1
|
Matsuki Y, Iwamoto M, Maki T, Takashima M, Yoshida T, Oiki S. Programmable Lipid Bilayer Tension-Control Apparatus for Quantitative Mechanobiology. ACS NANO 2024; 18:30561-30573. [PMID: 39437160 PMCID: PMC11544928 DOI: 10.1021/acsnano.4c09017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
The biological membrane is not just a platform for information processing but also a field of mechanics. The lipid bilayer that constitutes the membrane is an elastic body, generating stress upon deformation, while the membrane protein embedded therein deforms the bilayer through structural changes. Among membrane-protein interplays, various channel species act as tension-current converters for signal transduction, serving as elementary processes in mechanobiology. However, in situ studies in chaotically complex cell membranes are challenging, and characterizing the tension dependency of mechanosensitive channels remains semiquantitative owing to technical limitations. Here, we developed a programmable membrane tension-control apparatus on a lipid bilayer system. This synthetic membrane system [contact bubble bilayer (CBB)] uses pressure to drive bilayer tension changes via the Young-Laplace principle, whereas absolute bilayer tension is monitored in real-time through image analysis of the bubble geometry via the Young principle. Consequently, the mechanical nature of the system permits the implementation of closed-loop feedback control of bilayer tension (tension-clamp CBB), maintaining a constant tension for minutes and allowing stepwise tension changes within a hundred milliseconds in the tension range of 0.8 to 15 mN·m-1. We verified the system performance by examining the single-channel behavior of tension-dependent KcsA and TREK-1 potassium channels under scheduled tension time courses prescribed via visual interfaces. The result revealed steady-state activity and dynamic responses to the step tension changes, which are essential to the biophysical characterization of the channels. The apparatus explores a frontier for quantitative mechanobiology studies and promotes the development of a tension-operating experimental robot.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masayuki Iwamoto
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Takahisa Maki
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Life
Science Innovation Center, University of
Fukui, Fukui 910-8507, Japan
| | - Masako Takashima
- Department
of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Toshiyuki Yoshida
- Department
of Information Science, Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
2
|
Hayakawa ESH, Ueki M, Alhatmi E, Oiki S, Tokumasu F, Mitchell DC, Iwamoto M. Different lateral packing stress in acyl chains alters KcsA orientation and structure in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184338. [PMID: 38763269 DOI: 10.1016/j.bbamem.2024.184338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/26/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
The molecular structures of the various intrinsic lipids in membranes regulate lipid-protein interactions. These different lipid structures with unique volumes produce different lipid molecular packing stresses/lateral stresses in lipid membranes. Most studies examining lipid packing effects have used phosphatidylcholine and phosphatidylethanolamine (PE), which are the main phospholipids of eukaryotic cell membranes. In contrast, Gram-negative or Gram-positive bacterial membranes are composed primarily of phosphatidylglycerol (PG) and PE, and the physical and thermodynamic properties of each acyl chain in PG at the molecular level remain unresolved. In this study, we used 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG, 16:0-18:1 PG) and 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (PAPG, 16:0-20:4 PG) to prepare lipid bilayers (liposome) with the rod-type fluorescence probe DPH. We measured the lipid packing conditions by determining the rotational freedom of DPH in POPG or PAPG bilayers. Furthermore, we investigated the effect of different monoacyl chains on a K+ channel (KcsA) structure when embedded in POPG or PAPG membranes. The results revealed that differences in the number of double bonds and carbon chain length in the monoacyl chain at sn-2 affected the physicochemical properties of the membrane and the structure and orientation of KcsA.
Collapse
Affiliation(s)
- Eri Saki H Hayakawa
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | - Misuzu Ueki
- Division of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Elmukhtar Alhatmi
- Department of Physics, Portland State University, Portland, OR 97201-0751, USA
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Fuyuki Tokumasu
- Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Laboratory Sciences, Graduate School of Health Sciences, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Drake C Mitchell
- Department of Physics, Portland State University, Portland, OR 97201-0751, USA
| | - Masayuki Iwamoto
- Division of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
3
|
Matsuki Y, Takashima M, Ueki M, Iwamoto M, Oiki S. Probing membrane deformation energy by KcsA potassium channel gating under varied membrane thickness and tension. FEBS Lett 2024; 598:1955-1966. [PMID: 38880762 DOI: 10.1002/1873-3468.14956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
This study investigated how membrane thickness and tension modify the gating of KcsA potassium channels when simultaneously varied. The KcsA channel undergoes global conformational changes upon gating: expansion of the cross-sectional area and longitudinal shortening upon opening. Thus, membranes impose differential effects on the open and closed conformations, such as hydrophobic mismatches. Here, the single-channel open probability was recorded in the contact bubble bilayer, by which variable thickness membranes under a defined tension were applied. A fully open channel in thin membranes turned to sporadic openings in thick membranes, where the channel responded moderately to tension increase. Quantitative gating analysis prompted the hypothesis that tension augmented the membrane deformation energy when hydrophobic mismatch was enhanced in thick membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
| | - Masako Takashima
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Misuzu Ueki
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Masayuki Iwamoto
- Life Science Innovation Center, University of Fukui, Yoshida-gun, Japan
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Japan
| |
Collapse
|
4
|
Matsuki Y, Iwamoto M, Oiki S. Asymmetric Lipid Bilayers and Potassium Channels Embedded Therein in the Contact Bubble Bilayer. Methods Mol Biol 2024; 2796:1-21. [PMID: 38856892 DOI: 10.1007/978-1-0716-3818-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cell membranes are highly intricate systems comprising numerous lipid species and membrane proteins, where channel proteins, lipid molecules, and lipid bilayers, as continuous elastic fabric, collectively engage in multi-modal interplays. Owing to the complexity of the native cell membrane, studying the elementary processes of channel-membrane interactions necessitates a bottom-up approach starting from forming simplified synthetic membranes. This is the rationale for establishing an in vitro membrane reconstitution system consisting of a lipid bilayer with a defined lipid composition and a channel molecule. Recent technological advancements have facilitated the development of asymmetric membranes, and the contact bubble bilayer (CBB) method allows single-channel current recordings under arbitrary lipid compositions in asymmetric bilayers. Here, we present an experimental protocol for the formation of asymmetric membranes using the CBB method. The KcsA potassium channel is a prototypical model channel with huge structural and functional information and thus serves as a reporter of membrane actions on the embedded channels. We demonstrate specific interactions of anionic lipids in the inner leaflet. Considering that the local lipid composition varies steadily in cell membranes, we `present a novel lipid perfusion technique that allows rapidly changing the lipid composition while monitoring the single-channel behavior. Finally, we demonstrate a leaflet perfusion method for modifying the composition of individual leaflets. These techniques with custom synthetic membranes allow for variable experiments, providing crucial insights into channel-membrane interplay in cell membranes.
