide protection from the immune system with better adaptation and low pathogenicity.
Collapse
Affiliation(s)
- Jorge Casseb
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil
| | - Luiz Mario Janini
- Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo - Unifesp, Sao Paulo, SP, Brazil
| | - Luis Isamu Barros Kanzaki
- Laboratory of Bioprospection, Department of Pharmacy, Faculty of Health. Sciences, University of Brasilia, DF, Brazil
| | - Luciano Rodrigo Lopes
- Bioinformatics and Biomedical Data Science Division, Health Informatics Department, Federal University of Sao Paulo - Unifesp, São Paulo, SP, Brazil
| | - Arthur Maia Paiva
- Institute of Tropical Medicine of Sao Paulo - University of Sao Paulo, Laboratory of Medical Investigation LIM-56 / Faculty of Medicine -USP, Brazil.,University Hospital Alberto Antunes / Federal University of Alagoas, Brazil
| |
Collapse
|
10
|
Momoi Y, Matsuu A. Detection of severe fever with thrombocytopenia syndrome virus and other viruses in cats via unbiased next-generation sequencing. J Vet Diagn Invest 2020; 33:279-282. [PMID: 33084531 DOI: 10.1177/1040638720967506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used unbiased next-generation sequencing (NGS) to detect unknown viruses in cats. Serum or plasma samples were obtained from clinically ill cats with suspected acute viral infections. Nucleic acid was extracted from serum or plasma samples to construct a complementary DNA library for NGS. Comprehensive nucleotide sequencing analyses enabled detection of the genomes of various viruses, including the severe fever with thrombocytopenia syndrome virus, feline immunodeficiency virus, feline morbillivirus, parvovirus, and Torque teno felis virus. Our findings indicate that comprehensive nucleotide analyses of serum or plasma samples can be used to detect infections with unknown viruses in cats.
Collapse
Affiliation(s)
- Yasuyuki Momoi
- Laboratory of Veterinary Diagnostic Imaging, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Department of Veterinary Clinical Pathology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aya Matsuu
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Ngo MH, Soma T, Youn HY, Endo T, Makundi I, Kawasaki J, Miyake A, Nga BTT, Nguyen H, Arnal M, Fernández de Luco D, Deshapriya RMC, Hatoya S, Nishigaki K. Distribution of infectious endogenous retroviruses in mixed-breed and purebred cats. Arch Virol 2019; 165:157-167. [PMID: 31748876 DOI: 10.1007/s00705-019-04454-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
Endogenous retroviruses of domestic cats (ERV-DCs) are members of the genus Gammaretrovirus that infect domestic cats (Felis silvestris catus). Uniquely, domestic cats harbor replication-competent proviruses such as ERV-DC10 (ERV-DC18) and ERV-DC14 (xenotropic and nonecotropic viruses, respectively). The purpose of this study was to assess invasion by two distinct infectious ERV-DCs, ERV-DC10 and ERV-DC14, in domestic cats. Of a total sample of 1646 cats, 568 animals (34.5%) were positive for ERV-DC10 (heterozygous: 377; homozygous: 191), 68 animals (4.1%) were positive for ERV-DC14 (heterozygous: 67; homozygous: 1), and 10 animals (0.6%) were positive for both ERV-DC10 and ERV-DC14. ERV-DC10 and ERV-DC14 were detected in domestic cats in Japan as well as in Tanzania, Sri Lanka, Vietnam, South Korea and Spain. Breeding cats, including Singapura, Norwegian Forest and Ragdoll cats, showed high frequencies of ERV-DC10 (60-100%). By contrast, ERV-DC14 was detected at low frequency in breeding cats. Our results suggest that ERV-DC10 is widely distributed while ERV-DC14 is maintained in a minor population of cats. Thus, ERV-DC10 and ERV-DC14 have invaded cat populations independently.
