1
|
Jalilian H, Heydari S, Javanshir E, Jamebozorgi K, Mir N, Eshraghi A, Fehresti S. Hospitalization costs and out-of-pocket (OOP) payment in lung cancer patients in Iran: Health Sector Evolution Plan (HSEP) has reduced OOP payments and improved financial protection. PLoS One 2024; 19:e0297934. [PMID: 39700126 DOI: 10.1371/journal.pone.0297934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 01/15/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVE In Iran, Health Sector Evolution Plan, the most significant reform in the healthcare system in recent decades, has been launched since 2014 with the objective of achieving universal health coverage, decreasing out-of-pocket health expenditures and improving access to health services in hospitals and clinics affiliated to the Ministry of Health and Medical Education (MOHME). This study aimed to estimate the hospitalization costs of lung cancer and the impact of HSEP on hospitalization costs of lung cancer and patients' contribution in Iran between 2010 and 2017. METHODS This was a prevalence-based cost of illness study with a bottom-up costing approach. The sample size included 1778 lung cancer patients hospitalized in the Imam Reza hospital in Tabriz, Iran, between May 5, 2010, to May 5, 2014, and four years after the implementation of Health Sector Evolution Plan: from May 5, 2014, to May 5, 2017. The analysis was conducted from a societal perspective. Data were extracted from the electronic medical records of patients and were analyzed using SPSS V22.0, STATA V13.0 and Microsoft Excel 2016. The Interrupted Time-Series design was applied to estimate the impact of the implementation of HSEP on hospitalization costs and patient contribution rate for reimbursement of costs. RESULTS The mean hospitalization costs of lung cancer before and after the implementation of Health Sector Evolution Plan was estimated at 2860 ± 4575 and 5300 ± 8880 PPP (Current International $), respectively. Moreover, the amount of out-of-pocket payments reduced from 705 PPP (Current International$) (22.16%) before the implementation of Health Sector Evolution Plan to 480 PPP (Current International $) (10.5%) after its implementation. the hospitalization costs went up moderately before the HSEP (increased from 2320 $ in 2010 to 3025 $ in 2013). After the HSEP, it continued to rise, but with a more significant increase until 2016. Then, in 2016, it reached a peak (6395 $) before dropping in 2017 (5005 $). Regarding patient contribution, before the HSEP, the percentage of patient contributions increased from 19.45 in 2010 to 24.28 in 2013. With HSEP's implementation, this fell dramatically to 14.47 and continued to decline, reaching 7.99% in 2016. In 2017, patient contribution increased again and reached 9.58%. CONCLUSION Overall, hospitalization costs experienced an upward trend over the course of study, but this trend considerably intensified further after the HSEP. The patient contribution demonstrated an upward trend before HSEP, followed by a significant decline post-HESP, and the percentage of out-of-pocket payments reduced after implementation of HSEP. Therefor this plan has been successful in achieving the goal of financial protection of patients.
Collapse
Affiliation(s)
- Habib Jalilian
- Department of Health Services Management, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Heydari
- Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elnaz Javanshir
- Cardiovascular Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nazanin Mir
- Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Eshraghi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeedeh Fehresti
- Department of Health Economics and Management, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gao G, Fiorica PN, McClellan J, Barbeira AN, Li JL, Olopade OI, Im HK, Huo D. A joint transcriptome-wide association study across multiple tissues identifies candidate breast cancer susceptibility genes. Am J Hum Genet 2023; 110:950-962. [PMID: 37164006 PMCID: PMC10257003 DOI: 10.1016/j.ajhg.2023.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified more than 200 genomic loci for breast cancer risk, but specific causal genes in most of these loci have not been identified. In fact, transcriptome-wide association studies (TWASs) of breast cancer performed using gene expression prediction models trained in breast tissue have yet to clearly identify most target genes. To identify candidate genes, we performed a GWAS analysis in a breast cancer dataset from UK Biobank (UKB) and combined the results with the GWAS results of the Breast Cancer Association Consortium (BCAC) by a meta-analysis. Using the summary statistics from the meta-analysis, we performed a joint TWAS analysis that combined TWAS signals from multiple tissues. We used expression prediction models trained in 11 tissues that are potentially relevant to breast cancer from the Genotype-Tissue Expression (GTEx) data. In the GWAS analysis, we identified eight loci distinct from those reported previously. In the TWAS analysis, we identified 309 genes at 108 genomic loci to be significantly associated with breast cancer at the Bonferroni threshold. Of these, 17 genes were located in eight regions that were at least 1 Mb away from published GWAS hits. The remaining TWAS-significant genes were located in 100 known genomic loci from previous GWASs of breast cancer. We found that 21 genes located in known GWAS loci remained statistically significant after conditioning on previous GWAS index variants. Our study provides insights into breast cancer genetics through mapping candidate target genes in a large proportion of known GWAS loci and discovering multiple new loci.
