1
|
Ma Y, Xiao Y, Xiao Z, Wu Y, Zhao H, Gao G, Wu L, Wang T, Zhao N, Li J. Genome-wide identification, characterization and expression analysis of the BMP family associated with beak-like teeth in Oplegnathus. Front Genet 2022; 13:938473. [PMID: 35923711 PMCID: PMC9342863 DOI: 10.3389/fgene.2022.938473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), which belong to the transforming growth factor beta (TGF-β) family, are critical for the control of developmental processes such as dorsal-ventral axis formation, somite and tooth formation, skeletal development, and limb formation. Despite Oplegnathus having typical healing beak-like teeth and tooth development showing a trend from discrete to healing, the potential role of BMPs in the development of the beak-like teeth is incompletely understood. In the present study, 19 and 16 BMP genes were found in O. fasciatus and O. punctatus, respectively, and divided into the BMP2/4/16, BMP5/6/7/8, BMP9/10, BMP12/13/14, BMP3/15 and BMP11 subfamilies. Similar TGFb and TGF_β gene domains and conserved protein motifs were found in the same subfamily; furthermore, two common tandem repeat genes (BMP9 and BMP3a-1) were identified in both Oplegnathus fasciatus and Oplegnathus punctatus. Selection pressure analysis revealed 13 amino acid sites in the transmembrane region of BMP3, BMP7, and BMP9 proteins of O. fasciatus and O. punctatus, which may be related to the diversity and functional differentiation of genes within the BMP family. The qPCR-based developmental/temporal expression patterns of BMPs showed a trend of high expression at 30 days past hatching (dph), which exactly corresponds to the ossification period of the bones and beak-like teeth in Oplegnathus. Tissue-specific expression was found for the BMP4 gene, which was upregulated in the epithelial and mesenchymal tissues of the beak-like teeth, suggesting that it also plays a regulatory role in the development of the beak-like teeth in O. punctatus. Our investigation not only provides a scientific basis for comprehensively understanding the BMP gene family but also helps screen the key genes responsible for beak-like tooth healing in O. punctatus and sheds light on the developmental regulatory mechanism.
Collapse
Affiliation(s)
- Yuting Ma
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Weihai Haohuigan Marine Biotechnology Co., Weihai, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guang Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lele Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Yongshuang Xiao, ; Jun Li, ,
| |
Collapse
|
2
|
Alotaibi RN, Howe BJ, Moreno Uribe LM, Ramirez CV, Restrepo C, Deleyiannis FW, Padilla C, Orioli IM, Buxó CJ, Hecht JT, Wehby GL, Neiswanger K, Murray JC, Shaffer JR, Weinberg SM, Marazita ML. Multivariate GWAS of Structural Dental Anomalies and Dental Caries in a Multi-Ethnic Cohort. FRONTIERS IN DENTAL MEDICINE 2022; 2:771116. [PMID: 36267138 PMCID: PMC9581442 DOI: 10.3389/fdmed.2021.771116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Odontogenesis is a complex process, where disruption can result in dental anomalies and/or increase the risk of developing dental caries. Based on previous studies, certain dental anomalies tend to co-occur in patients, suggesting that these traits may share common genetic and etiological components. The main goal of this study was to implement a multivariate genome-wide association study approach to identify genetic variants shared between correlated structural dental anomalies and dental caries. Our cohort (N = 3,579) was derived from the Pittsburgh Orofacial Clefts Study, where multiple dental traits were assessed in both the unaffected relatives of orofacial cleft (OFC) cases (n = 2,187) and unaffected controls (n = 1,392). We identified four multivariate patterns of correlated traits in this data: tooth agenesis, impaction, and rotation (AIR); enamel hypoplasia, displacement, and rotation (HDR); displacement, rotation, and mamelon (DRM); and dental caries, tooth agenesis and enamel hypoplasia (CAH). We analyzed each of these four models using genome-wide multivariate tests of association. No genome-wide statistically significant results were found, but we identified multiple suggestive association signals (P < 10-5) near genes with known biological roles during tooth development, including ADAMTS9 and PRICKLE2 associated with AIR; GLIS3, WDR72, and ROR2 associated with HDR and DRM; ROBO2 associated with DRM; BMP7 associated with HDR; and ROBO1, SMAD2, and MSX2 associated with CAH. This is the first study to investigate genetic associations for multivariate patterns of correlated dental anomalies and dental caries. Further studies are needed to replicate these results in independent cohorts.
