1
|
Gurdap CO, Wedemann L, Sych T, Sezgin E. Influence of the extracellular domain size on the dynamic behavior of membrane proteins. Biophys J 2022; 121:3826-3836. [PMID: 36110044 PMCID: PMC9674980 DOI: 10.1016/j.bpj.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic behavior of plasma membrane proteins mediates various cellular processes such as cellular motility, communication, and signaling. It is widely accepted that the dynamics of the membrane proteins is determined either by the interactions of the transmembrane domain with the surrounding lipids or by the interactions of the intracellular domain with cytosolic components such as cortical actin. Although initiation of different cellular signaling events at the plasma membrane has been attributed to the extracellular domain (ECD) properties recently, the impact of ECDs on the dynamic behavior of membrane proteins is rather unexplored. Here, we investigate how ECD properties influence protein dynamics in the lipid bilayer by reconstituting ECDs of different sizes or glycosylation in model membrane systems and analyzing ECD-driven protein sorting in lipid domains as well as protein mobility. Our data show that increasing the ECD mass or glycosylation leads to a decrease in ordered domain partitioning and diffusivity. Our data reconcile different mechanisms proposed for the initiation of cellular signaling by linking the ECD size of membrane proteins with their localization and diffusion dynamics in the plasma membrane.
Collapse
Affiliation(s)
- Cenk Onur Gurdap
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Linda Wedemann
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
2
|
Hempelmann A, Hartleb L, van Straaten M, Hashemi H, Zeelen JP, Bongers K, Papavasiliou FN, Engstler M, Stebbins CE, Jones NG. Nanobody-mediated macromolecular crowding induces membrane fission and remodeling in the African trypanosome. Cell Rep 2021; 37:109923. [PMID: 34731611 DOI: 10.1016/j.celrep.2021.109923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022] Open
Abstract
The dense variant surface glycoprotein (VSG) coat of African trypanosomes represents the primary host-pathogen interface. Antigenic variation prevents clearing of the pathogen by employing a large repertoire of antigenically distinct VSG genes, thus neutralizing the host's antibody response. To explore the epitope space of VSGs, we generate anti-VSG nanobodies and combine high-resolution structural analysis of VSG-nanobody complexes with binding assays on living cells, revealing that these camelid antibodies bind deeply inside the coat. One nanobody causes rapid loss of cellular motility, possibly due to blockage of VSG mobility on the coat, whose rapid endocytosis and exocytosis are mechanistically linked to Trypanosoma brucei propulsion and whose density is required for survival. Electron microscopy studies demonstrate that this loss of motility is accompanied by rapid formation and shedding of nanovesicles and nanotubes, suggesting that increased protein crowding on the dense membrane can be a driving force for membrane fission in living cells.
Collapse
Affiliation(s)
- Alexander Hempelmann
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Laura Hartleb
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Hamidreza Hashemi
- Division of Immune Diversity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Johan P Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Kevin Bongers
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg 69120, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg 69120, Germany.
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität of Würzburg, Würzburg 97074, Germany.
| |
Collapse
|
3
|
Grebnev G, Cvitkovic M, Fritz C, Cai G, Smith AS, Kost B. Quantitative Structural Organization of Bulk Apical Membrane Traffic in Pollen Tubes. PLANT PHYSIOLOGY 2020; 183:1559-1585. [PMID: 32482906 PMCID: PMC7401101 DOI: 10.1104/pp.20.00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube tip growth depends on balancing secretion of cell wall material with endocytic recycling of excess material incorporated into the plasma membrane (PM). The classical model of tip growth, which predicts bulk secretion, occurs apically, and is compensated by subapical endocytosis, has been challenged in recent years. Many signaling proteins and lipids with important functions in the regulation of membrane traffic underlying tip growth associate with distinct regions of the pollen tube PM, and understanding the mechanisms responsible for the targeting of these regulatory factors to specific PM domains requires quantitative information concerning the sites of bulk secretion and endocytosis. Here, we quantitatively characterized the spatial organization of membrane traffic during tip growth by analyzing steady-state distributions and dynamics of FM4-64-labeled lipids and YFP-tagged transmembrane (TM) proteins in tobacco (Nicotiana tabacum) pollen tubes growing normally or treated with Brefeldin A to block secretion. We established that (1) secretion delivers TM proteins and recycled membrane lipids to the same apical PM domain, and (2) FM4-64-labeled lipids, but not the analyzed TM proteins, undergo endocytic recycling within a clearly defined subapical region. We mathematically modeled the steady-state PM distributions of all analyzed markers to better understand differences between them and to support the experimental data. Finally, we mapped subapical F-actin fringe and trans-Golgi network positioning relative to sites of bulk secretion and endocytosis to further characterize functions of these structures in apical membrane traffic. Our results support and further define the classical model of apical membrane traffic at the tip of elongating pollen tubes.
