1
|
Monma N, Yamamoto H, Fujiwara N, Murota H, Moriya S, Hirano-Iwata A, Sato S. Directional intermodular coupling enriches functional complexity in biological neuronal networks. Neural Netw 2025; 184:106967. [PMID: 39756118 DOI: 10.1016/j.neunet.2024.106967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025]
Abstract
Hierarchically modular organization is a canonical network topology that is evolutionarily conserved in the nervous systems of animals. Within the network, neurons form directional connections defined by the growth of their axonal terminals. However, this topology is dissimilar to the network formed by dissociated neurons in culture because they form randomly connected networks on homogeneous substrates. In this study, we fabricated microfluidic devices to reconstitute hierarchically modular neuronal networks in culture (in vitro) and investigated how non-random structures, such as directional connectivity between modules, affect global network dynamics. Embedding directional connections in a pseudo-feedforward manner suppressed excessive synchrony in cultured neuronal networks and enhanced the integration-segregation balance. Modeling the behavior of biological neuronal networks using spiking neural networks (SNNs) further revealed that modularity and directionality cooperate to shape such network dynamics. Finally, we demonstrate that for a given network topology, the statistics of network dynamics, such as global network activation, correlation coefficient, and functional complexity, can be analytically predicted based on eigendecomposition of the transition matrix in the state-transition model. Hence, the integration of bioengineering and cell culture technologies enables us not only to reconstitute complex network circuitry in the nervous system but also to understand the structure-function relationships in biological neuronal networks by bridging theoretical modeling with in vitro experiments.
Collapse
Affiliation(s)
- Nobuaki Monma
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hideaki Yamamoto
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan.
| | - Naoya Fujiwara
- Graduate School of Information Sciences, Tohoku University, Sendai, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan
| | - Hakuba Murota
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Satoshi Moriya
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan; Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan; Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
3
|
Zhai J, Liu Y, Ji W, Huang X, Wang P, Li Y, Li H, Wong AHH, Zhou X, Chen P, Wang L, Yang N, Chen C, Chen H, Mak PI, Deng CX, Martins R, Yang M, Ho TY, Yi S, Yao H, Jia Y. Drug screening on digital microfluidics for cancer precision medicine. Nat Commun 2024; 15:4363. [PMID: 38778087 PMCID: PMC11111680 DOI: 10.1038/s41467-024-48616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Drug screening based on in-vitro primary tumor cell culture has demonstrated potential in personalized cancer diagnosis. However, the limited number of tumor cells, especially from patients with early stage cancer, has hindered the widespread application of this technique. Hence, we developed a digital microfluidic system for drug screening using primary tumor cells and established a working protocol for precision medicine. Smart control logic was developed to increase the throughput of the system and decrease its footprint to parallelly screen three drugs on a 4 × 4 cm2 chip in a device measuring 23 × 16 × 3.5 cm3. We validated this method in an MDA-MB-231 breast cancer xenograft mouse model and liver cancer specimens from patients, demonstrating tumor suppression in mice/patients treated with drugs that were screened to be effective on individual primary tumor cells. Mice treated with drugs screened on-chip as ineffective exhibited similar results to those in the control groups. The effective drug identified through on-chip screening demonstrated consistency with the absence of mutations in their related genes determined via exome sequencing of individual tumors, further validating this protocol. Therefore, this technique and system may promote advances in precision medicine for cancer treatment and, eventually, for any disease.
Collapse
Affiliation(s)
- Jiao Zhai
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Yingying Liu
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Weiqing Ji
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xinru Huang
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunyi Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
| | - Haoran Li
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Ada Hang-Heng Wong
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiong Zhou
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ping Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lianhong Wang
- College of electrical and information engineering, Hunan University, Changsha, China
| | - Ning Yang
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Department of Electronic Information Engineering, Jiangsu University, Zhenjiang, China
| | - Chi Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haitian Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Rui Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China
- Faculty of Science and Technology, University of Macau, Macau SAR, China
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, Portugal
| | - Mengsu Yang
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong SAR, China
| | - Tsung-Yi Ho
- Department of Compute Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Hailong Yao
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau SAR, China.