Collapse
Affiliation(s)
- Rasha N. Alotaibi
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian J. Howe
- Department of Family Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA
- The Iowa Center for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | - Lina M. Moreno Uribe
- The Iowa Center for Oral Health Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
- Department of Orthodontics, School of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Carmencita Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines, Manila
| | - Ieda M. Orioli
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carmen J. Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas, TX, USA
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Katherine Neiswanger
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffery C. Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - John R. Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Liu Z, Zhan A, Fan S, Liao L, Lian W. DNCP induces the differentiation of induced pluripotent stem cells into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways. Exp Ther Med 2021; 22:1361. [PMID: 34659507 DOI: 10.3892/etm.2021.10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/11/2021] [Indexed: 11/06/2022] Open
Abstract
In recent years, stem cells have been studied for treating tooth loss. The present study aimed to investigate the roles of dentin non-collagen protein (DNCP)-associated microenvironments in the differentiation of induced pluripotent stem cells (iPSCs) into dentin cells. iPSCs were cultured and identified by examining octamer-binding transcription-factor-4 (Oct-4) and sex-determining region-Y-2 (Sox-2) expression. iPSCs were differentiated by culturing DNCP-associated microenvironments (containing specific growth factors), and they were divided into control, DNCP, DNCP+bone morphogenetic proteins (BMPs) and DNCP+Noggin (a BMP inhibitor) groups. Msh homeobox 1 (Msx-1), dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP-1) mRNA expression was evaluated using reverse transcription-quantitative PCR. The levels of p38, phosphorylated (p)-p38, Smad and p-Smad were determined by western blotting. Upon treatment with mouse embryonic fibroblasts, iPSCs-dependent embryoid bodies (EBs) were successfully generated. iPSCs exhibited increased Oct-4 and Sox-2 expression. Differentiated iPSCs had higher expression levels of DSPP, DMP-1 and Msx-1 in the DNCP group compared with those in the control group (P<0.05). Noggin treatment significantly downregulated, while BMPs administration significantly increased the expression levels of DSPP, DMP-1 and Msx-1 compared with those of the DNCP group (P<0.05). The ratios of p-p38/p38 and p-Smad/Smad were significantly higher in the DNCP group compared with those in the control group (P<0.05). Noggin and BMPs significantly decreased ratios of p-p38/p38, compared with those of the DNCP group (P<0.05). In conclusion, DNCP induced the differentiation of iPSCs into odontoblasts by activating the Smad/p-Smad and p38/p-p38 signaling pathways.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Aiping Zhan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Sumeng Fan
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenwei Lian
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Key Laboratory of Oral Biomedicine of Jiangxi Province, Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Shin YK, Cheon S, Kim SD, Moon JS, Kim JY, Kim SH, Park C, Kim MS. Identification of novel candidate genes implicated in odontogenic potential in the developing mouse tooth germ using transcriptome analysis. Genes Genomics 2021; 43:1087-1094. [PMID: 34302633 DOI: 10.1007/s13258-021-01130-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND In tooth bioengineering for replacement therapy of missing teeth, the utilized cells must possess an inductive signal-forming ability to initiate odontogenesis. This ability is called odontogenic potential. In mice, the odontogenic potential signal is known to be translocated from the epithelium to the mesenchyme at the early bud stage in the developing molar tooth germ. However, the identity of the molecular constituents of this process remains unclear. OBJECTIVE The purpose of this study is to determine the molecular identity of odontogenic potential and to provide a new perspective in the field of tooth development research. METHODS In this study, whole transcriptome profiles of the mouse molar tooth germ epithelium and mesenchyme were investigated using the RNA sequencing (RNA-seq) technique. The analyzed transcriptomes corresponded to two developmental stages, embryonic day 11.5 (E11.5) and 14.5 (E14.5), which represent the odontogenic potential shifts. RESULTS We identified differentially expressed genes (DEGs), which were specifically overexpressed in both the E11.5 epithelium and E14.5 mesenchyme, but not expressed in their respective counterparts. Of the 55 DEGs identified, the top three most expressed transcription factor genes (transcription factor AP-2 beta isoform 3 [TFAP2B], developing brain homeobox protein 2 [DBX2], and insulin gene enhancer protein ISL-1 [ISL1]) and three tooth development-related genes (transcription factor HES-5 [HES5], platelet-derived growth factor D precursor [PDGFD], semaphrin-3 A precursor [SEMA3A]) were selected and validated by quantitative RT-PCR. Using immunofluorescence staining, the TFAP2B protein expression was found to be localized only at the E11.5 epithelium and E14.5 mesenchyme. CONCLUSIONS Thus, our empirical findings in the present study may provide a new perspective into the characterization of the molecules responsible for the odontogenic potential and may have an implication in the cell-based whole tooth regeneration strategy.