Collapse
Affiliation(s)
- Yuka Matsuki
- Department of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
5
|
Iwamoto M, Morito M, Oiki S, Nishitani Y, Yamamoto D, Matsumori N. Cardiolipin binding enhances KcsA channel gating via both its specific and dianion-monoanion interchangeable sites. iScience 2023; 26:108471. [PMID: 38077151 PMCID: PMC10709135 DOI: 10.1016/j.isci.2023.108471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024] Open
Abstract
KcsA is a potassium channel with a plethora of structural and functional information, but its activity in the KcsA-producing actinomycete membranes remains elusive. To determine lipid species involved in channel-modulation, a surface plasmon resonance (SPR)-based methodology, characterized by immobilization of membrane proteins under a membrane environment, was applied. Dianionic cardiolipin (CL) showed extremely higher affinity for KcsA than monoanionic lipids. The SPR experiments further demonstrated that CL bound not only to the N-terminal M0 helix, a lipid-sensor domain, but to the M0 helix-deleted mutant. In contrast, monoanionic lipids interacted primarily with the M0 helix. This indicates the presence of an alternative CL-binding site, plausibly in the transmembrane domain. Single-channel recordings demonstrated that CL enhanced channel opening in an M0-independent manner. Taken together, the action of monoanionic lipids is exclusively mediated by the M0 helix, while CL binds both the M0 helix and its specific site, further enhancing the channel activity.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Morito
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395 Japan
| | - Shigetoshi Oiki
- Biomedial Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Yudai Nishitani
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Daisuke Yamamoto
- Department of Applied Physics, Faculty of Science, Fukuoka University, Fukuoka 814-0180, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395 Japan
| |
Collapse
|
6
|
Ogishi K, Osaki T, Mimura H, Hashimoto I, Morimoto Y, Miki N, Takeuchi S. Real-time quantitative characterization of ion channel activities for automated control of a lipid bilayer system. Biosens Bioelectron 2023; 237:115490. [PMID: 37393766 DOI: 10.1016/j.bios.2023.115490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
This paper describes a novel signal processing method to characterize the activity of ion channels on a lipid bilayer system in a real-time and quantitative manner. Lipid bilayer systems, which enable single-channel level recordings of ion channel activities against physiological stimuli in vitro, are gaining attention in various research fields. However, the characterization of ion channel activities has heavily relied on time-consuming analyses after recording, and the inability to return the quantitative results in real time has long been a bottleneck to incorporating the system into practical products. Herein, we report a lipid bilayer system that integrates real-time characterization of ion channel activities and real-time response based on the characterization result. Unlike conventional batch processing, an ion channel signal is divided into short segments and processed during the recording. After optimizing the system to maintain the same characterization accuracy as conventional operation, we demonstrated the usability of the system with two applications. One is quantitative control of a robot based on ion channel signals. The velocity of the robot was controlled every second, which was around tens of times faster than the conventional operation, in proportion to the stimulus intensity estimated from changes in ion channel activities. The other is the automation of data collection and characterization of ion channels. By constantly monitoring and maintaining the functionality of a lipid bilayer, our system enabled continuous recording of ion channels over 2 h without human intervention, and the time of manual labor has been reduced from conventional 3 h to 1 min at a minimum. We believe the accelerated characterization and response in the lipid bilayer systems presented in this work will facilitate the transformation of lipid bilayer technology toward a practical level, finally leading to its industrialization.
Collapse
Affiliation(s)
- Kazuto Ogishi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Toshihisa Osaki
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan
| | - Hisatoshi Mimura
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan
| | - Izumi Hashimoto
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan; Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8522, Japan
| | - Yuya Morimoto
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Norihisa Miki
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan; Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8522, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa, 213-0012, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
7
|
Tada A, Takeuchi N, Shoji K, Kawano R. Nanopore Filter: A Method for Counting and Extracting Single DNA Molecules Using a Biological Nanopore. Anal Chem 2023; 95:9805-9812. [PMID: 37279035 PMCID: PMC10797584 DOI: 10.1021/acs.analchem.3c00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
This paper describes a method for the real-time counting and extraction of DNA molecules at the single-molecule level by nanopore technology. As a powerful tool for electrochemical single-molecule detection, nanopore technology eliminates the need for labeling or partitioning sample solutions at the femtoliter level. Here, we attempt to develop a DNA filtering system utilizing an α-hemolysin (αHL) nanopore. This system comprises two droplets, one filling with and one emptying DNA molecules, separated by a planar lipid bilayer containing αHL nanopores. The translocation of DNA through the nanopores is observed by measuring the channel current, and the number of translocated molecules can also be verified by quantitative polymerase chain reaction (qPCR). However, we found that the issue of contamination seems to be an almost insolvable problem in single-molecule counting. To tackle this problem, we tried to optimize the experimental environment, reduce the volume of solution containing the target molecule, and use the PCR clamp method. Although further efforts are still needed to achieve a single-molecule filter with electrical counting, our proposed method shows a linear relationship between the electrical counting and qPCR estimation of the number of DNA molecules.
Collapse
Affiliation(s)
- Asuka Tada
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nanami Takeuchi
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kan Shoji
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department
of Mechanical Engineering, Nagaoka University
of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
8
|
Kiya T, Takeshita K, Kawanabe A, Fujiwara Y. Intermolecular functional coupling between phosphoinositides and the potassium channel KcsA. J Biol Chem 2022; 298:102257. [PMID: 35839854 PMCID: PMC9396063 DOI: 10.1016/j.jbc.2022.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Biological membranes are composed of a wide variety of lipids. Phosphoinositides (PIPns) in the membrane inner leaflet only account for a small percentage of the total membrane lipids but modulate the functions of various membrane proteins, including ion channels, which play important roles in cell signaling. KcsA, a prototypical K+ channel that is small, simple, and easy to handle, has been broadly examined regarding its crystallography, in silico molecular analysis, and electrophysiology. It has been reported that KcsA activity is regulated by membrane phospholipids, such as phosphatidylglycerol. However, there has been no quantitative analysis of the correlation between direct lipid binding and the functional modification of KcsA, and it is unknown whether PIPns modulate KcsA function. Here, using contact bubble bilayer recording, we observed that the open probability of KcsA increased significantly (from about 10% to 90%) when the membrane inner leaflet contained only a small percentage of PIPns. In addition, we found an increase in the electrophysiological activity of KcsA correlated with a larger number of negative charges on PIPns. We further analyzed the affinity of the direct interaction between PIPns and KcsA using microscale thermophoresis and observed a strong correlation between direct lipid binding and the functional modification of KcsA. In conclusion, our approach was able to reconstruct the direct modification of KcsA by PIPns, and we propose that it can also be applied to elucidate the mechanism of modification of other ion channels by PIPns.
Collapse
Affiliation(s)
- Takunari Kiya
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | - Kohei Takeshita
- RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Hyogo 679-5148, Japan
| | - Akira Kawanabe
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan.
| | - Yuichiro Fujiwara
- Laboratory of Molecular Physiology & Biophysics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan.
| |
Collapse
|
9
|
Ogishi K, Osaki T, Morimoto Y, Takeuchi S. 3D printed microfluidic devices for lipid bilayer recordings. LAB ON A CHIP 2022; 22:890-898. [PMID: 35133381 DOI: 10.1039/d1lc01077h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper verifies the single-step and monolithic fabrication of 3D structural lipid bilayer devices using stereolithography. Lipid bilayer devices are utilized to host membrane proteins in vitro for biological assays or sensing applications. There is a growing demand to fabricate functional lipid bilayer devices with a short lead-time, and the monolithic fabrication of components by 3D printing is highly anticipated. However, the prerequisites of 3D printing materials which lead to reproducible lipid bilayer formation are still unknown. Here, we examined the feasibility of membrane protein measurement using lipid bilayer devices fabricated by stereolithography. The 3D printing materials were characterized and the surface smoothness and hydrophobicity were found to be the relevant factors for successful lipid bilayer formation. The devices were comparable to the ones fabricated by conventional procedures in terms of measurement performances like the amplitude of noise and the waiting time for lipid bilayer formation. We further demonstrated the extendibility of the technology for the functionalization of devices, such as incorporating microfluidic channels for solution exchangeability and arraying multiple chambers for robust measurement.