- Faculty of Science and Technology, University of Macau, Macau SAR, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
4
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Kuo CT, Lai YS, Lu SR, Lee H, Chang HH. Microcrater-Arrayed Chemiluminescence Cell Chip to Boost Anti-Cancer Drug Administration in Zebrafish Tumor Xenograft Model. BIOLOGY 2021; 11:4. [PMID: 35053002 PMCID: PMC8773422 DOI: 10.3390/biology11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE The aim of this study was to develop a rapid and automatic drug screening platform using microcrater-arrayed (µCA) cell chips. METHODS The µCA chip was fabricated using a laser direct writing technique. The fabrication time required for one 9 × 9 microarray wax chip was as quick as 1 min. On a nanodroplet handling platform, the chip was pre-coated with anti-cancer drugs, including cyclophosphamide, cisplatin, doxorubicin, oncovin, etoposide, and 5-fluorouracil, and their associated mixtures. Cell droplets containing 100 SK-N-DZ or MCF-7 cells were then loaded onto the chip. Cell viability was examined directly through a chemiluminescence assay on the chip using the CellTiter-Glo assay. RESULTS The time needed for the drug screening assay was demonstrated to be less than 30 s for a total of 81 tests. The prediction of optimal drug synergy from the µCA chip was found by matching it to that of the zebrafish MCF-7 tumor xenograft model, instead of the conventional 96-well plate assay. In addition, the critical reagent volume and cell number for each µCA chip test were 200 nL and 100 cells, respectively, which were significantly lower than 100 µL and 4000 cells, which were achieved using the 96-well assay. CONCLUSION Our study for the µCA chip platform could improve the high-throughput drug synergy screening targeting the applications of tumor cell biology.
Collapse
Affiliation(s)
- Ching-Te Kuo
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Yu-Sheng Lai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.L.); (S.-R.L.); (H.L.)
| | - Siang-Rong Lu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.L.); (S.-R.L.); (H.L.)
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10617, Taiwan
| | - Hsinyu Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; (Y.-S.L.); (S.-R.L.); (H.L.)
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Tumour-on-chip microfluidic platform for assessment of drug pharmacokinetics and treatment response. Commun Biol 2021; 4:1001. [PMID: 34429505 PMCID: PMC8385015 DOI: 10.1038/s42003-021-02526-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 08/05/2021] [Indexed: 01/31/2023] Open
Abstract
Microphysiological in vitro systems are platforms for preclinical evaluation of drug effects and significant advances have been made in recent years. However, existing microfluidic devices are not yet able to deliver compounds to cell models in a way that reproduces the real physiological drug exposure. Here, we introduce a novel tumour-on-chip microfluidic system that mimics the pharmacokinetic profile of compounds on 3D tumour spheroids to evaluate their response to the treatments. We used this platform to test the response of SW620 colorectal cancer spheroids to irinotecan (SN38) alone and in combination with the ATM inhibitor AZD0156, using concentrations mimicking mouse plasma exposure profiles of both agents. We explored spheroid volume and viability as a measure of cancer cells response and changes in mechanistically relevant pharmacodynamic biomarkers (γH2AX, cleaved-caspase 3 and Ki67). We demonstrate here that our microfluidic tumour-on-chip platform can successfully predict the efficacy from in vivo studies and therefore represents an innovative tool to guide drug dose and schedules for optimal efficacy and pharmacodynamic assessment, while reducing the need for animal studies. Petreus et al. describe a platform combining 3D tumour-on-chip technology and pump driven microfluidics to study drug effects at physiological exposures preclinically. They test colorectal cancer spheroids with combinations of two drugs and show that it can successfully predict efficacy in vivo, thereby providing a valuable tool for drug response and pharmacodynamic assessment and reducing the need for animal studies.