Collapse
Affiliation(s)
- Yeo-Kyeong Shin
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Sung-Duk Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Jung-Sun Moon
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea.
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, 300 Yongbong-Dong, Buk-Ku, Gwangju, 61186, South Korea.
| |
Collapse
|
5
|
Cui D, Xiao J, Zhou Y, Zhou X, Liu Y, Peng Y, Yu Y, Li H, Zhou X, Yuan Q, Wan M, Zheng L. Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway. Cell Prolif 2019; 52:e12680. [PMID: 31454111 PMCID: PMC6869433 DOI: 10.1111/cpr.12680] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023] Open
Abstract
Objectives The odontoblastic differentiation of dental pulp stem cells (DPSCs) contributes to tertiary dentin formation. Our previous study indicated that epiregulin (EREG) enhanced odontogenesis potential of dental pulp. Here, we explored the effects of EREG during DPSC odontoblastic differentiation. Methods The changes in EREG were detected during tertiary dentin formation. DPSCs were treated with recombinant human EREG (rhEREG), EREG receptor inhibitor gefitinib and short hairpin RNAs. The odontoblastic differentiation was assessed with ALP staining, ALP activity assay, alizarin red S staining and real‐time RT‐PCR of DSPP, OCN, RUNX2 and OSX. Western blot was conducted to examine the levels of p38 mitogen‐activated protein kinase (p38 MAPK), c‐Jun N‐terminal kinase (JNK) and extracellular signal‐regulated kinase 1/2 (Erk1/2). The expression of EREG and odontoblastic differentiation‐related markers was investigated in human dental pulp from teeth with deep caries and healthy teeth. Results Epiregulin was upregulated during tertiary dentin formation. rhEREG enhanced the odontoblastic differentiation of DPSCs following upregulated p38 MAPK and Erk1/2 phosphorylation, but not JNK, whereas depletion of EREG suppressed DPSC differentiation. Gefitinib decreased odontoblastic differentiation with decreased phosphorylation of p38 MAPK and Erk1/2. And suppression of p38 MAPK and Erk1/2 pathways attenuated DPSC differentiation. In human dental pulp tissue, EREG upregulation in deep caries correlates with odontoblastic differentiation enhancement. Conclusion Epiregulin is released during tertiary dentin formation. And EREG enhanced DPSC odontoblastic differentiation via MAPK pathways.
Collapse
Affiliation(s)
- Dixin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiani Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yiran Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment. Clin Oral Investig 2019; 23:3821-3831. [PMID: 30687907 DOI: 10.1007/s00784-019-02811-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells. MATERIALS AND METHODS Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay. RESULTS Viability of iDPSCs was significantly (p < 0.05) higher in 20% HPL-supplemented media compared to iDPSCs. Expression of 10 out of 12 selected angiogenic genes, four out of seven adhesion molecules, and seven out of nine cytokine-producing genes were significantly (p < 0.05) higher in cells maintained in 20% HPL-supplemented media compared to that in FBS-supplemented media. Furthermore, expression of all the selected growth factors was significantly higher (p < 0.05) in the supernatants from 20% HPL media at 12 and 24 h post-incubation. CONCLUSION This study suggests that 20% HPL could be optimum to stimulate angiogenesis-related factors in iDPSCs while maintaining their viability. CLINICAL RELEVANCE This data may suggest the potential use of 20% HPL for expanding DPSCs scheduled for clinical trials for regenerative therapies including dental pulp regeneration.