Collapse
Affiliation(s)
- Kazuto Ogishi
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Toshihisa Osaki
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Yuya Morimoto
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shoji Takeuchi
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
10
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
11
|
Kalathingal M, Sumikama T, Oiki S, Saito S. Vectorial insertion of a β-helical peptide into membrane: a theoretical study on polytheonamide B. Biophys J 2021; 120:4786-4797. [PMID: 34555359 DOI: 10.1016/j.bpj.2021.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022] Open
Abstract
Spontaneous unidirectional, or vectorial, insertion of transmembrane peptides is a fundamental biophysical process for toxin and viral actions. Polytheonamide B (pTB) is a potent cytotoxic peptide with a β6.3-helical structure. Previous experimental studies revealed that the pTB inserts into the membrane in a vectorial fashion and forms a channel with its single molecular length long enough to span the membrane. Also, molecular dynamics simulation studies demonstrated that the pTB is prefolded in aqueous solution. These are unique features of pTB because most of the peptide toxins form channels through oligomerization of transmembrane helices. Here, we performed all-atom molecular dynamics simulations to examine the dynamic mechanism of the vectorial insertion of pTB, providing underlying elementary processes of the membrane insertion of a prefolded single transmembrane peptide. We find that the insertion of pTB proceeds with only the local lateral compression of the membrane in three successive phases: "landing," "penetration," and "equilibration" phases. The free energy calculations using the replica-exchange umbrella sampling simulations present an energy cost of 4.3 kcal/mol at the membrane surface for the membrane insertion of pTB from bulk water. The trajectories of membrane insertion revealed that the insertion process can occur in two possible pathways, namely "trapped" and "untrapped" insertions; in some cases, pTB is trapped in the upper leaflet during the penetration phase. Our simulations demonstrated the importance of membrane anchoring by the hydrophobic N-terminal blocking group in the landing phase, leading to subsequent vectorial insertion.
Collapse
Affiliation(s)
- Mahroof Kalathingal
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Takashi Sumikama
- PRESTO, JST, Kawaguchi, Japan; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| | - Shinji Saito
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan; Institute for Molecular Science, Okazaki, Japan.
| |
Collapse
|
12
|
Conductance selectivity of Na + across the K + channel via Na + trapped in a tortuous trajectory. Proc Natl Acad Sci U S A 2021; 118:2017168118. [PMID: 33741736 DOI: 10.1073/pnas.2017168118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ion selectivity of the potassium channel is crucial for regulating electrical activity in living cells; however, the mechanism underlying the potassium channel selectivity that favors large K+ over small Na+ remains unclear. Generally, Na+ is not completely excluded from permeation through potassium channels. Herein, the distinct nature of Na+ conduction through the prototypical KcsA potassium channel was examined. Single-channel current recordings revealed that, at a high Na+ concentration (200 mM), the channel was blocked by Na+, and this blocking was relieved at high membrane potentials, suggesting the passage of Na+ across the channel. At a 2,000 mM Na+ concentration, single-channel Na+ conductance was measured as one-eightieth of the K+ conductance, indicating that the selectivity filter allows substantial conduit of Na+ Molecular dynamics simulations revealed unprecedented atomic trajectories of Na+ permeation. In the selectivity filter having a series of carbonyl oxygen rings, a smaller Na+ was distributed off-center in eight carbonyl oxygen-coordinated sites as well as on-center in four carbonyl oxygen-coordinated sites. This amphipathic nature of Na+ coordination yielded a continuous but tortuous path along the filter. Trapping of Na+ in many deep free energy wells in the filter caused slow elution. Conversely, K+ is conducted via a straight path, and as the number of occupied K+ ions increased to three, the concerted conduction was accelerated dramatically, generating the conductance selectivity ratio of up to 80. The selectivity filter allows accommodation of different ion species, but the ion coordination and interactions between ions render contrast conduction rates, constituting the potassium channel conductance selectivity.
Collapse
|
13
|
Ueki M, Iwamoto M. Fluorescent labeling in size-controlled liposomes reveals membrane curvature-induced structural changes in the KcsA potassium channel. FEBS Lett 2021; 595:1914-1919. [PMID: 34080704 DOI: 10.1002/1873-3468.14141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/06/2022]
Abstract
Biological structures with highly curved membranes, such as caveolae and transport vesicles, are essential for signal transduction and membrane trafficking. Although membrane proteins in these structures are subjected to physical stress due to the curvature of the lipid bilayers, the effect of this membrane curvature on protein structure and function remains unclear. In this study, we established an experimental procedure to evaluate membrane curvature-induced structural changes in the prototypical potassium channel KcsA. The effect of a large membrane curvature was estimated using fluorescently labeled KcsA by incorporating it into liposomes with a small diameter (< 30 nm). We found that a large membrane curvature significantly affects the activation gate conformation of the KcsA channel.
Collapse
Affiliation(s)
- Misuzu Ueki
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Japan
| |
Collapse
|
14
|
Visualizing the osmotic water permeability of a lipid bilayer under measured bilayer tension using a moving membrane method. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Iwamoto M, Oiki S. Hysteresis of a Tension-Sensitive K + Channel Revealed by Time-Lapse Tension Measurements. JACS AU 2021; 1:467-474. [PMID: 34467309 PMCID: PMC8395652 DOI: 10.1021/jacsau.0c00098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 05/05/2023]
Abstract
Various types of channels vary their function by membrane tension changes upon cellular activities, and lipid bilayer methods allow elucidation of direct interaction between channels and the lipid bilayer. However, the dynamic responsiveness of the channel to the membrane tension remains elusive. Here, we established a time-lapse tension measurement system. A bilayer is formed by docking two monolayer-lined water bubbles, and tension is evaluated via measuring intrabubble pressure as low as <100 Pa (Young-Laplace principle). The prototypical KcsA potassium channel is tension-sensitive, and single-channel current recordings showed that the activation gate exhibited distinct tension sensitivity upon stretching and relaxing. The mechanism underlying the hysteresis is discussed in the mode shift regime, in which the channel protein bears short "memory" in their conformational changes.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department
of Molecular Neuroscience, University of
Fukui Faculty of Medical Science, 910-1193 Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical
Imaging Research Center, University of Fukui, 910-1193 Fukui, Japan
| |
Collapse
|
16
|
Rauh O, Kukovetz K, Winterstein L, Introini B, Thiel G. Combining in vitro translation with nanodisc technology and functional reconstitution of channels in planar lipid bilayers. Methods Enzymol 2021; 652:293-318. [PMID: 34059286 DOI: 10.1016/bs.mie.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Experimental studies on membrane proteins have been recently enriched by two promising method developments: protocols for cell-free protein synthesis and the use of soluble nanoscale lipid bilayers, so called nanodiscs, as membrane mimics for keeping these proteins in a soluble form. Here, we show how the advantages of these techniques can be combined with the classical planar lipid bilayer method for a functional reconstitution of channel activity. The present data demonstrate that the combination of these methods offers a very rapid and reliable way of recording channel activity in different bilayer systems. This approach has additional advantages in that it strongly lowers the propensity of contamination from the expression system and allows the simultaneous reconstitution of thousands of channel proteins for macroscopic current measurements without compromising bilayer stability.