Collapse
Affiliation(s)
- Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Peter N Fiorica
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Julian McClellan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Alvaro N Barbeira
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - James L Li
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Olufunmilayo I Olopade
- Section of Hematology & Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Hae Kyung Im
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Dezheng Huo
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Wang Y, Yang Q, Zheng L. Association of oxidative stress, programmed cell death, GSTM1 gene polymorphisms, smoking and the risk of lung carcinogenesis: A two-step Mendelian randomization study. Front Physiol 2023; 14:1145129. [PMID: 37143928 PMCID: PMC10151499 DOI: 10.3389/fphys.2023.1145129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Aim: We aimed to examine the association of oxidative stress, programmed cell death, smoking, and the GSTM1 gene in the risk of lung carcinogenesis. The two-step Mendelian randomization will reveal evidence supporting the association of the exposure and mediators with the resulting outcome. Methods: In step 1, we estimated the impact of smoking exposure on lung carcinogenesis and programmed cell death. Our study involved a total of 500,000 patients of European ancestry, from whom we obtained genotype imputation information. Specifically, we genotyped two arrays: the UK Biobank Axiom (UKBB) which accounted for 95% of marker content, and the UK BiLIEVE Axiom (UKBL). This allowed us to unmask the association between smoking exposure and the incidence of lung carcinogenesis. In step 2, we further examined the effects of smoking on oxidative stress, programmed cell death, and the incidence of lung carcinogenesis. Results: Different outcomes emerged from the two-step Mendelian randomization. The GSTM1 gene variant was found to be critical in the development of lung carcinogenesis, as its deletion or deficiency can induce the condition. A GWAS study on participant information obtained from the UK Biobank revealed that smoking interferes with the GSTM1 gene, causing programmed cell death in the lungs and ultimately leading to lung carcinogenesis. The relative risk of developing lung carcinogenesis associated with oxidative stress was significantly high among current smokers (a hazard ratio of 17.8, 95% confidence interval of 12.2-26.0) and heavy smokers (a hazard ratio of 16.6 and a 95% confidence interval of 13.6-20.3) compared to individuals who never smoked. The GSTM1 gene polymorphism was found to be 0.006 among participants who have never smoked, <0.001 among ever-smokers, and 0.002 and <0.001 among current and former smokers, respectively. We compared the effect of smoking within two particular time frames, 6 years and 55 years, and found that smoking's impact on the GSTM1 gene was highest among participants who were 55 years old. The genetic risk peaked among individuals aged 50 years and above (PRS of at least 80%). Conclusion: Exposure to smoking is a significant factor in developing lung carcinogenesis, as it is associated with programmed cell death and other mediators involved in the condition. Oxidative stress caused by smoking is also a key mechanism in lung carcinogenesis. The results of the present study highlight the association between oxidative stress, programmed cell death, and the GSTM1 gene in the development of lung carcinogenesis.
Collapse
|
4
|
Adedokun B, Du Z, Gao G, Ahearn TU, Lunetta KL, Zirpoli G, Figueroa J, John EM, Bernstein L, Zheng W, Hu JJ, Ziegler RG, Nyante S, Bandera EV, Ingles SA, Press MF, Deming-Halverson SL, Rodriguez-Gil JL, Yao S, Ogundiran TO, Ojengbede O, Blot W, Troester MA, Nathanson KL, Hennis A, Nemesure B, Ambs S, Fiorica PN, Sucheston-Campbell LE, Bensen JT, Kushi LH, Torres-Mejia G, Hu D, Fejerman L, Bolla MK, Dennis J, Dunning AM, Easton DF, Michailidou K, Pharoah PDP, Wang Q, Sandler DP, Taylor JA, O'Brien KM, Kitahara CM, Falusi AG, Babalola C, Yarney J, Awuah B, Addai-Wiafe B, Chanock SJ, Olshan AF, Ambrosone CB, Conti DV, Ziv E, Olopade OI, Garcia-Closas M, Palmer JR, Haiman CA, Huo D. Cross-ancestry GWAS meta-analysis identifies six breast cancer loci in African and European ancestry women. Nat Commun 2021; 12:4198. [PMID: 34234117 PMCID: PMC8263739 DOI: 10.1038/s41467-021-24327-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Our study describes breast cancer risk loci using a cross-ancestry GWAS approach. We first identify variants that are associated with breast cancer at P < 0.05 from African ancestry GWAS meta-analysis (9241 cases and 10193 controls), then meta-analyze with European ancestry GWAS data (122977 cases and 105974 controls) from the Breast Cancer Association Consortium. The approach identifies four loci for overall breast cancer risk [1p13.3, 5q31.1, 15q24 (two independent signals), and 15q26.3] and two loci for estrogen receptor-negative disease (1q41 and 7q11.23) at genome-wide significance. Four of the index single nucleotide polymorphisms (SNPs) lie within introns of genes (KCNK2, C5orf56, SCAMP2, and SIN3A) and the other index SNPs are located close to GSTM4, AMPD2, CASTOR2, and RP11-168G16.2. Here we present risk loci with consistent direction of associations in African and European descendants. The study suggests that replication across multiple ancestry populations can help improve the understanding of breast cancer genetics and identify causal variants.