Collapse
|
7
|
Kowtharapu BS, Prakasam RK, Murín R, Koczan D, Stahnke T, Wree A, Jünemann AGM, Stachs O. Role of Bone Morphogenetic Protein 7 (BMP7) in the Modulation of Corneal Stromal and Epithelial Cell Functions. Int J Mol Sci 2018; 19:ijms19051415. [PMID: 29747422 PMCID: PMC5983782 DOI: 10.3390/ijms19051415] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/20/2022] Open
Abstract
In the cornea, healing of the wounded avascular surface is an intricate process comprising the involvement of epithelial, stromal and neuronal cell interactions. These interactions result to the release of various growth factors that play prominent roles during corneal wound healing response. Bone morphogenetic proteins (BMPs) are unique multi-functional potent growth factors of the transforming growth factor-beta (TGF-β) superfamily. Treatment of corneal epithelial cells with substance P and nerve growth factor resulted to an increase in the expression of BMP7 mRNA. Since BMP7 is known to modulate the process of corneal wound healing, in this present study, we investigated the influence of exogenous rhBMP7 on human corneal epithelial cell and stromal cell (SFs) function. To obtain a high-fidelity expression profiling of activated biomarkers and pathways, transcriptome-wide gene-level expression profiling of epithelial cells in the presence of BMP7 was performed. Gene ontology analysis shows BMP7 stimulation activated TGF-β signaling and cell cycle pathways, whereas biological processes related to cell cycle, microtubule and intermediate filament cytoskeleton organization were significantly impacted in corneal epithelial cells. Scratch wound healing assay showed increased motility and migration of BMP7 treated epithelial cells. BMP7 stimulation studies show activation of MAPK cascade proteins in epithelial cells and SFs. Similarly, a difference in the expression of claudin, Zink finger E-box-binding homeobox 1 was observed along with phosphorylation levels of cofilin in epithelial cells. Stimulation of SFs with BMP7 activated them with increased expression of α-smooth muscle actin. In addition, an elevated phosphorylation of epidermal growth factor receptor following BMP7 stimulation was also observed both in corneal epithelial cells and SFs. Based on our transcriptome analysis data on epithelial cells and the results obtained in SFs, we conclude that BMP7 contributes to epithelial-to-mesenchymal transition-like responses and plays a role equivalent to TGF-β in the course of corneal wound healing.
Collapse
Affiliation(s)
- Bhavani S Kowtharapu
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Ruby Kala Prakasam
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Radovan Murín
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.
| | - Dirk Koczan
- Institute for Immunology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Thomas Stahnke
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Andreas Wree
- Institute for Anatomy, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Anselm G M Jünemann
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| | - Oliver Stachs
- Department of Ophthalmology, Rostock University Medical Center, 18057 Rostock, Germany.
| |
Collapse
|
8
|
Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL. Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int 2018; 42:832-840. [PMID: 29363846 DOI: 10.1002/cbin.10938] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the effect of inflammatory stimuli on dental pulp stem cells (DPSCs) by assessing their proliferation and expression of genes as well as proteins in lipopolysaccharide (LPS)-induced microenvironment (iDPSCs). DPSCs were first characterized for their mesenchymal properties prior to challenging them with a series of LPS concentrations from 12 to 72 h. Following to this, their proliferation and inflammatory based genes as well as protein expression were assessed. iDPSCs had demonstrated significant expression of mesenchymal markers. Upon exposure to LPS, the viability dropped distinctly with increasing concentration, as compared to control (P < 0.05). The expression of pro-inflammatory genes such as interleukin 6, interleukin 8 were augmented with exposure to LPS (P < 0.05). Similarly, cytokines like tumour necrosis factor (TNF) α and interleukin 1α had increased in dose dependant manner upon LPS exposure (P < 0.05). Our results suggest that LPS concentration between 1 and 2 μg/mL demonstrated inflammation induction in DPSCs that may simulate inflamed microenvironment of dental pulp in clinical scenario. Thus, optimizing iDPSCs secretome profile could be a promising approach to test various regenerative protocols in inflamed microenvironment.