Collapse
Affiliation(s)
- Minh Ha Ngo
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka, 563-0011, Japan
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, Seoul National University Hospital for Animals, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Taiji Endo
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Isaac Makundi
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Junna Kawasaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Bui Thi To Nga
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Huyen Nguyen
- Animal Care Clinic, 20/424 Thuy Khue Street, Tay Ho District, Hanoi, 100000, Vietnam
| | - MaríaCruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - R M C Deshapriya
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
12
|
Mekkaoui L, Ferrari M, Mattiuzzo G, Ma B, Nannini F, Onuoha S, Kotsopoulou E, Takeuchi Y, Pule M. Generation of a neutralizing antibody against RD114-pseudotyped viral vectors. J Gen Virol 2019; 101:1008-1018. [PMID: 31702531 DOI: 10.1099/jgv.0.001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The feline endogenous RD114 glycoprotein has proved to be an attractive envelope to pseudotype both retroviral and lentiviral vectors. As a surface protein, its detection on packaging cells as well as viral particles would be useful in different fields of its use. To address this, we generated a monoclonal antibody against RD114 by immunization of rats, termed 22F10. Once seroconversion was confirmed, purified 22F10 was cloned into murine Fc and characterized with a binding affinity of 10nM. The antibody was used to detect RD114 and its variant envelopes on different stable viral packaging cell lines (FLYRD18 and WinPac-RD). 22F10 was also shown to prevent the infections of different strains of RD-pseudotyped vectors but not related envelope glycoproteins by blocking cell surface receptor binding. We are the first to report the neutralization of viral particles by a monoclonal αRD114 antibody.
Collapse
Affiliation(s)
- L Mekkaoui
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, WC1E 6BT, London, UK
| | - M Ferrari
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - G Mattiuzzo
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, UK
| | - B Ma
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - F Nannini
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, WC1E 6BT, London, UK
| | - S Onuoha
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - E Kotsopoulou
- Autolus Limited, Forest House, 58 Wood Lane, W12 7RZ, UK
| | - Y Takeuchi
- Division of Infection and Immunity, University College London, Cruciform Building, Gower Street, WC1E 6BT, UK.,National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QC, UK
| | | |
Collapse
|
13
|
Kawasaki J, Nishigaki K. Tracking the Continuous Evolutionary Processes of an Endogenous Retrovirus of the Domestic Cat: ERV-DC. Viruses 2018; 10:v10040179. [PMID: 29642384 PMCID: PMC5923473 DOI: 10.3390/v10040179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022] Open
Abstract
An endogenous retrovirus (ERV) is a remnant of an ancient retroviral infection in the host genome. Although most ERVs have lost their viral productivity, a few ERVs retain their replication capacity. In addition, partially inactivated ERVs can present a potential risk to the host via their encoded virulence factors or the generation of novel viruses by viral recombination. ERVs can also eventually acquire a biological function, and this ability has been a driving force of host evolution. Therefore, the presence of an ERV can be harmful or beneficial to the host. Various reports about paleovirology have revealed each event in ERV evolution, but the continuous processes of ERV evolution over millions of years are mainly unknown. A unique ERV family, ERV-DC, is present in the domestic cat (Felis silvestriscatus) genome. ERV-DC proviruses are phylogenetically classified into three genotypes, and the specific characteristics of each genotype have been clarified: their capacity to produce infectious viruses; their recombination with other retroviruses, such as feline leukemia virus or RD-114; and their biological functions as host antiviral factors. In this review, we describe ERV-DC-related phenomena and discuss the continuous changes in the evolution of this ERV in the domestic cat.
Collapse
Affiliation(s)
- Junna Kawasaki
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| | - Kazuo Nishigaki
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
14
|
Ma Y, Liu R, Lv H, Han J, Zhong D, Zhang X. A computational method for prediction of matrix proteins in endogenous retroviruses. PLoS One 2017; 12:e0176909. [PMID: 28472185 PMCID: PMC5417524 DOI: 10.1371/journal.pone.0176909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 04/19/2017] [Indexed: 11/18/2022] Open
Abstract
Human endogenous retroviruses (HERVs) encode active retroviral proteins, which may be involved in the progression of cancer and other diseases. Matrix protein (MA), in group-specific antigen genes (gag) of retroviruses, is associated with the virus envelope glycoproteins in most mammalian retroviruses and may be involved in virus particle assembly, transport and budding. However, the amount of annotated MAs in ERVs is still at a low level so far. No computational method to predict the exact start and end coordinates of MAs in gags has been proposed yet. In this paper, a computational method to identify MAs in ERVs is proposed. A divide and conquer technique was designed and applied to the conventional prediction model to acquire better results when dealing with gene sequences with various lengths. Initiation sites and termination sites were predicted separately and then combined according to their intervals. Three different algorithms were applied and compared: weighted support vector machine (WSVM), weighted extreme learning machine (WELM) and random forest (RF). G − mean (geometric mean of sensitivity and specificity) values of initiation sites and termination sites under 5-fold cross validation generated by random forest models are 0.9869 and 0.9755 respectively, highest among the algorithms applied. Our prediction models combine RF & WSVM algorithms to achieve the best prediction results. 98.4% of all the collected ERV sequences with complete MAs (125 in total) could be predicted exactly correct by the models. 94,671 HERV sequences from 118 families were scanned by the model, 104 new putative MAs were predicted in human chromosomes. Distributions of the putative MAs and optimizations of model parameters were also analyzed. The usage of our predicting method was also expanded to other retroviruses and satisfying results were acquired.