Collapse
Affiliation(s)
- Babatunde Adedokun
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zhaohui Du
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guimin Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Jonine Figueroa
- Usher Institute and CRUK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Esther M John
- Departments of Epidemiology & Population Health and of Medicine (Oncology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Leslie Bernstein
- Biomarkers of Early Detection and Prevention, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami, Miami, FL, USA
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sarah Nyante
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Sue A Ingles
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael F Press
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandra L Deming-Halverson
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Temidayo O Ogundiran
- Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katherine L Nathanson
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anselm Hennis
- University of the West Indies, Bridgetown, Barbados
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Peter N Fiorica
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA
| | - Lara E Sucheston-Campbell
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lawrence H Kushi
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Gabriela Torres-Mejia
- Center for Population Health Research, Instituto Nacional de Salud Publica, Cuernavaca, Mexico
| | - Donglei Hu
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura Fejerman
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Adeyinka G Falusi
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria
| | - Chinedum Babalola
- Department of Pharmaceutical Chemistry, University of Ibadan, Ibadan, Oyo, Nigeria
| | | | | | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - David V Conti
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Christopher A Haiman
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Dezheng Huo
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA.
- Department of Public Health Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Zhang WP, Yang C, Xu LJ, Wang W, Song L, He XF. Individual and combined effects of GSTM1, GSTT1, and GSTP1 polymorphisms on lung cancer risk: A meta-analysis and re-analysis of systematic meta-analyses. Medicine (Baltimore) 2021; 100:e26104. [PMID: 34190143 PMCID: PMC8257913 DOI: 10.1097/md.0000000000026104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
Thirty-five previous meta-analyses have been reported on the individual glutathione S-transferase M1 (GSTM1) present/null, glutathione S-transferase T1 (GSTT1) present/null, and glutathione S-transferase P1 (GSTP1) IIe105Val polymorphisms with lung cancer (LC) risk. However, they did not appraise the credibility and explore the combined effects between the 3 genes and LC risk.We performed a meta-analysis and re-analysis of systematic previous meta-analyses to solve the above problems.Meta-analyses of Observational Studies in Epidemiology guidelines were used. Moreover, we employed false-positive report probability (FPRP), Bayesian false discovery probability (BFDP), and the Venice criteria to verify the credibility of current and previous meta-analyses.Significantly increased LC risk was considered as "highly credible" or "positive" for GSTM1 null genotype in Japanese (odds ratio (OR) = 1.30, 95% confidence interval (CI) = 1.17-1.44, I2 = 0.0%, statistical power = 0.997, FPRP = 0.008, BFDP = 0.037, and Venice criteria: AAB), for GSTT1 null genotype in Asians (OR = 1.23, 95% CI = 1.12-1.36, I2 = 49.1%, statistical power = 1.000, FPRP = 0.051, BFDP = 0.771, and Venice criteria: ABB), especially Chinese populations (OR = 1.31, 95% CI = 1.16-1.49, I2 = 48.9%, Statistical power = 0.980, FPRP = 0.039, BFDP = 0.673, and Venice criteria: ABB), and for GSTP1 IIe105Val polymorphism in Asians (Val vs IIe: OR = 1.28, 95% CI = 1.17-1.42, I2 = 30.3%, statistical power = 0.999, FPRP = 0.003, BFDP = 0.183, and Venice criteria: ABB). Significantly increased lung adenocarcinoma (AC) risk was also considered as "highly credible" or "positive" in Asians for the GSTM1 (OR = 1.35, 95% CI = 1.22-1.48, I2 = 25.5%, statistical power = 0.988, FPRP < 0.001, BFDP < 0.001, and Venice criteria: ABB) and GSTT1 (OR = 1.36, 95% CI = 1.17-1.58, I2 = 30.2%, statistical power = 0.900, FPRP = 0.061, BFDP = 0.727, and Venice criteria: ABB) null genotype.This study indicates that GSTM1 null genotype is associated with increased LC risk in Japanese and lung AC risk in Asians; GSTT1 null genotype is associated with increased LC risk in Chinese, and GSTP1 IIe105Val polymorphism is associated with increased LC risk in Asians.
