1
|
Weidner L, Laner-Plamberger S, Horner D, Pistorius C, Jurkin J, Karbiener M, Schistal E, Kreil TR, Jungbauer C. Sample Buffer Containing Guanidine-Hydrochloride Combines Biological Safety and RNA Preservation for SARS-CoV-2 Molecular Diagnostics. Diagnostics (Basel) 2022; 12:1186. [PMID: 35626342 PMCID: PMC9139951 DOI: 10.3390/diagnostics12051186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic has elicited the need to analyse and store large amounts of infectious samples for laboratory diagnostics. Therefore, there has been a demand for sample storage buffers that effectively inactivate infectious viral particles while simultaneously preserving the viral RNA. Here, we present a storage buffer containing guanidine-hydrochloride that fulfils both requirements. Its ability to preserve RNA stability was confirmed by RT-qPCR, and virus-inactivating properties were tested by tissue culture infectious dose assay. Our data revealed that RNA from samples diluted in this storage buffer was efficiently preserved. Spiking samples with RNase A resulted in RNAse concentrations up to 100 ng/mL being efficiently inhibited, whereas spiking samples with infectious SARS-CoV-2 particles demonstrated rapid virus inactivation. In addition, our buffer demonstrated good compatibility with several commercially available RNA extraction platforms. The presented guanidine-hydrochloride-based storage buffer efficiently inactivates infectious SARS-CoV-2 particles and supports viral RNA stability, leading to a reduced infection risk during sample analysis and an increased period for follow-up analysis, such as sequencing for virus variants. Because the presented buffer is uncomplicated to manufacture and compatible with a variety of commercially available test systems, its application can support and improve SARS-CoV-2 laboratory diagnostics worldwide.
Collapse
Affiliation(s)
- Lisa Weidner
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (D.H.); (C.P.); (J.J.); (E.S.)
| | - Sandra Laner-Plamberger
- Department for Transfusion Medicine, University Hospital of Salzburg (SALK), Paracelsus Medical University (PMU), Müllner-Hauptstraße 48, 5020 Salzburg, Austria;
- Spinal Cord Injury and Tissue Regeneration Centre Salzburg, PMU Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - David Horner
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (D.H.); (C.P.); (J.J.); (E.S.)
| | - Charlotte Pistorius
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (D.H.); (C.P.); (J.J.); (E.S.)
| | - Jennifer Jurkin
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (D.H.); (C.P.); (J.J.); (E.S.)
| | - Michael Karbiener
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Benatzkygasse 2-6, 1221 Vienna, Austria; (M.K.); (T.R.K.)
| | - Elisabeth Schistal
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (D.H.); (C.P.); (J.J.); (E.S.)
| | - Thomas R. Kreil
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Benatzkygasse 2-6, 1221 Vienna, Austria; (M.K.); (T.R.K.)
| | - Christof Jungbauer
- Austrian Red Cross, Blood Service for Vienna, Lower Austria and Burgenland, Wiedner Hauptstraße 32, 1040 Vienna, Austria; (L.W.); (D.H.); (C.P.); (J.J.); (E.S.)
| |
Collapse
|
2
|
Abstract
Ribonucleases are useful as biomarkers and can be the source of contamination in laboratory samples, making ribonuclease detection assays important in life sciences research. With recent developments in DNA-based biosensing, several new techniques are being developed to detect ribonucleases. This review discusses some of these methods, specifically those that utilize G-quadruplex DNA structures, DNA-nanoparticle conjugates and DNA nanostructures, and the advantages and challenges associated with them.