Collapse
Affiliation(s)
- Yucheng Ma
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Ruiling Liu
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- * E-mail: (RLL); (HQL)
| | - Hongqiang Lv
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
- * E-mail: (RLL); (HQL)
| | - Jiuqiang Han
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dexing Zhong
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Xinman Zhang
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
15
|
Abstract
Although genetic transfer between viruses and vertebrate hosts occurs less frequently than gene flow between bacteriophages and prokaryotes, it is extensive and has affected the evolution of both parties. With retroviruses, the integration of proviral DNA into chromosomal DNA can result in the activation of adjacent host gene expression and in the transduction of host transcripts into retroviral genomes as oncogenes. Yet in contrast to lysogenic phage, there is little evidence that viral oncogenes persist in a chain of natural transmission or that retroviral transduction is a significant driver of the horizontal spread of host genes. Conversely, integration of proviruses into the host germ line has generated endogenous retroviral genomes (ERV) in all vertebrate genomes sequenced to date. Some of these genomes retain potential infectivity and upon reactivation may transmit to other host species. During mammalian evolution, sequences of retroviral origin have been repurposed to serve host functions, such as the viral envelope glycoproteins crucial to the development of the placenta. Beyond retroviruses, DNA viruses with complex genomes have acquired numerous genes of host origin which influence replication, pathogenesis and immune evasion, while host species have accumulated germline sequences of both DNA and RNA viruses. A codicil is added on lateral transmission of cancer cells between hosts and on migration of host mitochondria into cancer cells.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection and Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
16
|
Existence of Two Distinct Infectious Endogenous Retroviruses in Domestic Cats and Their Different Strategies for Adaptation to Transcriptional Regulation. J Virol 2016; 90:9029-45. [PMID: 27466428 DOI: 10.1128/jvi.00716-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are the remnants of ancient retroviral infections of germ cells. Previous work identified one of the youngest feline ERV groups, ERV-DC, and reported that two ERV-DC loci, ERV-DC10 and ERV-DC18 (ERV-DC10/DC18), can replicate in cultured cells. Here, we identified another replication-competent provirus, ERV-DC14, on chromosome C1q32. ERV-DC14 differs from ERV-DC10/DC18 in its phylogeny, receptor usage, and, most notably, transcriptional activities; although ERV-DC14 can replicate in cultured cells, it cannot establish a persistent infection owing to its low transcriptional activity. Furthermore, we examined ERV-DC transcription and its regulation in feline tissues. Quantitative reverse transcription-PCR (RT-PCR) detected extremely low ERV-DC10 expression levels in feline tissues, and bisulfite sequencing showed that 5' long terminal repeats (LTRs) of ERV-DC10/DC18 are significantly hypermethylated in feline blood cells. Reporter assays found that the 5'-LTR promoter activities of ERV-DC10/DC18 are high, whereas that of ERV-DC14 is low. This difference in promoter activity is due to a single substitution from A to T in the LTR, and reverse mutation at this nucleotide in ERV-DC14 enhanced its replication and enabled it to persistently infect cultured cells. Therefore, ERV-DC LTRs can be divided into two types based on this nucleotide, the A type or T type, which have strong or attenuated promoter activity, respectively. Notably, ERV-DCs with T-type LTRs, such as ERV-DC14, have expanded in the cat genome significantly more than A-type ERV-DCs, despite their low promoter activities. Our results provide insights into how the host controls potentially infectious ERVs and, conversely, how ERVs adapt to and invade the host genome. IMPORTANCE The domestic cat genome contains many endogenous retroviruses, including ERV-DCs. These ERV-DCs have been acquired through germ cell infections with exogenous retroviruses. Some of these ERV-DCs are still capable of producing infectious virions. Hosts must tightly control these ERVs because replication-competent viruses in the genome pose a risk to the host. Here, we investigated how ERV-DCs are adapted by their hosts. Replication-competent viruses with strong promoter activity, such as ERV-DC10 and ERV-DC18, were suppressed by promoter methylation in LTRs. On the other hand, replication-competent viruses with weak promoter activity, such as ERV-DC14, seemed to escape strict control via promoter methylation by the host. Interestingly, ERV-DCs with weak promoter activity, such as ERV-DC14, have expanded in the cat genome significantly more than ERV-DCs with strong promoter activity. Our results improve the understanding of the host-virus conflict and how ERVs adapt in their hosts over time.