Collapse
Affiliation(s)
- Wen-Ping Zhang
- Department of Cardiothoracic Surgery, Heping Hospital Affiliated to Changzhi Medical College
| | - Chen Yang
- Teaching Reform Class of 2016 of the First Clinical College, Changzhi Medical College, Shanxi, Changzhi City
| | - Ling-Jun Xu
- Department of Pain Management, the First Affiliated Hospital, Jinan University, Guangzhou City
| | - Wei Wang
- Beijing Zhendong Guangming Pharmaceutical Research Institute Co Ltd, Beijing City
| | | | - Xiao-Feng He
- Department of Science and Education, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi City, PR China
| |
Collapse
|
6
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
7
|
Adibhesami G, Shahsavari GR, Amiri A, Emami Razavi AN, Shamaei M, Birjandi M. Glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) Polymorphisms and Lung Cancer Risk among a Select Group of Iranian People. Asian Pac J Cancer Prev 2018; 19:2921-2927. [PMID: 30362324 PMCID: PMC6291040 DOI: 10.22034/apjcp.2018.19.10.2921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective(s): Lung cancer, caused primarily by smoking, is one of the leading determinants of mortality throughout
the world. Here we investigated the effects of polymorphisms in two enzymes, i.e., GSTT1 and GSTM1, related to
the antioxidant defense line against carcinogens associated with lung cancer among a select group of Iranian people.
Materials and Methods: One hundred and twenty lung cancer patients from two referral centers in Tehran, Iran, were
recruited for comparison with 120 healthy controls. Genomic DNA was extracted from the FFPE tumor tissues of
the select cases and peripheral blood buffy coats of healthy controls. The polymorphisms of GSTT1 and GSTM1 were
investigated by multiplex polymerase chain reaction. Results: With the 240 samples studied, no specific relationship
with lung cancer was discerned for the GSTM1 (P=0.35; OR=1/33; 95% CI=0.79-2.25) polymorphism, but the GSTT1
(P=0.005; OR=2.4; CI=1.32-4.35) gene polymorphism revealed a notable association on logistic regression, taking
into account age and sex factors. Furthermore, the GSTT1 genotype distribution in patients with LSCC was different
from that of healthy cases (P=0.006; OR=3.11; CI=1.38-7.04). The risk of developing lung cancer with the T0M1
genotype was 3.46 times higher than with T1M1 genotype (P=0.002; OR=3.46; CI=1.61-7.46). Moreover, the risk of
developing LSCC cancer in people with T0M1 genotypes was significantly elevated (P=0.004; OR=4.5; CI=1.62-12.52).
Conclusion: Unlike GSTM1, the GSTT1 genotype distribution is associated with the incidence of lung cancer in Iranian
people. Different types of lung cancer appear to show various correlations with GST polymorphisms in this regard.
Collapse
Affiliation(s)
- Glavizh Adibhesami
- Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, Khorramabad, Iran. ,
| | - Gholam Reza Shahsavari
- Department of Biochemistry and Genetics, Lorestan University of Medical Sciences, Khorramabad, Iran. ,
| | - Ali Amiri
- Pulmonary Department, Lorestan University of Medical Science, Khorramabad, Iran
| | - Amir Nader Emami Razavi
- Iran National Tumor Bank, Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Shamaei
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Birjandi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
8
|
Costa-Machado LF, Martín-Hernández R, Sanchez-Luengo MÁ, Hess K, Vales-Villamarin C, Barradas M, Lynch C, de la Nava D, Diaz-Ruiz A, de Cabo R, Cañamero M, Martinez L, Sanchez-Carbayo M, Herranz D, Serrano M, Fernandez-Marcos PJ. Sirt1 protects from K-Ras-driven lung carcinogenesis. EMBO Rep 2018; 19:e43879. [PMID: 30021836 PMCID: PMC6123659 DOI: 10.15252/embr.201643879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022] Open
Abstract
The NAD+-dependent deacetylase SIRT1 can be oncogenic or tumor suppressive depending on the tissue. Little is known about the role of SIRT1 in non-small cell lung carcinoma (NSCLC), one of the deadliest cancers, that is frequently associated with mutated K-RAS Therefore, we investigated the effect of SIRT1 on K-RAS-driven lung carcinogenesis. We report that SIRT1 protein levels are downregulated by oncogenic K-RAS in a MEK and PI3K-dependent manner in mouse embryo fibroblasts (MEFs), and in human lung adenocarcinoma cell lines. Furthermore, Sirt1 overexpression in mice delays the appearance of K-RasG12V-driven lung adenocarcinomas, reducing the number and size of carcinomas at the time of death and extending survival. Consistently, lower levels of SIRT1 are associated with worse prognosis in human NSCLCs. Mechanistically, analysis of mouse Sirt1-Tg pneumocytes, isolated shortly after K-RasG12V activation, reveals that Sirt1 overexpression alters pathways involved in tumor development: proliferation, apoptosis, or extracellular matrix organization. Our work demonstrates a tumor suppressive role of SIRT1 in the development of K-RAS-driven lung adenocarcinomas in mice and humans, suggesting that the SIRT1-K-RAS axis could be a therapeutic target for NSCLCs.