Collapse
Affiliation(s)
- Gleb Grebnev
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Mislav Cvitkovic
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Carolin Fritz
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ana-Suncana Smith
- PULS Group, Department of Physics, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich-Alexander-University Erlangen Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Venkatesh D, Zhang N, Zoltner M, del Pino RC, Field MC. Evolution of protein trafficking in kinetoplastid parasites: Complexity and pathogenesis. Traffic 2018; 19:803-812. [DOI: 10.1111/tra.12601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Affiliation(s)
| | - Ning Zhang
- School of Life Sciences; University of Dundee; Dundee UK
| | - Martin Zoltner
- School of Life Sciences; University of Dundee; Dundee UK
| | | | - Mark C. Field
- School of Life Sciences; University of Dundee; Dundee UK
| |
Collapse
|
5
|
Ooi CP, Smith TK, Gluenz E, Wand NV, Vaughan S, Rudenko G. Blocking variant surface glycoprotein synthesis alters endoplasmic reticulum exit sites/Golgi homeostasis in Trypanosoma brucei. Traffic 2018; 19:391-405. [PMID: 29533496 PMCID: PMC6001540 DOI: 10.1111/tra.12561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/08/2018] [Accepted: 03/08/2018] [Indexed: 12/31/2022]
Abstract
The predominant secretory cargo of bloodstream form Trypanosoma brucei is variant surface glycoprotein (VSG), comprising ~10% total protein and forming a dense protective layer. Blocking VSG translation using Morpholino oligonucleotides triggered a precise pre‐cytokinesis arrest. We investigated the effect of blocking VSG synthesis on the secretory pathway. The number of Golgi decreased, particularly in post‐mitotic cells, from 3.5 ± 0.6 to 2.0 ± 0.04 per cell. Similarly, the number of endoplasmic reticulum exit sites (ERES) in post‐mitotic cells dropped from 3.9 ± 0.6 to 2.7 ± 0.1 eight hours after blocking VSG synthesis. The secretory pathway was still functional in these stalled cells, as monitored using Cathepsin L. Rates of phospholipid and glycosylphosphatidylinositol‐anchor biosynthesis remained relatively unaffected, except for the level of sphingomyelin which increased. However, both endoplasmic reticulum and Golgi morphology became distorted, with the Golgi cisternae becoming significantly dilated, particularly at the trans‐face. Membrane accumulation in these structures is possibly caused by reduced budding of nascent vesicles due to the drastic reduction in the total amount of secretory cargo, that is, VSG. These data argue that the total flux of secretory cargo impacts upon the biogenesis and maintenance of secretory structures and organelles in T. brucei, including the ERES and Golgi.
Collapse
Affiliation(s)
- Cher-Pheng Ooi
- Department of Life Sciences, Imperial College London, London, UK
| | - Terry K Smith
- BSRC, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Sue Vaughan
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
6
|
Glogger M, Subota I, Pezzarossa A, Denecke AL, Carrington M, Fenz SF, Engstler M. Facilitating trypanosome imaging. Exp Parasitol 2017; 180:13-18. [PMID: 28363776 PMCID: PMC5540225 DOI: 10.1016/j.exppara.2017.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/08/2017] [Accepted: 03/25/2017] [Indexed: 11/30/2022]
Abstract
Research on trypanosomes as a model organism has provided a substantial contribution to a detailed understanding of basic cellular processes within the last few years. At the same time, major advances in super-resolution microscopy have been achieved, facilitating the resolution of biological structures in living cells at a scale of a few nm. However, the motility of trypanosomes has prevented access to high resolution microscopy of live cells. Here, we present a hydrogel based on poly(ethylene glycol) functionalized with either norbornene or thiol moieties for UV induced thiol-ene crosslinking for the embedding and imaging of live trypanosomes. The resulting gel exhibits low autofluorescence properties, immobilizes the cells efficiently on the nanometer scale and is compatible with cell viability for up to one hour at 24 °C. We applied super-resolution imaging to the inner plasma membrane leaflet using lipid-anchored eYFP as a probe. We find specific domains within the membrane where the fluorescence either accumulates or appears diluted rather than being homogenously distributed. Based on a Ripley's analysis, the size of the domains was determined to be raccumulated=170±5 nm and rdilute>115±15 nm. We hypothesize that this structuring of the membrane is associated with the underlying cytoskeleton.