Collapse
|
17
|
Weiss RA. Human endogenous retroviruses: friend or foe? APMIS 2016; 124:4-10. [PMID: 26818257 DOI: 10.1111/apm.12476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023]
Abstract
The integration of proviral DNA into host chromosomal DNA as an obligatory step in the replication cycle of retroviruses is a natural event of genetic recombination between virus and host. When integration occurs in cells of the germ line, it results in mendelian inheritance of viral sequences that we call endogenous retroviruses (ERV) and HERV for humans. HERVs and host often establish a symbiotic relationship, especially in the placenta and in pluripotent embryonic stem cells, but HERVs occasionally have deleterious consequences for the host. This special issue of APMIS features the fascinating relationships between HERV and humans in health and disease.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London, UK
| |
Collapse
|
18
|
RD-114 virus story: from RNA rumor virus to a useful viral tool for elucidating the world cats' journey. Uirusu 2016; 66:21-30. [PMID: 28484175 DOI: 10.2222/jsv.66.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
RD-114 virus is a feline endogenous retrovirus (ERV) isolated from human rhabdomyosarcoma in 1971 and classified as endogenous gammaretrovirus in domestic cats (Felis catus). Based on the previous reports in 70's, it has been considered that a horizontal, infectious event occurred to transfer the virus from ancient baboon species to ancient cat species, whereupon it became endogenous in the cat species about several million years ago in Mediterranean Basin. Although it has been believed that all domestic cats harbor infectious RD-114 provirus in their genome, we revealed that cats do not have infectious RD-114 viral loci, but infectious RD-114 virus is resurrected by recombination between uninfectious RD-114 virus-related ERVs [here we designated them as RD-114-related sequences (RDRSs)]. Further, we also revealed the RDRSs which would potentially be resurrected as RD-114 virus (here we refer to them as ''new'' RDRSs) had entered the genome of the domestic cat after domestication of the cat around 10 thousand years ago. The fractions and positions of RDRSs in the cat genome differed in Western and Eastern cat populations and cat breeds. Our study revealed that RDRS would be a useful tool for elucidating the world travel routes of domestic cats after domestication.
Collapse
|
19
|
Weiss RA. What's the host and what's the microbe? The Marjory Stephenson Prize Lecture 2015. J Gen Virol 2015; 96:2501-2510. [PMID: 26296666 DOI: 10.1099/jgv.0.000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The interchange between retroviruses and their hosts is an intimate one because retroviruses integrate proviral DNA into host chromosomal DNA as an obligate step in the replication cycle. This has resulted in the occasional transduction of host genes into retroviral genomes as oncogenes, and also led to the integration of viral genomes into the host germ line that gives rise to endogenous retroviruses. I shall reflect on the evolutionary consequences of these events for virus and host. Then, I shall discuss the emergence of non-viral infections of host origin, namely, how malignant cells can give rise to eukaryotic single cell 'parasites' that colonize new hosts and how these in turn have been colonized by host mitochondria.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
20
|
Fábryová H, Hron T, Kabíčková H, Poss M, Elleder D. Induction and characterization of a replication competent cervid endogenous gammaretrovirus (CrERV) from mule deer cells. Virology 2015. [PMID: 26218214 DOI: 10.1016/j.virol.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Endogenous retroviruses (ERVs) were acquired during evolution of their host organisms after infection and mendelian inheritance in the germline by their exogenous counterparts. The ERVs can spread in the host genome and in some cases they affect the host phenotype. The cervid endogenous gammaretrovirus (CrERV) is one of only a few well-defined examples of evolutionarily recent invasion of mammalian genome by retroviruses. Thousands of insertionally polymorphic CrERV integration sites have been detected in wild ranging mule deer (Odocoileus hemionus) host populations. Here, we describe for the first time induction of replication competent CrERV by cocultivation of deer and human cells. We characterize the physical properties and tropism of the induced virus. The genomic sequence of the induced virus is phylogenetically related to the evolutionarily young endogenous CrERVs described so far. We also describe the level of replication block of CrERV on deer cells and its capacity to establish superinfection interference.
Collapse
Affiliation(s)
- Helena Fábryová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Tomáš Hron
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Hana Kabíčková
- Military Health Institute, Department of Microbiology and Biological Research, 16001 Prague, Czech Republic
| | - Mary Poss
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16801, USA
| | - Daniel Elleder
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| |
Collapse
|