Collapse
Affiliation(s)
- Luis Filipe Costa-Machado
- Bioactive Products and Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Roberto Martín-Hernández
- GENYAL Nutrigenomic Platform, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | | | - Katharina Hess
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Claudia Vales-Villamarin
- Bioactive Products and Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Marta Barradas
- Bioactive Products and Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Cian Lynch
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Daniel de la Nava
- Bioactive Products and Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Diaz-Ruiz
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Nutritional Interventions Group, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Marta Cañamero
- Histopathology Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Pathology and Tissue Analysis, Pharma Research and Early Development Roche Innovation Centre, Munich, Germany
| | - Lola Martinez
- Flow Cytometry Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Sanchez-Carbayo
- Translational Oncology Lab, Lucio Lascaray Research Center, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - Daniel Herranz
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Rutgers Cancer Institute of New Jersey and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Pablo J Fernandez-Marcos
- Bioactive Products and Metabolic Syndrome Group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
9
|
Yu P, Kusuma JD, Suarez MAR, Pamela Koong Shiao SY. Lung cancer susceptibility from GSTM1 deletion and air pollution with smoking status: a meta-prediction of worldwide populations. Oncotarget 2018; 9:31120-31132. [PMID: 30123431 PMCID: PMC6089566 DOI: 10.18632/oncotarget.25693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 01/25/2023] Open
Abstract
Glutathione S transferase mu 1 (GSTM1) gene has been associated with lung cancer (LC) risk, for GSTM1 enzyme playing a vital role in detoxification pathway and protective against toxic insults. The major objective of this study was to investigate GSTM1 deletion pattern and its association with LC in the world’s population by using meta-prediction techniques. The secondary objective was to examine the effects of air pollution, smoking status, and other factors for gene-environment interactions with GSTM1 deletion and LC risk. We completed a comprehensive search to yield a total of 170 studies (40,296 cases and 48,346 controls) published from 1999 to 2017 for meta-analyses. The results revealed that GSTM1 deletion type was associated with increased risk of LC, while GSTM1 present type provided protective effect for all populations combined worldwide. Subgroup analysis on the rank order of risks from highest to lowest, among racial–ethnic groups, were Chinese, South East Asian, other North Asian, European, and finally American. Additional predictive analyses presented that air pollution played a significant role with increased risks of GSTM1 deletion and LC susceptibility, and the risks increased for smokers with higher levels of air pollution. Based on the findings of meta-predictive analysis, increased air pollution levels and smoking status presented additive effects to the LC risk susceptibilities and GSTM1 gene polymorphisms, for gene-environment interactions. Future studies are needed to examine gene-environment interactions for GSTM1 interacting with environmental factors and dietary interventions to mitigate the toxic effects, for LC prevention.
Collapse
Affiliation(s)
- Pojui Yu
- Department of Nursing, Fu Jen Catholic University Hospital, New Taipei City, Taiwan (R.O.C.).,School of Nursing, College of Medicine, National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Joyce D Kusuma
- Heritage Victor Valley Medical Group, Augusta University, Augusta, GA, USA
| | - Maria Aurora R Suarez
- Critical Care and Telemetry, Citrus Valley Health Partners, Augusta University, Augusta, GA, USA
| | | |
Collapse
|
10
|
Smith SD, Kawash JK, Grigoriev A. Lightning-fast genome variant detection with GROM. Gigascience 2018; 6:1-7. [PMID: 29048532 PMCID: PMC5737730 DOI: 10.1093/gigascience/gix091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 09/13/2017] [Indexed: 12/30/2022] Open
Abstract
Current human whole genome sequencing projects produce massive amounts of data, often creating significant computational challenges. Different approaches have been developed for each type of genome variant and method of its detection, necessitating users to run multiple algorithms to find variants. We present Genome Rearrangement OmniMapper (GROM), a novel comprehensive variant detection algorithm accepting aligned read files as input and finding SNVs, indels, structural variants (SVs), and copy number variants (CNVs). We show that GROM outperforms state-of-the-art methods on 7 validated benchmarks using 2 whole genome sequencing (WGS) data sets. Additionally, GROM boasts lightning-fast run times, analyzing a 50× WGS human data set (NA12878) on commonly available computer hardware in 11 minutes, more than an order of magnitude (up to 72 times) faster than tools detecting a similar range of variants. Addressing the needs of big data analysis, GROM combines in 1 algorithm SNV, indel, SV, and CNV detection, providing superior speed, sensitivity, and precision. GROM is also able to detect CNVs, SNVs, and indels in non-paired-read WGS libraries, as well as SNVs and indels in whole exome or RNA sequencing data sets.