Collapse
Affiliation(s)
- Priyadarshini Bindal
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Thamil Selvee Ramasamy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
9
|
Abstract
Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Graham Carpenter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| |
Collapse
|
10
|
Zheng Y, Jia L, Liu P, Yang D, Hu W, Chen S, Zhao Y, Cai J, Pei D, Ge L, Wei S. Insight into the maintenance of odontogenic potential in mouse dental mesenchymal cells based on transcriptomic analysis. PeerJ 2016; 4:e1684. [PMID: 26925321 PMCID: PMC4768683 DOI: 10.7717/peerj.1684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background. Mouse dental mesenchymal cells (mDMCs) from tooth germs of cap or later stages are frequently used in the context of developmental biology or whole-tooth regeneration due to their odontogenic potential. In vitro-expanded mDMCs serve as an alternative cell source considering the difficulty in obtaining primary mDMCs; however, cultured mDMCs fail to support tooth development as a result of functional failures of specific genes or pathways. The goal of this study was to identify the genes that maintain the odontogenic potential of mDMCs in culture. Methods. We examined the odontogenic potential of freshly isolated versus cultured mDMCs from the lower first molars of embryonic day 14.5 mice. The transcriptome of mDMCs was detected using RNA sequencing and the data were validated by qRT-PCR. Differential expression analysis and pathway analysis were conducted to identify the genes that contribute to the loss of odontogenic potential. Results. Cultured mDMCs failed to develop into well-structured tooth when they were recombined with dental epithelium. Compared with freshly isolated mDMCs, we found that 1,004 genes were upregulated and 948 were downregulated in cultured mDMCs. The differentially expressed genes were clustered in the biological processes and signaling pathways associated with tooth development. Following in vitro culture, genes encoding a wide array of components of MAPK, TGF-β/BMP, and Wnt pathways were significantly downregulated. Moreover, the activities of Bdnf, Vegfα, Bmp2, and Bmp7 were significantly inhibited in cultured mDMCs. Supplementation of VEGFα, BMP2, and BMP7 restored the expression of a subset of downregulated genes and induced mDMCs to form dentin-like structures in vivo. Conclusions.Vegfα, Bmp2, and Bmp7 play a role in the maintenance of odontogenic potential in mDMCs.
Collapse
Affiliation(s)
- Yunfei Zheng
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Pengfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dandan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Experimental Center of Pathogenobiology Immunology, Cytobiology and Genetic, College of Basic Medical Sciences of Jilin University, Jilin, China
| | - Waner Hu
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shubin Chen
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jinglei Cai
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Duanqing Pei
- Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
11
|
Liu Z, Zhou Y, Yuan Y, Nie F, Peng R, Li Q, Lyu Z, Mao Z, Huang L, Zhou L, Li Y, Hao J, Ni D, Jin Q, Long Y, Ju P, Yu W, Liu J, Hu Y, Zhou Q. MiR542-3p Regulates the Epithelial-Mesenchymal Transition by Directly Targeting BMP7 in NRK52e. Int J Mol Sci 2015; 16:27945-55. [PMID: 26610487 PMCID: PMC4661932 DOI: 10.3390/ijms161126075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence demonstrated that miRNAs are highly involved in kidney fibrosis and Epithelial-Eesenchymal Transition (EMT), however, the mechanisms of miRNAs in kidney fibrosis are poorly understood. In this work, we identified that miR542-3p could promote EMT through down-regulating bone morphogenetic protein 7 (BMP7) expression by targeting BMP7 3′UTR. Firstly, real-time PCR results showed that miR542-3p was significantly up-regulated in kidney fibrosis in vitro and in vivo. Moreover, Western blot results demonstrated that miR542-3p may promote EMT in the NRK52e cell line. In addition, we confirmed that BMP7, which played a crucial role in anti-kidney fibrosis and suppressed the progression of EMT, was a target of miR542-3p through Dual-Luciferase reporter assay, as did Western blot analysis. The effects of miR542-3p on regulating EMT could also be suppressed by transiently overexpressing BMP7 in NRK52e cells. Taken together, miR542-3p may be a critical mediator of the induction of EMT via directly targeting BMP7.
Collapse
Affiliation(s)
- Zhicheng Liu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yuru Zhou
- The Seventh Class of 2012 year entry, the Third Clinical College, Chongqing Medical University, Chongqing 400016, China.
| | - Yue Yuan
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Fang Nie
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Rui Peng
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Qianyin Li
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhongshi Lyu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhaomin Mao
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Liyuan Huang
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Li Zhou
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yiman Li
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Hao
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Dongsheng Ni
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Qianni Jin
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yaoshui Long
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Pan Ju
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Yu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jianing Liu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yanxia Hu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Qin Zhou
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|