Collapse
Affiliation(s)
- Marius Glogger
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ines Subota
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Anna-Lena Denecke
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB21QW, UK
| | - Susanne F Fenz
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells. mBio 2017; 8:mBio.00679-17. [PMID: 28790202 PMCID: PMC5550748 DOI: 10.1128/mbio.00679-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be in positioning magnetosome organelles; this was proposed based on observations via electron microscopy still images. Here, we conducted live-cell time-lapse fluorescence imaging analyses employing highly inclined and laminated optical sheet microscopy, and these methods enabled us to visualize detailed dynamic movement of magnetosomes in growing cells during the entire cell cycle with high-temporal resolution and a high signal/noise ratio. We found that the MamK cytoskeleton anchors magnetosomes through a mechanism that requires MamK-ATPase activity throughout the cell cycle to prevent simple diffusion of magnetosomes within the cell. We concluded that the static chain-like arrangement of the magnetosomes is required to precisely and consistently segregate the magnetosomes to daughter cells. Thus, the daughter cells inherit a functional magnetic sensor that mediates magneto-reception. Half a century ago, bacterial cells were considered a simple “bag of enzymes”; only recently have they been shown to comprise ordered complexes of macromolecular structures, such as bacterial organelles and cytoskeletons, similar to their eukaryotic counterparts. In eukaryotic cells, the positioning of organelles is regulated by cytoskeletal elements. However, the role of cytoskeletal elements in the positioning of bacterial organelles, such as magnetosomes, remains unclear. Magnetosomes are associated with cytoskeletal filaments that consist of the actin-like protein MamK. In this study, we focused on how the MamK cytoskeleton regulates the dynamic movement of magnetosome organelles in living magnetotactic bacterial cells. Here, we used fluorescence imaging to visualize the dynamics of magnetosomes throughout the cell cycle in living magnetotactic bacterial cells to understand how they use the actin-like cytoskeleton to maintain and to make functional their nano-sized magnetic organelles.
Collapse
|
8
|
Dopamine Receptor Signaling in MIN6 β-Cells Revealed by Fluorescence Fluctuation Spectroscopy. Biophys J 2017; 111:609-618. [PMID: 27508444 DOI: 10.1016/j.bpj.2016.06.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 11/22/2022] Open
Abstract
Insulin secretion defects are central to the development of type II diabetes mellitus. Glucose stimulation of insulin secretion has been extensively studied, but its regulation by other stimuli such as incretins and neurotransmitters is not as well understood. We investigated the mechanisms underlying the inhibition of insulin secretion by dopamine, which is synthesized in pancreatic β-cells from circulating L-dopa. Previous research has shown that this inhibition is mediated primarily by activation of the dopamine receptor D3 subtype (DRD3), even though both DRD2 and DRD3 are expressed in β-cells. To understand this dichotomy, we investigated the dynamic interactions between the dopamine receptor subtypes and their G-proteins using two-color fluorescence fluctuation spectroscopy (FFS) of mouse MIN6 β-cells. We show that proper membrane localization of exogenous G-proteins depends on both the Gβ and Gγ subunits being overexpressed in the cell. Triple transfections of the dopamine receptor subtype and Gβ and Gγ subunits, each labeled with a different-colored fluorescent protein (FP), yielded plasma membrane expression of all three FPs and permitted an FFS evaluation of interactions between the dopamine receptors and the Gβγ complex. Upon dopamine stimulation, we measured a significant decrease in interactions between DRD3 and the Gβγ complex, which is consistent with receptor activation. In contrast, dopamine stimulation did not cause significant changes in the interactions between DRD2 and the Gβγ complex. These results demonstrate that two-color FFS is a powerful tool for measuring dynamic protein interactions in living cells, and show that preferential DRD3 signaling in β-cells occurs at the level of G-protein release.
Collapse
|
9
|
Optical measurement of receptor tyrosine kinase oligomerization on live cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1436-1444. [PMID: 28389201 DOI: 10.1016/j.bbamem.2017.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022]
Abstract
Receptor tyrosine kinases (RTK) are important cell surface receptors that transduce extracellular signals across the plasma membrane. The traditional view of how these receptors function is that ligand binding to the extracellular domains acts as a master-switch that enables receptor monomers to dimerize and subsequently trans-phosphorylate each other on their intracellular domains. However, a growing body of evidence suggests that receptor oligomerization is not merely a consequence of ligand binding, but is instead part of a complex process responsible for regulation of receptor activation. Importantly, the oligomerization dynamics and subsequent activation of these receptors are affected by other cellular components, such as cytoskeletal machineries and cell membrane lipid characteristics. Thus receptor activation is not an isolated molecular event mediated by the ligand-receptor interaction, but instead involves orchestrated interactions between the receptors and other cellular components. Measuring receptor oligomerization dynamics on live cells can yield important insights into the characteristics of these interactions. Therefore, it is imperative to develop techniques that can probe receptor movements on the plasma membrane with optimal temporal and spatial resolutions. Various microscopic techniques have been used for this purpose. Optical techniques including single molecule tracking (SMT) and fluorescence correlation spectroscopy (FCS) measure receptor diffusion on live cells. Receptor-receptor interactions can also be assessed by detecting Förster resonance energy transfer (FRET) between fluorescently-labeled receptors situated in close proximity or by counting the number of receptors within a diffraction limited fluorescence spot (stepwise bleaching). This review will describe recent developments of optical techniques that have been used to study receptor oligomerization on living cells. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova.