Collapse
|
3
|
Carrington Y, Orlino J, Romero A, Gustin J, Rezaei M, Greene E, Rose S, Aiyer RA, Nasarabadi S. COVID-19 Diagnostic Testing For All - Using Non-Dilutive Saliva Sample Collection, Stabilization and Ambient Transport Devices. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33532800 DOI: 10.1101/2021.01.20.20243782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
COVID-19 testing is not accessible for millions during this pandemic despite our best efforts. Without greatly expanded testing of asymptomatic individuals, contact tracing and subsequent isolation of spreaders remains as a means for control. In an effort to increase RT-PCR assay testing for the presence of the novel beta-coronavirus SARS-CoV-2 as well as improve sample collection safety, GenTegra LLC has introduced two products for saliva collection and viral RNA stabilization: GTR-STM™ (GenTegra Saliva Transport Medium) and GTR-STMdk™ (GenTegra Saliva Transport Medium Direct to PCR). Both products contain a proprietary formulation based on GenTegra's novel "Active Chemical Protection™" (ACP) technology that gives non-dilutive, error-free saliva sample collection using RNA stabilization chemicals already dried in the collection tube. GTR-STM can be used for safer saliva-based sample collection at home (or at a test site). Following saliva collection, the sample-containing GTR-STM can be kept at ambient temperature during shipment to an authorized CLIA lab for analysis. SARS-CoV-2 viral RNA in GTR-STM is stable for over a month at ambient temperature, easily surviving the longest transit times from home to lab. GTR-STM enhances patient comfort, convenience, compliance and reduces infectious virus exposure to essential medical and lab professionals. Alternatively, the GTR-STMdk direct-into-PCR product can be used to improve lab throughput and reduce reagent costs for saliva sample collection and testing at any lab site with access to refrigeration. GTR-STMdk reduces lab process time by 25% and reagent costs by 30% compared to other approaches. Since GTR-STMdk retains SARS-CoV-2 viral RNA stability for three days at ambient temperature, it is optimized for lab test site rather than at home saliva collection. SARS-COV-2 viral RNA levels as low as 0.4 genome equivalents/uL are detected in saliva samples using GTR-STMdk. The increased sensitivity of SARS-CoV-2 detection can expand COVID-19 testing to include asymptomatic individuals using pooled saliva. One Sentence Summary GTR-STM and Direct-into-PCR GTR-STMdk offer substantive improvements in SARS-CoV-2 viral RNA stability, safety, and RT-PCR process efficiency for COVID-19 testing by using a non-dilutive saliva sample collection system for individuals at home or onsite respectively.
Collapse
|
4
|
Chandrasekaran AR, Trivedi R, Halvorsen K. Ribonuclease-Responsive DNA Nanoswitches. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100117. [PMID: 32803173 PMCID: PMC7425801 DOI: 10.1016/j.xcrp.2020.100117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
DNA has been used in the construction of dynamic DNA devices that can reconfigure in the presence of external stimuli. These nanodevices have found uses in fields ranging from biomedical to materials science applications. Here, we report a DNA nanoswitch that can be reconfigured using ribonucleases (RNases) and explore two applications: biosensing and molecular computing. For biosensing, we show the detection of RNase H and other RNases in relevant biological fluids and temperatures, as well as inhibition by the known enzyme inhibitor kanamycin. For molecular computing, we show that RNases can be used to enable erasing, write protection, and erase-rewrite functionality for information-encoding DNA nanoswitches. The simplistic mix-and-read nature of the ribonuclease-activated DNA nanoswitches could facilitate their use in assays for identifying RNase contamination in biological samples or for the screening and characterization of RNase inhibitors.
Collapse
Affiliation(s)
- Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Twitter: @arunrichardc
| | - Ruju Trivedi
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ken Halvorsen
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- Twitter: @HalvorsenLab
- Lead Contact
| |
Collapse
|
5
|
An end-point method based on graphene oxide for RNase H analysis and inhibitors screening. Biosens Bioelectron 2016; 90:103-109. [PMID: 27886596 DOI: 10.1016/j.bios.2016.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/03/2016] [Accepted: 11/12/2016] [Indexed: 12/12/2022]
Abstract
As a highly conserved damage repair protein, RNase H can hydrolysis DNA-RNA heteroduplex endonucleolytically and cleave RNA-DNA junctions as well. In this study, we have developed an accurate and sensitive RNase H assay based on fluorophore-labeled chimeric substrate hydrolysis and the differential affinity of graphene oxide on RNA strand with different length. This end-point measurement method can detect RNase H in a range of 0.01 to 1 units /mL with a detection limit of 5.0×10-3 units/ mL under optimal conditions. We demonstrate the utility of the assay by screening antibiotics, resulting in the identification of gentamycin, streptomycin and kanamycin as inhibitors with IC50 of 60±5µM, 70±8µM and 300±20µM, respectively. Furthermore, the assay was reliably used to detect RNase H in complicated biosamples and found that RNase H activity in tumor cells was inhibited by gentamycin and streptomycin sulfate in a concentration-dependent manner. The average level of RNase H in serums of HBV infection group was similar to that of control group. In summary, the assay provides an alternative tool for biochemical analysis for this enzyme and indicates the feasibility of high throughput screening inhibitors of RNase H in vitro and in vivo.
Collapse
|