Collapse
|
7
|
Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E, Mourdjeva M. Specificity of 3D MSC Spheroids Microenvironment: Impact on MSC Behavior and Properties. Stem Cell Rev Rep 2021; 16:853-875. [PMID: 32681232 DOI: 10.1007/s12015-020-10006-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSC) have been considered the promising candidates for the regenerative and personalized medicine due to their self-renewal potential, multilineage differentiation and immunomodulatory capacity. Although these properties have encouraged profound MSC studies in recent years, the majority of research has been based on standard 2D culture utilization. The opportunity to resemble in vivo characteristics of cells native niche has been provided by implementation of 3D culturing models such as MSC spheroid formation assesed through cells self-assembling. In this review, we address the current literature on physical and biochemical features of 3D MSC spheroid microenvironment and their impact on MSC properties and behaviors. Starting with the reduction in the cells' dimensions and volume due to the changes in adhesion molecules expression and cytoskeletal proteins rearrangement resembling native conditions, through the microenvironment shifts in oxygen, nutrients and metabolites gradients and demands, we focus on distinctive and beneficial features of MSC in spheroids compared to cells cultured in 2D conditions. By summarizing the data for 3D MSC spheroids regarding cell survival, pluripotency, differentiation, immunomodulatory activities and potential to affect tumor cells growth we highlighted advantages and perspectives of MSC spheroids use in regenerative medicine. Further detailed analyses are needed to deepen our understanding of mechanisms responsible for modified MSC behavior in spheroids and to set future directions for MSC clinical application.
Collapse
Affiliation(s)
- Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Drenka Trivanović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia.,IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, D-97070, Wuerzburg, Germany.,Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Germany
| | - Elena Stoyanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Kostadinova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Shina Pashova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Snejana Kestendjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Dr. Subotića 4, PO BOX 102, Belgrade, 11129, Serbia
| | - Michal Jeseta
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Obilní trh 11, 602 00, Brno, Czech Republic.,Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Kamýcká 129, 165 00, Suchdol, Praha 6, Czech Republic
| | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria
| | - Milena Mourdjeva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, 73 Tzarigradsko shoes, 1113, Sofia, Bulgaria.
| |
Collapse
|
8
|
Popova AA, Levkin PA. Precision Medicine in Oncology: In Vitro Drug Sensitivity and Resistance Test (DSRT) for Selection of Personalized Anticancer Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anna A. Popova
- Karlsruhe Institute of TechnologyInstitute of Toxicology and Genetics Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Pavel A. Levkin
- Karlsruhe Institute of TechnologyInstitute of Toxicology and Genetics Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
- Karlsruhe Institute of TechnologyInstitute of Organic Chemistry Fritz‐Haber Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
9
|
Abstract
Cancer drug resistance mechanisms such as tumor heterogeneity and adaptable feedback loops are prevalent issues facing cancer therapy development. Drug resistance can be unique to a cancer type and, most importantly, to each individual cancer patient. Consequently, testing different dosages and therapeutics directly on each individual patient sample (i.e., tumor and cancer cells) has compelling advantages compared to large scale in vitro drug testing and is a step toward personalized drug selection and effective treatment development. Recently, microfluidic-based chemo-sensitivity assays on patient biopsies have been proposed. Despite their novelty, these platforms usually rely on optical labels, optical equipment, or complex microfabricated channel geometries and structures. In this work, we proposed a novel lab on a chip platform capable of real-time and continuous screening of drug efficacy on (cancer) cell subpopulations without the need of labels or bulky readout optical equipment. In this platform, several label-free and rapid techniques have been implemented for the precise capturing of cells of interest in parallel with the real-time measurement and characterization of the effectiveness of candidate therapeutic agents. To demonstrate the utility of the platform, the effect of an apoptotic inducer, topoisomerase I inhibitor, 7-ethyl-10-hydrocamptothecin (SN38) on human colorectal carcinoma cancer cells (HCT 116) was used as a study model. Additionally, electrical results were optically verified to examine the continuous measurements of the biological mechanisms, specifically, apoptosis and necrosis, during therapeutic agent characterizations. The proposed device is a versatile platform which can also be easily redesigned for the automated and arrayed analysis of cell-drug interaction down to the single cell level. Our platform is another step toward enabling the personalized screening of drug efficacy on individual patients' samples that potentially leads to a better understanding of drug resistance and the optimization of patients' treatments.