Collapse
Affiliation(s)
- Oliver Rauh
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kerri Kukovetz
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Laura Winterstein
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bianca Introini
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics and Center for Synthetic Biology, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
17
|
Iwamoto M, Oiki S. Physical and Chemical Interplay Between the Membrane and a Prototypical Potassium Channel Reconstituted on a Lipid Bilayer Platform. Front Mol Neurosci 2021; 14:634121. [PMID: 33716666 PMCID: PMC7952623 DOI: 10.3389/fnmol.2021.634121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Once membrane potential changes or ligand binding activates the ion channel, the activity of the channel is finely modulated by the fluctuating membrane environment, involving local lipid composition and membrane tension. In the age of post-structural biology, the factors in the membrane that affect the ion channel function and how they affect it are a central concern among ion channel researchers. This review presents our strategies for elucidating the molecular mechanism of membrane effects on ion channel activity. The membrane’s diverse and intricate effects consist of chemical and physical processes. These elements can be quantified separately using lipid bilayer methods, in which a membrane is reconstructed only from the components of interest. In our advanced lipid bilayer platform (contact bubble bilayer, CBB), physical features of the membrane, such as tension, are freely controlled. We have elucidated how the specific lipid or membrane tension modulates the gating of a prototypical potassium channel, KcsA, embedded in the lipid bilayer. Our results reveal the molecular mechanism of the channel for sensing and responding to the membrane environment.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Neuroscience, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
18
|
Winterstein LM, Kukovetz K, Hansen UP, Schroeder I, Van Etten JL, Moroni A, Thiel G, Rauh O. Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel function. J Gen Physiol 2021; 153:211677. [PMID: 33439243 PMCID: PMC7809880 DOI: 10.1085/jgp.202012731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro–synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.
Collapse
Affiliation(s)
| | - Kerri Kukovetz
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Ulf-Peter Hansen
- Department of Structural Biology, Christian-Albrechts-Universität, Kiel, Germany
| | - Indra Schroeder
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - James L Van Etten
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska Lincoln, Lincoln, NE
| | - Anna Moroni
- Department of Biosciences and Consiglio Nazionale delle Ricerche, Istituto di Biofisica Milano, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
19
|
Ito Y, Izawa Y, Osaki T, Kamiya K, Misawa N, Fujii S, Mimura H, Miki N, Takeuchi S. A Lipid-Bilayer-On-A-Cup Device for Pumpless Sample Exchange. MICROMACHINES 2020; 11:mi11121123. [PMID: 33352964 PMCID: PMC7767076 DOI: 10.3390/mi11121123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
Lipid-bilayer devices have been studied for on-site sensors in the fields of diagnosis, food and environmental monitoring, and safety/security inspection. In this paper, we propose a lipid-bilayer-on-a-cup device for serial sample measurements using a pumpless solution exchange procedure. The device consists of a millimeter-scale cylindrical cup with vertical slits which is designed to steadily hold an aqueous solution and exchange the sample by simply fusing and splitting the solution with an external solution. The slit design was experimentally determined by the capabilities of both the retention and exchange of the solution. Using the optimized slit, a planar lipid bilayer was reconstituted with a nanopore protein at a microaperture allocated to the bottom of the cup, and the device was connected to a portable amplifier. The solution exchangeability was demonstrated by observing the dilution process of a blocker molecule of the nanopore dissolved in the cup. The pumpless solution exchange by the proposed cup-like device presents potential as a lipid-bilayer system for portable sensing applications.
Collapse
Affiliation(s)
- Yoshihisa Ito
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yusuke Izawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- School of Integrated Design Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Koki Kamiya
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Satoshi Fujii
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Hisatoshi Mimura
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
| | - Norihisa Miki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan; (Y.I.); (Y.I.); (T.O.); (K.K.); (N.M.); (S.F.); (H.M.); (N.M.)
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Correspondence: ; Tel.: +81-3-5841-7056; Fax: +81-3-5841-7104
| |
Collapse
|
20
|
Abstract
A functional characterization of channel proteins has been performed using planar lipid bilayers as the following procedure. For bacterial channels, such as the KcsA potassium channel, channel proteins were synthesized in Escherichia coli, followed by solubilization, purification, and incorporation into liposomes. Similarly, channel proteins were synthesized using an in vitro transcription/translation kit in the presence of liposomes. Then, these liposome-incorporated channels were served for electrophysiological recordings after liposome fusion into a preformed planar lipid bilayer. Here, we established a straightforward method for concurrent channel synthesis and functional measurement using a water-in-oil bubble bilayer system. Channel proteins were synthesized in vitro within a water-in-oil bubble, having a lipid bilayer at the contact with another bubble (in bulla synthesis). The channels were spontaneously incorporated into the lipid bilayer under application of the membrane potential, and we successfully detected nascent channel activities. This way our experiment has mimicked bacterial synthetic membrane in the presence of a resting membrane potential. Technical details for establishing the in bulla expression system are described.