Collapse
|
10
|
Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization. Front Cell Dev Biol 2016; 4:106. [PMID: 27747212 PMCID: PMC5040727 DOI: 10.3389/fcell.2016.00106] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022] Open
Abstract
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.
Collapse
Affiliation(s)
- Jorge Bernardino de la Serna
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell Harwell, UK
| | - Gerhard J Schütz
- Institute of Applied Physics, Technische Universität Wien Wien, Austria
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Headley Way, UK
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J.Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
11
|
Hartel AJW, Glogger M, Jones NG, Abuillan W, Batram C, Hermann A, Fenz SF, Tanaka M, Engstler M. N-glycosylation enables high lateral mobility of GPI-anchored proteins at a molecular crowding threshold. Nat Commun 2016; 7:12870. [PMID: 27641538 PMCID: PMC5031801 DOI: 10.1038/ncomms12870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/09/2016] [Indexed: 01/17/2023] Open
Abstract
The protein density in biological membranes can be extraordinarily high, but the impact of molecular crowding on the diffusion of membrane proteins has not been studied systematically in a natural system. The diversity of the membrane proteome of most cells may preclude systematic studies. African trypanosomes, however, feature a uniform surface coat that is dominated by a single type of variant surface glycoprotein (VSG). Here we study the density-dependence of the diffusion of different glycosylphosphatidylinositol-anchored VSG-types on living cells and in artificial membranes. Our results suggest that a specific molecular crowding threshold (MCT) limits diffusion and hence affects protein function. Obstacles in the form of heterologous proteins compromise the diffusion coefficient and the MCT. The trypanosome VSG-coat operates very close to its MCT. Importantly, our experiments show that N-linked glycans act as molecular insulators that reduce retarding intermolecular interactions allowing membrane proteins to function correctly even when densely packed.
Collapse
Affiliation(s)
- Andreas J. W. Hartel
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Marius Glogger
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Nicola G. Jones
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Wasim Abuillan
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
| | - Christopher Batram
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Anne Hermann
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Susanne F. Fenz
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, University of Heidelberg, Heidelberg 69120, Germany
- Institute for Integrated Cell-Material Science (WPI iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Markus Engstler
- Department of Cell and Developmental Biology, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| |
Collapse
|
12
|
Heider S, Dangerfield JA, Metzner C. Biomedical applications of glycosylphosphatidylinositol-anchored proteins. J Lipid Res 2016; 57:1778-1788. [PMID: 27542385 PMCID: PMC5036375 DOI: 10.1194/jlr.r070201] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) use a unique posttranslational modification to link proteins to lipid bilayer membranes. The anchoring structure consists of both a lipid and carbohydrate portion and is highly conserved in eukaryotic organisms regarding its basic characteristics, yet highly variable in its molecular details. The strong membrane targeting property has made the anchors an interesting tool for biotechnological modification of lipid membrane-covered entities from cells through extracellular vesicles to enveloped virus particles. In this review, we will take a closer look at the mechanisms and fields of application for GPI-APs in lipid bilayer membrane engineering and discuss their advantages and disadvantages for biomedicine.
Collapse
Affiliation(s)
- Susanne Heider
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Christoph Metzner
- Institute of Virology, University of Veterinary Medicine, 1210 Vienna, Austria.
| |
Collapse
|
13
|
Guigas G, Weiss M. Effects of protein crowding on membrane systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:2441-2450. [PMID: 26724385 DOI: 10.1016/j.bbamem.2015.12.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Cellular membranes are typically decorated with a plethora of embedded and adsorbed macromolecules, e.g. proteins, that participate in numerous vital processes. With typical surface densities of 30,000 proteins per μm(2) cellular membranes are indeed crowded places that leave only few nanometers of private space for individual proteins. Here, we review recent advances in our understanding of protein crowding in membrane systems. We first give a brief overview on state-of-the-art approaches in experiment and simulation that are frequently used to study crowded membranes. After that, we review how crowding can affect diffusive transport of proteins and lipids in membrane systems. Next, we discuss lipid and protein sorting in crowded membrane systems, including effects like protein cluster formation, phase segregation, and lipid droplet formation. Subsequently, we highlight recent progress in uncovering crowding-induced conformational changes of membranes, e.g. membrane budding and vesicle formation. Finally, we give a short outlook on potential future developments in the field of crowded membrane systems. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Gernot Guigas
- Experimental Physics I, Universitaetsstr. 30, Bayreuth University, D-95440 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Universitaetsstr. 30, Bayreuth University, D-95440 Bayreuth, Germany.
| |
Collapse
|