Collapse
Affiliation(s)
- Vanessa Velasco
- Biochemistry Department , Stanford University , Palo Alto , California 94305 , United States
| | - Kushal Joshi
- Department of Biomedical Engineering , University of California Irvine , Irvine , California 92617 , United States
| | - Jiamin Chen
- Department of Medicine, Division of Oncology , Stanford University School of Medicine , Palo Alto , California 94305 , United States
| | - Rahim Esfandyarpour
- Department of Electrical Engineering , University of California Irvine , Irvine , California 92617 , United States.,Department of Biomedical Engineering , University of California Irvine , Irvine , California 92617 , United States.,Henry Samueli School of Engineering , University of California Irvine , Irvine , California 92617 , United States
| |
Collapse
|
10
|
Brooks EA, Galarza S, Gencoglu MF, Cornelison RC, Munson JM, Peyton SR. Applicability of drug response metrics for cancer studies using biomaterials. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180226. [PMID: 31431182 PMCID: PMC6627013 DOI: 10.1098/rstb.2018.0226] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Bioengineers have built models of the tumour microenvironment (TME) in which to study cell-cell interactions, mechanisms of cancer growth and metastasis, and to test new therapies. These models allow researchers to culture cells in conditions that include features of the in vivo TME implicated in regulating cancer progression, such as extracellular matrix (ECM) stiffness, integrin binding to the ECM, immune and stromal cells, growth factor and cytokine depots, and a three-dimensional geometry more representative of the in vivo TME than tissue culture polystyrene (TCPS). These biomaterials could be particularly useful for drug screening applications to make better predictions of efficacy, offering better translation to preclinical models and clinical trials. However, it can be challenging to compare drug response reports across different biomaterial platforms in the current literature. This is, in part, a result of inconsistent reporting and improper use of drug response metrics, and vast differences in cell growth rates across a large variety of biomaterial designs. This study attempts to clarify the definitions of drug response measurements used in the field, and presents examples in which these measurements can and cannot be applied. We suggest as best practice to measure the growth rate of cells in the absence of drug, and follow our 'decision tree' when reporting drug response metrics. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Elizabeth A. Brooks
- Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003-9364, USA
| | - Sualyneth Galarza
- Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003-9364, USA
| | - Maria F. Gencoglu
- Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003-9364, USA
| | - R. Chase Cornelison
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, Blacksburg, VA 24061, USA
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, Blacksburg, VA 24061, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003-9364, USA
| |
Collapse
|
11
|
Kuo CT, Wang JY, Lu SR, Lai YS, Chang HH, Hsieh JT, Wo AM, Chen BPC, Lu JH, Lee H. A nanodroplet cell processing platform facilitating drug synergy evaluations for anti-cancer treatments. Sci Rep 2019; 9:10120. [PMID: 31300742 PMCID: PMC6625988 DOI: 10.1038/s41598-019-46502-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/28/2019] [Indexed: 11/10/2022] Open
Abstract
Therapeutic drug synergism intervened in cancer treatments has been demonstrated to be more effective than using a single effector. However, it remains inherently challenging, with a limited cell count from tumor samples, to achieve potent personalized drug cocktails. To address the issue above, we herein present a nanodroplet cell processing platform. The platform incorporates an automatic nanodroplet dispenser with cell array ParaStamp chips, which were fabricated by a new wax stamping approach derived from laser direct writing. Such approach enables not only the on-demand de-wetting with hydrophobic wax films on substrates but also the mask-less fabrication of non-planar microstructures (i.e. no photolithography process). The ParaStamp chip was pre-occupied with anti-cancer drugs and their associate mixtures, enabling for the spatially addressable screening of optimal drug combinations simultaneously. Each droplet with a critical volume of 200 nl containing with 100 cells was utilized. Results revealed that the optimal combination reduces approximate 28-folds of conducted doses compared with single drugs. Tumor inhibition with the optimally selected drug combination was further confirmed by using PC-3 tumor-bearing mouse models. Together, the nanodroplet cell processing platform could therefore offer new opportunities to power the personalized cancer medicine at early-stage drug screening and discovery.