Collapse
|
21
|
Komiya M, Kato M, Tadaki D, Ma T, Yamamoto H, Tero R, Tozawa Y, Niwano M, Hirano‐Iwata A. Advances in Artificial Cell Membrane Systems as a Platform for Reconstituting Ion Channels. CHEM REC 2020; 20:730-742. [DOI: 10.1002/tcr.201900094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Maki Komiya
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical CommunicationTohoku University 2-1-1 Katahira, Aoba-ku, Sendai-shi Miyagi 980-8577 Japan
| | - Miki Kato
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical CommunicationTohoku University 2-1-1 Katahira, Aoba-ku, Sendai-shi Miyagi 980-8577 Japan
| | - Daisuke Tadaki
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical CommunicationTohoku University 2-1-1 Katahira, Aoba-ku, Sendai-shi Miyagi 980-8577 Japan
| | - Teng Ma
- Advanced Institute for Materials ResearchTohoku University 2-1-1 Katahira, Aoba-ku, Sendai-shi Miyagi 980-8577 Japan
| | - Hideaki Yamamoto
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical CommunicationTohoku University 2-1-1 Katahira, Aoba-ku, Sendai-shi Miyagi 980-8577 Japan
| | - Ryugo Tero
- Department of Applied Chemistry and Life ScienceToyohashi University of Technology 1-1 Hibarigaoka, Tempaku-cho, Toyohashi Aichi 441-8580 Japan
| | - Yuzuru Tozawa
- Graduate School of Science and EngineeringSaitama University 255 Shimo-Okubo, Sakura-ku, Saitama-shi Saitama 338-8570 Japan
| | - Michio Niwano
- Kansei Fukushi Research InstituteTohoku Fukushi University 6-149-1 Kunimi-ga-oka, Aoba-ku, Sendai-shi Miyagi 989-3201 Japan
| | - Ayumi Hirano‐Iwata
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical CommunicationTohoku University 2-1-1 Katahira, Aoba-ku, Sendai-shi Miyagi 980-8577 Japan
- Advanced Institute for Materials ResearchTohoku University 2-1-1 Katahira, Aoba-ku, Sendai-shi Miyagi 980-8577 Japan
| |
Collapse
|
22
|
Hartel AJW, Shekar S, Ong P, Schroeder I, Thiel G, Shepard KL. High bandwidth approaches in nanopore and ion channel recordings - A tutorial review. Anal Chim Acta 2019; 1061:13-27. [PMID: 30926031 PMCID: PMC6860018 DOI: 10.1016/j.aca.2019.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Transport processes through ion-channel proteins, protein pores, or solid-state nanopores are traditionally recorded with commercial patch-clamp amplifiers. The bandwidth of these systems is typically limited to 10 kHz by signal-to-noise-ratio (SNR) considerations associated with these measurement platforms. At high bandwidth, the input-referred current noise in these systems dominates, determined by the input-referred voltage noise of the transimpedance amplifier applied across the capacitance at the input of the amplifier. This capacitance arises from several sources: the parasitic capacitance of the amplifier itself; the capacitance of the lipid bilayer harboring the ion channel protein (or the membrane used to form the solid-state nanopore); and the capacitance from the interconnections between the electronics and the membrane. Here, we review state-of-the-art applications of high-bandwidth conductance recordings of both ion channels and solid-state nanopores. These approaches involve tightly integrating measurement electronics fabricated in complementary metal-oxide semiconductors (CMOS) technology with lipid bilayer or solid-state membranes. SNR improvements associated with this tight integration push the limits of measurement bandwidths, in some cases in excess of 10 MHz. Recent case studies demonstrate the utility of these approaches for DNA sequencing and ion-channel recordings. In the latter case, studies with extended bandwidth have shown the potential for providing new insights into structure-function relations of these ion-channel proteins as the temporal resolutions of functional recordings matches time scales achievable with state-of-the-art molecular dynamics simulations.
Collapse
Affiliation(s)
- Andreas J W Hartel
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| | - Siddharth Shekar
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Peijie Ong
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kenneth L Shepard
- Bioelectronic Systems Laboratory, Department of Electrical Engineering, Columbia University, New York City, 10027, NY, USA.
| |
Collapse
|
23
|
Khoury ME, Winterstein T, Weber W, Stein V, Schlaak HF, Thiel G. Photolithographic Fabrication of Micro Apertures in Dry Film Polymer Sheets for Channel Recordings in Planar Lipid Bilayers. J Membr Biol 2019; 252:173-182. [PMID: 30863900 PMCID: PMC6556160 DOI: 10.1007/s00232-019-00062-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022]
Abstract
Planar lipid bilayers constitute a versatile method for measuring the activity of protein channels and pores on a single molecule level. Ongoing efforts attempt to tailor this method for detecting biomedically relevant target analytes or for high-throughput screening of drugs. To improve the mechanical stability of bilayer recordings, we use a thin-film epoxy resist ADEX as septum in free-standing vertical bilayers. Defined apertures with diameters between 30 µm and 100 µm were micro-fabricated by photolithography. The performance of these septa was tested by functional reconstitution of the K+ channel KcvNTS in lipid bilayers spanned over apertures in ADEX or Teflon films; the latter is conventionally used in bilayer recordings and serves as reference. We observe that the functional properties of the K+ channel are identical in both materials while ADEX provides no advantage in terms of capacitance and signal-to-noise ratio. In contrast to Teflon, however, ADEX enables long-term experimental recordings while the stability of the lipid bilayer is not compromised by pipetting solutions in and out of the recording chamber. Combined with the fact that the ADEX films can be cleaned with acetone, our results suggest that ADEX carries great potential for multiplexing bilayer chambers in robust and reusable sensing devices.
Collapse
Affiliation(s)
- Mario El Khoury
- Department of Electrical Engineering and Information Technology, Institute of Electromechanical Design, Microtechnology and Electromechanical Systems, TU Darmstadt, Darmstadt, Germany
| | - Tobias Winterstein
- Membranbiophysik, Department of Biology, TU Darmstadt, Schnitspahnstrasse 3, 64287, Darmstadt, Germany
| | - Wadim Weber
- Protein Engineering, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | - Viktor Stein
- Protein Engineering, Department of Biology, TU Darmstadt, Darmstadt, Germany
| | - Helmut F Schlaak
- Department of Electrical Engineering and Information Technology, Institute of Electromechanical Design, Microtechnology and Electromechanical Systems, TU Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Membranbiophysik, Department of Biology, TU Darmstadt, Schnitspahnstrasse 3, 64287, Darmstadt, Germany.
| |
Collapse
|
24
|
Watanabe R. Microsystem for the single molecule analysis of membrane transport proteins. Biochim Biophys Acta Gen Subj 2019; 1864:129330. [PMID: 30926442 DOI: 10.1016/j.bbagen.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022]
Abstract
Micro-chamber arrays enable highly sensitive and quantitative bioassays at the single-molecule level. Accordingly, they are widely used for ultra-sensitive biomedical applications, e.g., digital PCR and digital ELISA. However, the versatility of micro-chambers is generally limited to reactions in aqueous solutions, although various functions of membrane proteins are extremely important. To address this issue, microsystems using arrayed micro-sized chambers sealed with lipid bilayers, referred to here as a "biomembrane microsystems", have been developed by many research groups for the analysis of membrane proteins. In this review, I would like to introduce recent progress on the single molecule analysis of membrane transport proteins using a biomembrane microsystem, and discuss the future prospects for its use in analytical and pharmacological applications.
Collapse
|
25
|
Urakubo K, Iwamoto M, Oiki S. Drop-in-well chamber for droplet interface bilayer with built-in electrodes. Methods Enzymol 2019; 621:347-363. [PMID: 31128788 DOI: 10.1016/bs.mie.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various methods have been developed for the formation of planar lipid bilayers, and recent techniques using water-in-oil droplets, such as droplet interface bilayer (DIB) and contact bubble bilayer (CBB) methods, allow the ready formation of bilayers with arbitrary lipid compositions. Here, we developed a simple and portable DIB system using drop-in-wells, shaping two merging wells for settling electrolyte droplets. An aliquot of the electrolyte solution (1μL) is dropped into an organic solvent, and the droplet sinks to the drop-in-well at the bottom, where two monolayer-lined droplets come in contact to form the bilayer. Pre-installed electrodes allow electrophysiological measurements. The detailed drop-in-well method is presented, and some variations of the method, such as the use of microelectrodes and a sheet with a small hole for low-noise recordings, are extended. Examples of single channel current recordings of the KcsA potassium channel are demonstrated.