Collapse
Affiliation(s)
- Sean D Smith
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, 315 Penn St, Camden 08102, NJ, USA
| | - Joseph K Kawash
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, 315 Penn St, Camden 08102, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, 315 Penn St, Camden 08102, NJ, USA
| |
Collapse
|
11
|
He Q, Wang L, Zhang J, Lu F, Gong W, Pan J, Zhong J, Hu R, Yu M. CYP2E1 and GSTM1 gene polymorphisms, environmental factors, and the susceptibility to lung cancer. J Clin Lab Anal 2018; 32:e22403. [PMID: 29604112 DOI: 10.1002/jcla.22403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/13/2018] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE To investigate the relationships between the CYP2E1 RsaI polymorphism, GSTM1 polymorphism, and the susceptibility to lung cancer, along with the interactions between environmental factors and these genes. METHODS A case-control study was carried out to explore the independent effect of gene polymorphisms on risk of lung cancer, and the combined effects of gene loci. The stratification analysis of age, sex, smoking, and drinking combined with positive loci was also analyzed, and any interaction was identified. RESULTS The logistic regression analysis showed that there were statistical relationships between the CYP2E1 RsaI TT genotype and lung cancer, GSTM1 (-) and lung cancer. The combined effect's analysis of these 2 loci showed that, with an increase in the number of risk alleles, the risk of lung cancer also increased (supposing 0 risk allele as the reference group). Subjects carrying 3 risk alleles had the highest risk of developing lung cancer with an adjusted OR = 10.38 (95% CI 2.10-51.35). Stratified analysis showed that, in women, nonsmoking subjects, or nondrinking subjects, the combined effects could increase the risk of lung cancer; no heterogeneity was found between these layers except sex. The interaction analysis showed that, supposing the male, GSTM1 (+) genotype as the reference, the female, GSTM1 (-) genotype had a significantly increased risk of lung cancer (OR = 2.17 [1.01-4.70]); when the non-smoking, GSTM1 (+) genotype subjects was the reference group, smoking, GSTM1 (+) genotype subjects and smoking, GSTM1 (-) genotype subjects had significantly higher risk of lung cancer (OR = 2.00 [1.01-3.96], OR = 2.89 [1.28-6.54]). CONCLUSION CYP2E1 RsaI TT genotype was a protective factor against the development of lung cancer, while GSTM1 (-) genotype was a risk factor for lung cancer. Increases in the number of the risk alleles also increased lung cancer risk. GSTM1 (-) genotype, sex, and smoking status might interact in the incidence of lung cancer.
Collapse
Affiliation(s)
- Qingfang He
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Lixin Wang
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Jie Zhang
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Feng Lu
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Weiwei Gong
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Jin Pan
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Jieming Zhong
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Ruying Hu
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou, China
| |
Collapse
|
12
|
Gao Y, Gao F, Hu TT, Li G, Sui YX. Combined effects of glutathione S-transferase M1 and T1 polymorphisms on risk of lung cancer: Evidence from a meta-analysis. Oncotarget 2018; 8:28135-28143. [PMID: 28427236 PMCID: PMC5438637 DOI: 10.18632/oncotarget.15943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/23/2017] [Indexed: 12/29/2022] Open
Abstract
Many studies have reported an association between the glutathione S-transferase M1 null and T1 null polymorphisms and lung cancer risk. However, the combined effects of GSTM1 null and GSTT1 null polymorphisms have not been reported previously. We, therefore, performed a meta-analysis to investigate the combined effects. 40 publications with 44 case–control studies were selected in the meta-analysis, including 13,706 cases and 13,093 controls. Significant association was observed between the combined effects of GSTM1 and GSTT1 polymorphisms and lung cancer risk when all the eligible studies were pooled into the meta-analysis. When we performed subgroup analysis, significantly increased lung cancer risk was observed in Caucasians (− − vs. + +: OR = 1.23, 95% CI: 1.07 to 1.41), Asians (− − vs.− +: OR = 1.24, 95% CI: 1.10 to 1.41; recessive model: OR = 1.45, 95% CI: 1.19 to 1.77; dominant model: OR = 1.53, 95% CI: 1.24 to 1.90), Indians (− − vs. + +: OR = 2.53, 95% CI: 1.61 to 3.98; recessive model: OR = 1.69, 95% CI: 1.07 to 2.67; dominant model: OR = 2.11, 95% CI: 1.36 to 3.28), hospital-based studies, and population-based studies. In summary, this meta-analysis indicates that the combined effects of the GSTM1 and GSTT1 polymorphisms are associated with increased lung cancer risk in Asians, Caucasians, and Indians.