Collapse
Affiliation(s)
- Ching-Te Kuo
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, Taiwan.
| | - Jong-Yueh Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Siang-Rong Lu
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Sheng Lai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew M Wo
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Benjamin P C Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jen-Her Lu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Hsinyu Lee
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, Taiwan. .,Department of Life Science, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
12
|
Gill NK, Ly C, Nyberg KD, Lee L, Qi D, Tofig B, Reis-Sobreiro M, Dorigo O, Rao J, Wiedemeyer R, Karlan B, Lawrenson K, Freeman MR, Damoiseaux R, Rowat AC. A scalable filtration method for high throughput screening based on cell deformability. LAB ON A CHIP 2019; 19:343-357. [PMID: 30566156 DOI: 10.1039/c8lc00922h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell deformability is a label-free biomarker of cell state in physiological and disease contexts ranging from stem cell differentiation to cancer progression. Harnessing deformability as a phenotype for screening applications requires a method that can simultaneously measure the deformability of hundreds of cell samples and can interface with existing high throughput facilities. Here we present a scalable cell filtration device, which relies on the pressure-driven deformation of cells through a series of pillars that are separated by micron-scale gaps on the timescale of seconds: less deformable cells occlude the gaps more readily than more deformable cells, resulting in decreased filtrate volume which is measured using a plate reader. The key innovation in this method is that we design customized arrays of individual filtration devices in a standard 96-well format using soft lithography, which enables multiwell input samples and filtrate outputs to be processed with higher throughput using automated pipette arrays and plate readers. To validate high throughput filtration to detect changes in cell deformability, we show the differential filtration of human ovarian cancer cells that have acquired cisplatin-resistance, which is corroborated with cell stiffness measurements using quantitative deformability cytometry. We also demonstrate differences in the filtration of human cancer cell lines, including ovarian cancer cells that overexpress transcription factors (Snail, Slug), which are implicated in epithelial-to-mesenchymal transition; breast cancer cells (malignant versus benign); and prostate cancer cells (highly versus weekly metastatic). We additionally show how the filtration of ovarian cancer cells is affected by treatment with drugs known to perturb the cytoskeleton and the nucleus. Our results across multiple cancer cell types with both genetic and pharmacologic manipulations demonstrate the potential of this scalable filtration device to screen cells based on their deformability.
Collapse
Affiliation(s)
- Navjot Kaur Gill
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal 2018; 9:238-247. [PMID: 31452961 PMCID: PMC6704040 DOI: 10.1016/j.jpha.2018.12.001] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 01/18/2023] Open
Abstract
The development of pharmaceutical analytical methods represents one of the most significant aspects of drug development. Recent advances in microfabrication and microfluidics could provide new approaches for drug analysis, including drug screening, active testing and the study of metabolism. Microfluidic chip technologies, such as lab-on-a-chip technology, three-dimensional (3D) cell culture, organs-on-chip and droplet techniques, have all been developed rapidly. Microfluidic chips coupled with various kinds of detection techniques are suitable for the high-throughput screening, detection and mechanistic study of drugs. This review highlights the latest (2010–2018) microfluidic technology for drug analysis and discusses the potential future development in this field.
Collapse
Affiliation(s)
- Ping Cui
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, #76, Yanta West Road, Xi'an 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University Health Science Center, #76, Yanta West Road, Xi'an 710061, China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| |
Collapse
|
14
|
Eduati F, Utharala R, Madhavan D, Neumann UP, Longerich T, Cramer T, Saez-Rodriguez J, Merten CA. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat Commun 2018; 9:2434. [PMID: 29934552 PMCID: PMC6015045 DOI: 10.1038/s41467-018-04919-w] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 06/05/2018] [Indexed: 02/06/2023] Open
Abstract
Screening drugs on patient biopsies from solid tumours has immense potential, but is challenging due to the small amount of available material. To address this, we present here a plug-based microfluidics platform for functional screening of drug combinations. Integrated Braille valves allow changing the plug composition on demand and enable collecting >1200 data points (56 different conditions with at least 20 replicates each) per biopsy. After deriving and validating efficient and specific drug combinations for two genetically different pancreatic cancer cell lines and xenograft mouse models, we additionally screen live cells from human solid tumours with no need for ex vivo culturing steps, and obtain highly specific sensitivity profiles. The entire workflow can be completed within 48 h at assay costs of less than US$ 150 per patient. We believe this can pave the way for rapid determination of optimal personalized cancer therapies.