Collapse
Affiliation(s)
- Kazuhiro Urakubo
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan.
| |
Collapse
|
26
|
Constitutive boost of a K + channel via inherent bilayer tension and a unique tension-dependent modality. Proc Natl Acad Sci U S A 2018; 115:13117-13122. [PMID: 30509986 DOI: 10.1073/pnas.1812282115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular mechanisms underlying channel-membrane interplay have been extensively studied. Cholesterol, as a major component of the cell membrane, participates either in specific binding to channels or via modification of membrane physical features. Here, we examined the action of various sterols (cholesterol, epicholesterol, etc.) on a prototypical potassium channel (KcsA). Single-channel current recordings of the KcsA channel were performed in a water-in-oil droplet bilayer (contact bubble bilayer) with a mixed phospholipid composition (azolectin). Upon membrane perfusion of sterols, the activated gate at acidic pH closed immediately, irrespective of the sterol species. During perfusion, we found that the contacting bubbles changed their shapes, indicating alterations in membrane physical features. Absolute bilayer tension was measured according to the principle of surface chemistry, and inherent bilayer tension was ∼5 mN/m. All tested sterols decreased the tension, and the nonspecific sterol action to the channel was likely mediated by the bilayer tension. Purely mechanical manipulation that reduced bilayer tension also closed the gate, whereas the resting channel at neutral pH never activated upon increased tension. Thus, rather than conventional stretch activation, the channel, once ready to activate by acidic pH, changes the open probability through the action of bilayer tension. This constitutes a channel regulating modality by two successive stimuli. In the contact bubble bilayer, inherent bilayer tension was high, and the channel remained boosted. In the cell membrane, resting tension is low, and it is anticipated that the ready-to-activate channel remains closed until bilayer tension reaches a few millinewton/meter during physiological and pathological cellular activities.
Collapse
|
27
|
Oiki S, Iwamoto M. Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay. Biol Pharm Bull 2018; 41:303-311. [PMID: 29491206 DOI: 10.1248/bpb.b17-00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluidity and mosaicity are two critical features of biomembranes, by which membrane proteins function through chemical and physical interactions within a bilayer. To understand this complex and dynamic system, artificial lipid bilayer membranes have served as unprecedented tools for experimental examination, in which some aspects of biomembrane features have been extracted, and to which various methodologies have been applied. Among the lipid bilayers involving liposomes, planar lipid bilayers and nanodiscs, recent developments of lipid bilayer methods and the results of our channel studies are reviewed herein. Principles and techniques of bilayer formation are summarized, which have been extended to the current techniques, where a bilayer is formed from lipid-coated water-in-oil droplets (water-in-oil bilayer). In our newly developed method, termed the contact bubble bilayer (CBB) method, a water bubble is blown from a pipette into a bulk oil phase, and monolayer-lined bubbles are docked to form a bilayer through manipulation by pipette. An asymmetric bilayer can be readily formed, and changes in composition in one leaflet were possible. Taking advantage of the topological configuration of the CBB, such that the membrane's hydrophobic interior is contiguous with the surrounding bulk organic phase, oil-dissolved substances such as cholesterol were delivered directly to the bilayer interior to perfuse around the membrane-embedded channels (membrane perfusion), and current recordings in the single-channel allowed detection of immediate changes in the channels' response to cholesterol. Chemical and mechanical manipulation in each monolayer (monolayer technology) allows the examination of dynamic channel-membrane interplay.
Collapse
Affiliation(s)
- Shigetoshi Oiki
- Department of Molecular Physiology & Biophysics, University of Fukui Faculty of Medical Sciences
| | - Masayuki Iwamoto
- Department of Molecular Physiology & Biophysics, University of Fukui Faculty of Medical Sciences
| |
Collapse
|
28
|
Rondelli V, Del Favero E, Brocca P, Fragneto G, Trapp M, Mauri L, Ciampa M, Romani G, Braun C, Winterstein L, Schroeder I, Thiel G, Moroni A, Cantu' L. Directional K+ channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform. Biochim Biophys Acta Gen Subj 2018; 1862:1742-1750. [DOI: 10.1016/j.bbagen.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
|
29
|
Uyeda A, Watanabe T, Hohsaka T, Matsuura T. Different protein localizations on the inner and outer leaflet of cell-sized liposomes using cell-free protein synthesis. Synth Biol (Oxf) 2018; 3:ysy007. [PMID: 32995515 PMCID: PMC7445883 DOI: 10.1093/synbio/ysy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/02/2022] Open
Abstract
Membranes of living cells possess asymmetry. The inner and outer leaflets of the membrane consist of different phospholipid compositions, which are known to affect the function of membrane proteins, and the loss of the asymmetry has been reported to lead to cell apoptosis. In addition, different proteins are found on the inner and outer leaflets of the membrane, and they are essential for various biochemical reactions, including those related to signal transduction and cell morphology. While in vitro lipid bilayer reconstitution with asymmetric phospholipid compositions has been reported, the reconstitution of lipid bilayer where different proteins are localized in the inner and outer leaflet, thereby enables asymmetric protein localizations, has remained difficult. Herein, we developed a simple method to achieve this asymmetry using an in vitro transcription–translation system (IVTT). The method used a benzylguanine (BG) derivative-modified phospholipid, which forms a covalent bond with a snap-tag sequence. We show that purified snap-tagged protein can be localized to the cell-sized liposome surface via an interaction between BG and the snap-tag. We then show that IVTT-synthesized proteins can be located at the lipid membrane and that different proteins can be asymmetrically localized on the outer and inner leaflets of liposomes.
Collapse
Affiliation(s)
- Atsuko Uyeda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Iwamoto M, Elfaramawy MA, Yamatake M, Matsuura T, Oiki S. Concurrent In Vitro Synthesis and Functional Detection of Nascent Activity of the KcsA Channel under a Membrane Potential. ACS Synth Biol 2018; 7:1004-1011. [PMID: 29566487 DOI: 10.1021/acssynbio.7b00454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Processes involved in the functional formation of prokaryotic membrane proteins have remained elusive. Here, we developed a new in vitro membrane protein expression system to detect nascent activities of the KcsA potassium channel in lipid bilayers under an applied membrane potential. The channel was synthesized using a reconstituted Escherichia coli-based in vitro transcription/translation system (IVTT) in a water-in-oil droplet lined by a membrane. The synthesized channels spontaneously incorporated into the membrane even without the translocon machinery (unassisted pathway) and formed functional channels with the correct orientation. The single-channel current of the first appearing nascent channel was captured, followed by the subsequent appearance of multiple channels. Notably, the first appearance time shortened substantially as the membrane potential was hyperpolarized. Under a steadily applied membrane potential, this system serves as a production line of membrane proteins via the unassisted pathway, mimicking the bacterial synthetic membrane.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| | - Maie A. Elfaramawy
- Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Yamatake
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui, Eiheiji-cho, Fukui 910-1193, Japan
| |
Collapse
|
31
|
Winterstein LM, Kukovetz K, Rauh O, Turman DL, Braun C, Moroni A, Schroeder I, Thiel G. Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. J Gen Physiol 2018; 150:637-646. [PMID: 29487088 PMCID: PMC5881443 DOI: 10.1085/jgp.201711904] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/20/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that membrane proteins can be efficiently synthesized in vitro before spontaneously inserting into soluble nanoscale lipid bilayers called nanodiscs (NDs). In this paper, we present experimental details that allow a combination of in vitro translation of ion channels into commercially available NDs followed by their direct reconstitution from these nanobilayers into standard bilayer setups for electrophysiological characterization. We present data showing that two model K+ channels, Kcv and KcsA, as well as a recently discovered dual-topology F- channel, Fluc, can be reliably reconstituted from different types of NDs into bilayers without contamination from the in vitro translation cocktail. The functional properties of Kcv and KcsA were characterized electrophysiologically and exhibited sensitivity to the lipid composition of the target DPhPC bilayer, suggesting that the channel proteins were fully exposed to the target membrane and were no longer surrounded by the lipid/protein scaffold. The single-channel properties of the three tested channels are compatible with studies from recordings of the same proteins in other expression systems. Altogether, the data show that synthesis of ion channels into NDs and their subsequent reconstitution into conventional bilayers provide a fast and reliable method for functional analysis of ion channels.