Collapse
Affiliation(s)
- Ying Gao
- Department of Radiotherapy Oncology, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| | - Fei Gao
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi, China
| | - Ting-Ting Hu
- Department of Medical, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| | - Gang Li
- Second Department of Thoracic Surgery, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| | - Yan-Xia Sui
- Department of Pathology, First Affiliated Hospital of Medical College of Xi'an, Jiao Tong University, Xi'an, Shanxi, China
| |
Collapse
|
13
|
Grubisa I, Otasevic P, Vucinic N, Milicic B, Jozic T, Krstic S, Milasin J. Combined GSTM1 and GSTT1 null genotypes are strong risk factors for atherogenesis in a Serbian population. Genet Mol Biol 2018; 41:35-40. [PMID: 29658969 PMCID: PMC5901493 DOI: 10.1590/1678-4685-gmb-2017-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 10/23/2017] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress (OS) plays an important role in atherogenesis and since glutathione S-transferases (GSTs) provide protection against OS, we have tested the hypothesis that deletion polymorphisms in two GSTs (GSTM1 and GSTT1) may affect the risk of developing atherosclerosis. A total of 382 individuals (200 patients with atherosclerosis and 182 healthy controls) were included in this association study. Genomic DNA was isolated from peripheral blood cells or from buccal epithelial cells and genotyping was performed using multiplex-PCR or real-time PCR methods. GSTM1 null genotype was significantly more frequent in atherosclerotic patients than in controls (52.0% vs 34.1%) and individuals with the GSTM1 null genotype had an approximately 2-fold increase in atherosclerosis risk (OR: 2.1, 95%CI=1.39-3.17, P=0.0004). GSTT1 null genotype alone did not show a statistically significant effect on atherosclerosis risk modulation, but the association approached significance (OR: 1.57, 95%CI=0.94-2.64, P=0.08). The combined analysis showed that the presence of both genes had a protective effect against atherosclerosis (OR=0.55, 95%CI=0.37-0.83, P=0.005) while double null genotypes led to a robust atherosclerosis risk increase (OR: 8.14, 95%CI= 2.41-27.51, P < 0.0001). This study demonstrated that the GSTM1 null and combined GSTM1/GSTT1 null genotypes are susceptibility factors for development of atherosclerosis in a Serbian population.
Collapse
Affiliation(s)
- Ivana Grubisa
- Department of Human Genetics and Prenatal Diagnostics, Zvezdara, University Medical Center, University of Belgrade, Belgrade, Serbia
| | - Petar Otasevic
- Dedinje Cardiovascular Institute Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nada Vucinic
- Department of Human Genetics and Prenatal Diagnostics, Zvezdara, University Medical Center, University of Belgrade, Belgrade, Serbia
| | - Biljana Milicic
- Department of Statistics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Tanja Jozic
- Clinic of Cardiology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Krstic
- Clinic for Emergency Surgery, Emergency Center, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
14
|
Liu C, Cui H, Gu D, Zhang M, Fang Y, Chen S, Tang M, Zhang B, Chen H. Genetic polymorphisms and lung cancer risk: Evidence from meta-analyses and genome-wide association studies. Lung Cancer 2017; 113:18-29. [PMID: 29110844 DOI: 10.1016/j.lungcan.2017.08.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/18/2017] [Accepted: 08/25/2017] [Indexed: 01/30/2023]
Abstract
A growing number of studies investigating the association between Single Nucleotide Polymorphisms (SNPs) and lung cancer risk have been published since over a decade ago. An updated integrative assessment on the credibility and strength of the associations is required. We searched PubMed, Medline, and Web of Science on or before August 29th, 2016. A total of 198 articles were deemed eligible for inclusion, which addressed the associations between 108 variants and lung cancer. Among the 108 variants, 63 were reported to be significantly associated with lung cancer while the remaining 45 were reported non-significant. Further evaluation integrating the Venice Criteria and false-positive report probability (FPRP) was performed to determine the strength of cumulative epidemiological evidence for the 63 significant associations. As a result, 15 SNPs on or near 12 genes and one miRNA with strong evidence of association with lung cancer risk were identified, including TERT (rs2736098), CHRNA3 (rs1051730), AGPHD1 (rs8034191), CLPTM1L (rs401681 and rs402710), BAT3 (rs3117582), TRNAA (rs4324798), ERCC2 (Lys751Gln), miR-146a2 (rs2910164), CYP1B1 (Arg48Gly), GSTM1 (null/present), SOD2 (C47T), IL-10 (-592C/A and -819C/T), and TP53 (intron 6). 19 SNPs were given moderate rating and 17 SNPs were rated as having weak evidence. In addition, all of the 29 SNPs identified in 12 genome-wide association studies (GWAS) were proved to be noteworthy based on FPRP value. This review summarizes and evaluates the cumulative evidence of genetic polymorphisms and lung cancer risk, which can serve as a general and useful reference for further genetic studies.