Collapse
Affiliation(s)
- Federica Eduati
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD, Cambridge, United Kingdom
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands
| | - Ramesh Utharala
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Dharanija Madhavan
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ulf Peter Neumann
- Department of Surgery, RWTH University Hospital, 52057, Aachen, Germany
- ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany and Maastricht, The Netherlands
| | - Thomas Longerich
- Institute of Pathology, RWTH University Hospital, 52057, Aachen, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Thorsten Cramer
- ESCAM - European Surgery Center Aachen Maastricht, Aachen, Germany and Maastricht, The Netherlands
- Molecular Tumor Biology, Department Surgery, RWTH University Hospital, 52057, Aachen, Germany
| | - Julio Saez-Rodriguez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD, Cambridge, United Kingdom.
- Joint Research Centre for Computational Biomedicine (JRC-COMBINE), RWTH Aachen University, Faculty of Medicine, 52057, Aachen, Germany.
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, BIOQUANT-Center, 69120, Heidelberg, Germany.
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
15
|
Automated fluid delivery from multiwell plates to microfluidic devices for high-throughput experiments and microscopy. Sci Rep 2018; 8:6217. [PMID: 29670202 PMCID: PMC5906459 DOI: 10.1038/s41598-018-24504-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/04/2018] [Indexed: 12/19/2022] Open
Abstract
High-throughput biological and chemical experiments typically use either multiwell plates or microfluidic devices to analyze numerous independent samples in a compact format. Multiwell plates are convenient for screening chemical libraries in static fluid environments, whereas microfluidic devices offer immense flexibility in flow control and dynamics. Interfacing these platforms in a simple and automated way would introduce new high-throughput experimental capabilities, such as compound screens with precise exposure timing. Whereas current approaches to integrate microfluidic devices with multiwell plates remain expensive or technically complicated, we present here a simple open-source robotic system that delivers liquids sequentially through a single connected inlet. We first characterized reliability and performance by automatically delivering 96 dye solutions to a microfluidic device. Next, we measured odor dose-response curves of in vivo neural activity from two sensory neuron types in dozens of living C. elegans in a single experiment. We then identified chemicals that suppressed optogenetically-evoked neural activity, demonstrating a functional screening platform for neural modulation in whole organisms. Lastly, we automated an 85-minute, ten-step cell staining protocol. Together, these examples show that our system can automate various protocols and accelerate experiments by economically bridging two common elements of high-throughput systems: multiwell plates and microfluidics.
Collapse
|
16
|
Langhans SA. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front Pharmacol 2018; 9:6. [PMID: 29410625 PMCID: PMC5787088 DOI: 10.3389/fphar.2018.00006] [Citation(s) in RCA: 980] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023] Open
Abstract
Drug development is a lengthy and costly process that proceeds through several stages from target identification to lead discovery and optimization, preclinical validation and clinical trials culminating in approval for clinical use. An important step in this process is high-throughput screening (HTS) of small compound libraries for lead identification. Currently, the majority of cell-based HTS is being carried out on cultured cells propagated in two-dimensions (2D) on plastic surfaces optimized for tissue culture. At the same time, compelling evidence suggests that cells cultured in these non-physiological conditions are not representative of cells residing in the complex microenvironment of a tissue. This discrepancy is thought to be a significant contributor to the high failure rate in drug discovery, where only a low percentage of drugs investigated ever make it through the gamut of testing and approval to the market. Thus, three-dimensional (3D) cell culture technologies that more closely resemble in vivo cell environments are now being pursued with intensity as they are expected to accommodate better precision in drug discovery. Here we will review common approaches to 3D culture, discuss the significance of 3D cultures in drug resistance and drug repositioning and address some of the challenges of applying 3D cell cultures to high-throughput drug discovery.