Collapse
Affiliation(s)
| | - Kerri Kukovetz
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Oliver Rauh
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Daniel L Turman
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA
| | - Christian Braun
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences and Consiglio Nazionale delle Ricerche - Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy
| | - Indra Schroeder
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerhard Thiel
- Plant Membrane Biophysics, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
32
|
Kojima S, Iwamoto M, Oiki S, Tochigi S, Takahashi H. Thylakoid membranes contain a non-selective channel permeable to small organic molecules. J Biol Chem 2018; 293:7777-7785. [PMID: 29602906 DOI: 10.1074/jbc.ra118.002367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/20/2018] [Indexed: 11/06/2022] Open
Abstract
The thylakoid lumen is a membrane-enclosed aqueous compartment. Growing evidence indicates that the thylakoid lumen is not only a sink for protons and inorganic ions translocated during photosynthetic reactions but also a place for metabolic activities, e.g. proteolysis of photodamaged proteins, to sustain efficient photosynthesis. However, the mechanism whereby organic molecules move across the thylakoid membranes to sustain these lumenal activities is not well understood. In a recent study of Cyanophora paradoxa chloroplasts (muroplasts), we fortuitously detected a conspicuous diffusion channel activity in the thylakoid membranes. Here, using proteoliposomes reconstituted with the thylakoid membranes from muroplasts and from two other phylogenetically distinct organisms, cyanobacterium Synechocystis sp. PCC 6803 and spinach, we demonstrated the existence of nonselective channels large enough for enabling permeation of small organic compounds (e.g. carbohydrates and amino acids with Mr < 1500) in the thylakoid membranes. Moreover, we purified, identified, and characterized a muroplast channel named here CpTPOR. Osmotic swelling experiments revealed that CpTPOR forms a nonselective pore with an estimated radius of ∼1.3 nm. A lipid bilayer experiment showed variable-conductance channel activity with a typical single-channel conductance of 1.8 nS in 1 m KCl with infrequent closing transitions. The CpTPOR amino acid sequence was moderately similar to that of a voltage-dependent anion-selective channel of the mitochondrial outer membrane, although CpTPOR exhibited no obvious selectivity for anions and no voltage-dependent gating. We propose that transmembrane diffusion pathways are ubiquitous in the thylakoid membranes, presumably enabling rapid transfer of various metabolites between the lumen and stroma.
Collapse
Affiliation(s)
- Seiji Kojima
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan, .,the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| | - Masayuki Iwamoto
- the Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- the Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Saeko Tochigi
- From the Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan.,the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| | - Hideyuki Takahashi
- the Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan, and
| |
Collapse
|
33
|
Abstract
Transmembrane protein 16F (TMEM16F) is a Ca2+-dependent phospholipid scramblase that translocates phospholipids bidirectionally between the leaflets of the plasma membrane. Phospholipid scrambling of TMEM16F causes exposure of phosphatidylserine in activated platelets to induce blood clotting and in differentiated osteoblasts to promote bone mineralization. Despite the importance of TMEM16F-mediated phospholipid scrambling in various biological reactions, the fundamental features of the scrambling reaction remain elusive due to technical difficulties in the preparation of a platform for assaying scramblase activity in vitro. Here, we established a method to express and purify mouse TMEM16F as a dimeric molecule by constructing a stable cell line and developed a microarray containing membrane bilayers with asymmetrically distributed phospholipids as a platform for single-molecule scramblase assays. The purified TMEM16F was integrated into the microarray, and monitoring of phospholipid translocation showed that a single TMEM16F molecule transported phospholipids nonspecifically between the membrane bilayers in a Ca2+-dependent manner. Thermodynamic analysis of the reaction indicated that TMEM16F transported 4.5 × 104 lipids per second at 25 °C, with an activation free energy of 47 kJ/mol. These biophysical features were similar to those observed with channels, which transport substrates by facilitating diffusion, and supported the stepping-stone model for the TMEM16F phospholipid scramblase.
Collapse
|
34
|
Elfaramawy MA, Fujii S, Uyeda A, Osaki T, Takeuchi S, Kato Y, Watanabe H, Matsuura T. Quantitative analysis of cell-free synthesized membrane proteins at the stabilized droplet interface bilayer. Chem Commun (Camb) 2018; 54:12226-12229. [DOI: 10.1039/c8cc06804f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantification of membrane proteins supplied by cell-free synthesis was achieved by using an easy-to-use droplet interface bilayer chamber model.
Collapse
Affiliation(s)
- Maie A. Elfaramawy
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Satoshi Fujii
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- 213-0012 Kawasaki
- Japan
| | - Atsuko Uyeda
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- 213-0012 Kawasaki
- Japan
- Institute of Industrial Science
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- 213-0012 Kawasaki
- Japan
- Institute of Industrial Science
| | - Yasuhiko Kato
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Hajime Watanabe
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Tomoaki Matsuura
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| |
Collapse
|
35
|
Kalathingal M, Sumikama T, Mori T, Oiki S, Saito S. Structure and dynamics of solvent molecules inside the polytheonamide B channel in different environments: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:3334-3348. [DOI: 10.1039/c7cp06299k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β6.3-helical channel of the marine cytotoxic peptide, polytheonamide B (pTB), is examined in water, the POPC bilayer, and a 1 : 1 chloroform/methanol mixture using all-atom molecular dynamics simulations.
Collapse
Affiliation(s)
- Mahroof Kalathingal
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| | - Takashi Sumikama
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| | - Toshifumi Mori
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| | - Shinji Saito
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| |
Collapse
|
36
|
Iwamoto M, Sumino A, Shimada E, Kinoshita M, Matsumori N, Oiki S. Channel Formation and Membrane Deformation via Sterol-Aided Polymorphism of Amphidinol 3. Sci Rep 2017; 7:10782. [PMID: 28883505 PMCID: PMC5589915 DOI: 10.1038/s41598-017-11135-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022] Open
Abstract
Amphidinol 3 (AM3) is an anti-fungal polyene extracted from a marine dinoflagellate. Here, we examined the ion channel activity and membrane-embedded structure of AM3 using a lipid bilayer method and atomic force microscopy (AFM). AM3 exhibited large-conductance (~1 nS) and non-selective single-channel activity only when sterols were present in the membrane leaflet of the AM3-added side. The variable conductance suggests the formation of a multimeric barrel-stave pore. At high AM3 concentrations, giant-conductance “jumbo” channels (~40 nS) emerged. AFM revealed a thicker raft-like membrane phase with the appearance of a wrinkled surface, in which phase pores (diameter: ~10 nm) were observed. The flip-flop of ergosterol occurred only after the appearance of the jumbo channel, indicating that the jumbo channel induced a continuity between the outer and inner leaflets of the membrane: a feature characteristic of toroidal-like pores. Thus, AM3 forms different types of sterol-aided polymorphic channels in a concentration dependent manner.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Ayumi Sumino
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan.,High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.,Bio-AFM frontier Research Center, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Eri Shimada
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.
