1
|
Chiyomaru K, Takemoto K. Revisiting the hypothesis of an energetic barrier to genome complexity between eukaryotes and prokaryotes. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191859. [PMID: 32257343 PMCID: PMC7062059 DOI: 10.1098/rsos.191859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/21/2020] [Indexed: 05/06/2023]
Abstract
The absence of genome complexity in prokaryotes, being the evolutionary precursors to eukaryotic cells comprising all complex life (the prokaryote-eukaryote divide), is a long-standing question in evolutionary biology. A previous study hypothesized that the divide exists because prokaryotic genome size is constrained by bioenergetics (prokaryotic power per gene or genome being significantly lower than eukaryotic ones). However, this hypothesis was evaluated using a relatively small dataset due to lack of data availability at the time, and is therefore controversial. Accordingly, we constructed a larger dataset of genomes, metabolic rates, cell sizes and ploidy levels to investigate whether an energetic barrier to genome complexity exists between eukaryotes and prokaryotes while statistically controlling for the confounding effects of cell size and phylogenetic signals. Notably, we showed that the differences in bioenergetics between prokaryotes and eukaryotes were less significant than those previously reported. More importantly, we found a limited contribution of power per genome and power per gene to the prokaryote-eukaryote dichotomy. Our findings indicate that the prokaryote-eukaryote divide is hard to explain from the energetic perspective. However, our findings may not entirely discount the traditional hypothesis; in contrast, they indicate the need for more careful examination.
Collapse
|
2
|
Takemoto K, Imoto M. Exosomes in mammals with greater habitat variability contain more proteins and RNAs. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170162. [PMID: 28484642 PMCID: PMC5414279 DOI: 10.1098/rsos.170162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 05/08/2023]
Abstract
Factors determining habitat variability are poorly understood despite possible explanations based on genome and physiology. This is because previous studies only focused on primary measures such as genome size and body size. In this study, we hypothesize that specific gene functions determine habitat variability in order to explore new factors beyond primary measures. We comprehensively evaluate the relationship between gene functions and the climate envelope while statistically controlling for potentially confounding effects by using data on the habitat range, genome, body size and metabolism of various mammals. Our analyses show that the number of proteins and RNAs contained in exosomes is predominantly associated with the climate envelope. This finding indicates the importance of exosomes to habitat range expansion of mammals and provides a new hypothesis for the relationship between the genome and habitat variability.
Collapse
|
3
|
Takemoto K, Ii M, Nishizuka SS. Importance of metabolic rate to the relationship between the number of genes in a functional category and body size in Peto's paradox for cancer. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160267. [PMID: 27703689 PMCID: PMC5043308 DOI: 10.1098/rsos.160267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/04/2016] [Indexed: 05/23/2023]
Abstract
Elucidation of tumour suppression mechanisms is a major challenge in cancer biology. Therefore, Peto's paradox, or low cancer incidence in large animals, has attracted focus. According to the gene-abundance hypothesis, which considers the increase/decrease in cancer-related genes with body size, researchers evaluated the associations between gene abundance and body size. However, previous studies only focused on a few specific gene functions and have ignored the alternative hypothesis (metabolic rate hypothesis): in this hypothesis, the cellular metabolic rate and subsequent oxidative stress decreases with increasing body size. In this study, we have elected to explore the gene-abundance hypothesis taking into account the metabolic rate hypothesis. Thus, we comprehensively investigated the correlation between the number of genes in various functional categories and body size while at the same time correcting for the mass-specific metabolic rate (Bc). A number of gene functions that correlated with body size were initially identified, but they were found to be artefactual due to the decrease in Bc with increasing body size. By contrast, immune system-related genes were found to increase with increasing body size when the correlation included this correction for Bc. These findings support the gene-abundance hypothesis and emphasize the importance of also taking into account the metabolic rate when evaluating gene abundance-body size relationships. This finding may be useful for understanding cancer evolution and tumour suppression mechanisms as well as for determining cancer-related genes and functions.
Collapse
Affiliation(s)
- Kazuhiro Takemoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Masato Ii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Satoshi S. Nishizuka
- Molecular Therapeutics Laboratory, Department of Surgery, Iwate Medical University School of Medicine, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
4
|
Park JY, An YR, An CM, Kang JH, Kim EM, Kim H, Cho S, Kim J. Evolutionary constraints over microsatellite abundance in larger mammals as a potential mechanism against carcinogenic burden. Sci Rep 2016; 6:25246. [PMID: 27125812 PMCID: PMC4850439 DOI: 10.1038/srep25246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/08/2016] [Indexed: 12/29/2022] Open
Abstract
Larger organisms tend to live longer, have more potentially carcinogenic cells, and undergo more cell divisions. While one might intuitively expect cancer incidence to scale with body size, this assertion does not hold over the range of different mammals. Explaining this lack of correlation, so-called 'Peto's paradox' can likely increase our understanding of how cancer defense mechanisms are shaped by natural selection. Here, we study the occurrence of microsatellite in mammal genomes and observe that animals with expanded body size restrain the number of microsatellite. To take into account of higher mutation rate in the microsatellite region compared to that of genome, limiting the abundance of somatic mutations might explain how larger organisms could overcome the burden of cancer. These observations may serve as the basis to better understand how evolution has modeled protective mechanisms against cancer development.
Collapse
Affiliation(s)
- Jung Youn Park
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea
| | - Yong-Rock An
- Cetacean Research Institute, National Fisheries Research & Development Institute, Nam-gu, Ulsan 680-050, Republic of Korea
| | - Chul-Min An
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea
| | - Jung-Ha Kang
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea
| | - Eun Mi Kim
- Biotechnology Research Division, National Fisheries Research & Development Institute, Gijang gun, Busan, 619-705, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Republic of Korea
- C&K Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Seoae Cho
- C&K Genomics, Seoul National University Research Park, Seoul 151-919, Republic of Korea
| | - Jaemin Kim
- National Human Genome Research Institute, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
5
|
Takemoto K. Habitat variability does not generally promote metabolic network modularity in flies and mammals. Biosystems 2015; 139:46-54. [PMID: 26723229 DOI: 10.1016/j.biosystems.2015.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 11/24/2022]
Abstract
The evolution of species habitat range is an important topic over a wide range of research fields. In higher organisms, habitat range evolution is generally associated with genetic events such as gene duplication. However, the specific factors that determine habitat variability remain unclear at higher levels of biological organization (e.g., biochemical networks). One widely accepted hypothesis developed from both theoretical and empirical analyses is that habitat variability promotes network modularity; however, this relationship has not yet been directly tested in higher organisms. Therefore, I investigated the relationship between habitat variability and metabolic network modularity using compound and enzymatic networks in flies and mammals. Contrary to expectation, there was no clear positive correlation between habitat variability and network modularity. As an exception, the network modularity increased with habitat variability in the enzymatic networks of flies. However, the observed association was likely an artifact, and the frequency of gene duplication appears to be the main factor contributing to network modularity. These findings raise the question of whether or not there is a general mechanism for habitat range expansion at a higher level (i.e., above the gene scale). This study suggests that the currently widely accepted hypothesis for habitat variability should be reconsidered.
Collapse
Affiliation(s)
- Kazuhiro Takemoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|