Collapse
Affiliation(s)
- Sigrid A. Langhans
- Nemours Center for Childhood Cancer Research and Nemours Center for Neuroscience Research, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
17
|
Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Sci Rep 2017; 7:4363. [PMID: 28663555 PMCID: PMC5491519 DOI: 10.1038/s41598-017-04718-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/18/2017] [Indexed: 01/09/2023] Open
Abstract
Biomaterial-based tissue culture platforms have emerged as useful tools to mimic in vivo physiological microenvironments in experimental cell biology and clinical studies. We describe herein a three-dimensional (3D) tissue culture platform using a polydimethylsiloxane (PDMS)-based hanging drop array (PDMS-HDA) methodology. Multicellular spheroids can be achieved within 24 h and further boosted by incorporating collagen fibrils in PDMS-HDA. In addition, the spheroids generated from different human tumor cells exhibited distinct sensitivities toward drug chemotherapeutic agents and radiation as compared with two-dimensional (2D) cultures that often lack in vivo-like biological insights. We also demonstrated that multicellular spheroids may enable key hallmarks of tissue-based bioassays, including drug screening, tumor dissemination, cell co-culture, and tumor invasion. Taken together, these results offer new opportunities not only to achieve the active control of 3D multicellular spheroids on demand, but also to establish a rapid and cost-effective platform to study anti-cancer therapeutics and tumor microenvironments.
Collapse
|
18
|
Advances of Microfluidic Technologies Applied in Bio-analytical Chemistry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60982-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Tumor deconstruction as a tool for advanced drug screening and repositioning. Pharmacol Res 2016; 111:815-819. [DOI: 10.1016/j.phrs.2016.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022]
|
20
|
Ryan SL, Baird AM, Vaz G, Urquhart AJ, Senge M, Richard DJ, O'Byrne KJ, Davies AM. Drug Discovery Approaches Utilizing Three-Dimensional Cell Culture. Assay Drug Dev Technol 2016; 14:19-28. [PMID: 26866750 DOI: 10.1089/adt.2015.670] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Historically, two-dimensional (2D) cell culture has been the preferred method of producing disease models in vitro. Recently, there has been a move away from 2D culture in favor of generating three-dimensional (3D) multicellular structures, which are thought to be more representative of the in vivo environment. This transition has brought with it an influx of technologies capable of producing these structures in various ways. However, it is becoming evident that many of these technologies do not perform well in automated in vitro drug discovery units. We believe that this is a result of their incompatibility with high-throughput screening (HTS). In this study, we review a number of technologies, which are currently available for producing in vitro 3D disease models. We assess their amenability with high-content screening and HTS and highlight our own work in attempting to address many of the practical problems that are hampering the successful deployment of 3D cell systems in mainstream research.
Collapse
Affiliation(s)
- Sarah-Louise Ryan
- 1 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia .,2 Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | - Anne-Marie Baird
- 1 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia .,2 Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia .,3 Thoracic Oncology Research Group, Institute of Molecular Medicine , Trinity College Dublin, Dublin, Ireland
| | - Gisela Vaz
- 4 Medical Chemistry Research Group, Institute of Molecular Medicine , Trinity College Dublin, Dublin, Ireland
| | - Aaron J Urquhart
- 1 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia .,2 Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia
| | - Mathias Senge
- 4 Medical Chemistry Research Group, Institute of Molecular Medicine , Trinity College Dublin, Dublin, Ireland
| | - Derek J Richard
- 1 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Kenneth J O'Byrne
- 1 Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia .,3 Thoracic Oncology Research Group, Institute of Molecular Medicine , Trinity College Dublin, Dublin, Ireland .,5 Division of Cancer Services, Princess Alexandra Hospital , Brisbane, Australia
| | - Anthony M Davies
- 2 Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology , Brisbane, Australia .,6 Irish National Centre for High Content Screening and Analysis, Institute of Molecular Medicine , Trinity College Dublin, Dublin, Ireland
| |
Collapse
|