| |
Collapse
|
37
|
Iwamoto M, Oiki S. Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer. Sci Rep 2017; 7:6857. [PMID: 28761089 PMCID: PMC5537337 DOI: 10.1038/s41598-017-07048-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/20/2017] [Indexed: 11/12/2022] Open
Abstract
In fluidic biomembranes, lipids and membrane proteins diffuse restlessly, and lipid compositions change steadily. To mimic dynamic behavior of the biomembranes, a method for introducing rapid changes in the constituents in the lipid bilayer was developed. In contact bubble bilayers (CBB), as a water-in-oil droplet bilayer system, the bilayer hydrophobic interior is contiguous with the bulk oil phase. Making use of this geometrical feature as an access route, hydrophobic substances were administered into the bilayer. Polytheonamide B, a cytotoxic hydrophobic peptide, was applied, and oriented incorporation and relevant single-channel current recordings were enabled. Nystatin was pre-loaded in the CBB, and sterol perfusion exhibited slow development of the macroscopic current. On the contrary, the reconstituted KcsA potassium channels immediately attenuate the channel activity when cholesterol was applied. This oil-phase route in the CBB allows rapid perfusion of hydrophobic substances around the bilayer-embedded channels during continuous recordings of channel currents.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, 910-1193, Fukui, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, 910-1193, Fukui, Japan.
| |
Collapse
|
38
|
Watanabe R, Soga N, Hara M, Noji H. Arrayed water-in-oil droplet bilayers for membrane transport analysis. LAB ON A CHIP 2016; 16:3043-8. [PMID: 27080052 DOI: 10.1039/c6lc00155f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The water-in-oil droplet bilayer is a simple and useful lipid bilayer system for membrane transport analysis. The droplet interface bilayer is readily formed by the contact of two water-in-oil droplets enwrapped by a phospholipid monolayer. However, the size of individual droplets with femtoliter volumes in a high-throughput manner is difficult to control, resulting in low sensitivity and throughput of membrane transport analysis. To overcome this drawback, in this study, we developed a novel micro-device in which a large number of droplet interface bilayers (>500) are formed at a time by using femtoliter-sized droplet arrays immobilized on a hydrophobic/hydrophilic substrate. The droplet volume was controllable from 3.5 to 350 fL by changing the hydrophobic/hydrophilic pattern on the device, allowing high-throughput analysis of membrane transport mechanisms including membrane permeability to solutes (e.g., ions or small molecules) with or without the aid of transport proteins. Thus, this novel platform broadens the versatility of water-in-oil droplet bilayers and will pave the way for novel analytical and pharmacological applications such as drug screening.
Collapse
Affiliation(s)
- R Watanabe
- Department of Applied Chemistry, The University of Tokyo, PRESTO, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - N Soga
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - M Hara
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - H Noji
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
39
|
Matsuki Y, Iwamoto M, Mita K, Shigemi K, Matsunaga S, Oiki S. Rectified Proton Grotthuss Conduction Across a Long Water-Wire in the Test Nanotube of the Polytheonamide B Channel. J Am Chem Soc 2016; 138:4168-77. [DOI: 10.1021/jacs.5b13377] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yuka Matsuki
- Department
of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masayuki Iwamoto
- Department
of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenichiro Mita
- Department
of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kenji Shigemi
- Department
of Anesthesiology and Reanimatology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shigeki Matsunaga
- Laboratory
of Aquatic Natural Products Chemistry, Graduate School of Agricultural
and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shigetoshi Oiki
- Department
of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
40
|
Najem JS, Dunlap MD, Yasmann A, Freeman EC, Grant JW, Sukharev S, Leo DJ. Multifunctional, Micropipette-based Method for Incorporation And Stimulation of Bacterial Mechanosensitive Ion Channels in Droplet Interface Bilayers. J Vis Exp 2015. [PMID: 26650467 PMCID: PMC4692740 DOI: 10.3791/53362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MscL, a large conductance mechanosensitive channel (MSC), is a ubiquitous osmolyte release valve that helps bacteria survive abrupt hypo-osmotic shocks. It has been discovered and rigorously studied using the patch-clamp technique for almost three decades. Its basic role of translating tension applied to the cell membrane into permeability response makes it a strong candidate to function as a mechanoelectrical transducer in artificial membrane-based biomolecular devices. Serving as building blocks to such devices, droplet interface bilayers (DIBs) can be used as a new platform for the incorporation and stimulation of MscL channels. Here, we describe a micropipette-based method to form DIBs and measure the activity of the incorporated MscL channels. This method consists of lipid-encased aqueous droplets anchored to the tips of two opposing (coaxially positioned) borosilicate glass micropipettes. When droplets are brought into contact, a lipid bilayer interface is formed. This technique offers control over the chemical composition and the size of each droplet, as well as the dimensions of the bilayer interface. Having one of the micropipettes attached to a harmonic piezoelectric actuator provides the ability to deliver a desired oscillatory stimulus. Through analysis of the shapes of the droplets during deformation, the tension created at the interface can be estimated. Using this technique, the first activity of MscL channels in a DIB system is reported. Besides MS channels, activities of other types of channels can be studied using this method, proving the multi-functionality of this platform. The method presented here enables the measurement of fundamental membrane properties, provides a greater control over the formation of symmetric and asymmetric membranes, and is an alternative way to stimulate and study mechanosensitive channels.
Collapse
Affiliation(s)
- Joseph S Najem
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University
| | - Myles D Dunlap
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University
| | | | | | - John W Grant
- Department of Engineering Sciences and Mechanics, Virginia Polytechnic Institute and State University
| | | | | |
Collapse
|
41
|
Oiki S. Channel function reconstitution and re-animation: a single-channel strategy in the postcrystal age. J Physiol 2015; 593:2553-73. [PMID: 25833254 DOI: 10.1113/jp270025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 03/24/2015] [Indexed: 01/30/2023] Open
Abstract
The most essential properties of ion channels for their physiologically relevant functions are ion-selective permeation and gating. Among the channel species, the potassium channel is primordial and the most ubiquitous in the biological world, and knowledge of this channel underlies the understanding of features of other ion channels. The strategy applied to studying channels changed dramatically after the crystal structure of the potassium channel was resolved. Given the abundant structural information available, we exploited the bacterial KcsA potassium channel as a simple model channel. In the postcrystal age, there are two effective frameworks with which to decipher the functional codes present in the channel structure, namely reconstitution and re-animation. Complex channel proteins are decomposed into essential functional components, and well-examined parts are rebuilt for integrating channel function in the membrane (reconstitution). Permeation and gating are dynamic operations, and one imagines the active channel by breathing life into the 'frozen' crystal (re-animation). Capturing the motion of channels at the single-molecule level is necessary to characterize the behaviour of functioning channels. Advanced techniques, including diffracted X-ray tracking, lipid bilayer methods and high-speed atomic force microscopy, have been used. Here, I present dynamic pictures of the KcsA potassium channel from the submolecular conformational changes to the supramolecular collective behaviour of channels in the membrane. These results form an integrated picture of the active channel and offer insights into the processes underlying the physiological function of the channel in the cell membrane.
Collapse
Affiliation(s)
- Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan
| |
Collapse
|