Collapse
Affiliation(s)
- Caiyang Liu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing 400010, China
| | - Huijie Cui
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dongqing Gu
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Min Zhang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yanfei Fang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Siyu Chen
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Mingshuang Tang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Ben Zhang
- Division of Noncommunicable Disease Epidemiology, First Affiliated Hospital and Southwest School of Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huanwen Chen
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chongqing Medical University, No.1, Youyi Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
15
|
Kenche H, Ye ZW, Vedagiri K, Richards DM, Gao XH, Tew KD, Townsend DM, Blumental-Perry A. Adverse Outcomes Associated with Cigarette Smoke Radicals Related to Damage to Protein-disulfide Isomerase. J Biol Chem 2016; 291:4763-78. [PMID: 26728460 DOI: 10.1074/jbc.m115.712331] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 12/19/2022] Open
Abstract
Identification of factors contributing to the development of chronic obstructive pulmonary disease (COPD) is crucial for developing new treatments. An increase in the levels of protein-disulfide isomerase (PDI), a multifaceted endoplasmic reticulum resident chaperone, has been demonstrated in human smokers, presumably as a protective adaptation to cigarette smoke (CS) exposure. We found a similar increase in the levels of PDI in the murine model of COPD. We also found abnormally high levels (4-6 times) of oxidized and sulfenilated forms of PDI in the lungs of murine smokers compared with non-smokers. PDI oxidation progressively increases with age. We begin to delineate the possible role of an increased ratio of oxidized PDI in the age-related onset of COPD by investigating the impact of exposure to CS radicals, such as acrolein (AC), hydroxyquinones (HQ), peroxynitrites (PN), and hydrogen peroxide, on their ability to induce unfolded protein response (UPR) and their effects on the structure and function of PDIs. Exposure to AC, HQ, PN, and CS resulted in cysteine and tyrosine nitrosylation leading to an altered three-dimensional structure of the PDI due to a decrease in helical content and formation of a more random coil structure, resulting in protein unfolding, inhibition of PDI reductase and isomerase activity in vitro and in vivo, and subsequent induction of endoplasmic reticulum stress response. Addition of glutathione prevented the induction of UPR, and AC and HQ induced structural changes in PDI. Exposure to PN and glutathione resulted in conjugation of PDI possibly at active site tyrosine residues. The findings presented here propose a new role of PDI in the pathogenesis of COPD and its age-dependent onset.
Collapse
Affiliation(s)
- Harshavardhan Kenche
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404
| | - Zhi-Wei Ye
- the College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kokilavani Vedagiri
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404
| | - Dylan M Richards
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404
| | - Xing-Huang Gao
- Genetics, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Kenneth D Tew
- the College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Danyelle M Townsend
- the College of Pharmacy, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Anna Blumental-Perry
- From the Anderson Cancer Institute, Memorial Health University Medical Center, Savannah, Georgia 31404, the Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, Georgia 31404, the Departments of Surgery and
| |
Collapse
|
16
|
Nakamura T, Ohnuma T, Hanzawa R, Takebayashi Y, Takeda M, Nishimon S, Sannohe T, Katsuta N, Higashiyama R, Shibata N, Arai H. Associations of common copy number variants in glutathione S-transferase mu 1 and D-dopachrome tautomerase-like protein genes with risk of schizophrenia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 2015; 168:630-6. [PMID: 26175060 DOI: 10.1002/ajmg.b.32347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022]
Abstract
Oxidative-stress, genetic regions of interest (1p13 and 22q11), and common copy number variations (CNVs) may play roles in the pathophysiology of schizophrenia. In the present study, we confirmed associations between schizophrenia and the common CNVs in the glutathione (GSH)-related genes GSTT1, DDTL, and GSTM1 using quantitative real-time polymerase chain reaction analyses of 620 patients with schizophrenia and in 622 controls. No significant differences in GSTT1 copy number distributions were found between patient groups. However, frequencies of characterized CNVs and assumed gain alleles of DDTL and GSTM1 were significantly higher in patients with schizophrenia. In agreement with a previous report, the present data indicate that gains in the CNV alleles DDTL and GSTM1 are genetic risk factors in Japanese patients with schizophrenia, and suggest involvement of micro-inflammation and oxidative stress in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Toru Nakamura
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryo Hanzawa
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuto Takebayashi
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Mayu Takeda
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Shohei Nishimon
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Takahiro Sannohe
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Narimasa Katsuta
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryoko Higashiyama
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobuto Shibata
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Heii Arai
- Department of Psychiatry, Juntendo University Schizophrenia Projects (JUSP), Juntendo University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|