1
|
Basu S, Roy SK, Sharma M, Barcenas G, Yurke B, Knowlton WB, Lee J. Site-specific photo-crosslinking in a double crossover DNA tile facilitated by squaraine dye aggregates: advancing thermally stable and uniform DNA nanostructures. Biomater Sci 2025; 13:1742-1757. [PMID: 39981947 DOI: 10.1039/d4bm01695e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
We investigated the role of dichloro-squaraine (SQ) dye aggregates in facilitating thymine-thymine interstrand photo-crosslinking within double crossover (DX) tiles, to develop thermally stable and structurally uniform two-dimensional (2D) DNA-based nanostructures. By strategically incorporating SQ modified thymine pairs, we enabled site-selective [2 + 2] photocycloaddition under 310 nm UV light. Strong dye-dye interactions, particularly through the formation of aggregates, facilitated covalent bond formation between proximal thymines. To evaluate the impact of dye aggregation on crosslinking efficiency, ten DX tile variants with varying SQ-modified thymine positions were tested. Our results demonstrated that SQ dye aggregates significantly enhanced crosslinking, driven by precise SQ-modified thymine dimer placement within the DNA tiles. Analytical techniques, including denaturing PAGE and UV-visible spectroscopy, validated successful crosslinking in DNA tiles with multiple SQ-modified thymine pairs. This non-phototoxic method offers a potential route for creating thermally stable, homogeneous higher-order DNA-dye assemblies with potential applications in photoactive and exciton-based fields such as optoelectronics, nanoscale computing, and quantum computing. The insights from this study establish a foundation for further exploration of advanced DNA-dye systems, enabling the design of next-generation DNA nanostructures with enhanced functional properties.
Collapse
Affiliation(s)
- Shibani Basu
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Mandeep Sharma
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - German Barcenas
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, USA.
- Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
2
|
Chao D, Xu X, Miao Y, Yang L, Gao Q, Xu R, Tian Y, Zhao Y, Du Y, Han D. Covalent stabilization of DNA nanostructures on cell membranes for efficient surface receptor-mediated labeling and function regulations. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1413-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Hornung JE, Weinrich T, Göbel MW. Directed Crosslinking of RNA by Glutathione‐Triggered PNA‐Quinone‐Methide‐Conjugates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jan-Erik Hornung
- Goethe-Universitat Frankfurt am Main Institut für Organische Chemie und Chemische Biologie GERMANY
| | - Timo Weinrich
- Goethe-Universitat Frankfurt am Main Institut für Organische Chemie und Chemische Biologie GERMANY
| | - Michael W. Göbel
- Goethe-Universität Frankfurt Institut für Organische Chemie und Chemi Max-von-Laue-Str. 7 60438 Frankfurt am Main GERMANY
| |
Collapse
|
4
|
Nowak-Karnowska J, Zielińska K, Milecki J, Skalski B. Thermally reversible and irreversible interstrand photocrosslinking of 5-chloro-2'-deoxy-4-thiouridine modified DNA oligonucleotides. Org Biomol Chem 2021; 19:1292-1295. [PMID: 33508059 DOI: 10.1039/d0ob02422h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe highly efficient interstrand photocrosslinking of a DNA duplex containing 5-chloro-2'-deoxy-4-thiouridine (ClSdU) in one strand, proceeding via a two-step photochemical cascade, involving the formation of a thermally reversible crosslink between ClSdU and thymidine in the target strand and its subsequent conversion to a thermally stable fluorescent crosslink. These results show that ClSdU has great potential to be a valuable DNA photo-crosslinking reagent for chemical biology applications.
Collapse
Affiliation(s)
- Joanna Nowak-Karnowska
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Karolina Zielińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jan Milecki
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Bohdan Skalski
- Department of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland. and Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Hornung JE, Hellwig N, Göbel MW. Peptide Nucleic Acid Conjugates of Quinone Methide Precursors Alkylate Ribonucleic Acid after Activation with Light. Bioconjug Chem 2020; 31:639-645. [PMID: 31904221 DOI: 10.1021/acs.bioconjchem.9b00796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quinone methide precursors 2 and 3 were protected with a photoreactive 2-nitrobenzyl group and conjugated to peptide nucleic acids (PNA) using a Huisgen click reaction. After brief irradiation at 365 nm, cross-linking with complementary RNA strands started and was analyzed with an ALFexpress sequencer. When this method was used, the gel temperature had a major influence on apparent rates. Quinone methides are known to form transient as well as stable bonds with nucleotides. Although both were detected at 25 °C, analysis at 57 °C only recorded the stable types of cross-links, suggesting much slower alkylation kinetics. Linker 11 allowed us to attach quinone methides to internal positions of the PNA/RNA duplex and to capture a model of miR-20a with good efficiency.
Collapse
|
6
|
Rozelle AL, Kumar RN, Lee S. Photo-induced DNA interstrand cross-links formed by a coumarin-modified nucleoside. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:236-247. [PMID: 30922158 DOI: 10.1080/15257770.2018.1515439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Coumarins are a class of naturally occurring compounds that have been shown to form photochemical DNA interstrand cross-links (ICLs). However, study of a coumarin base has not been explored. Using nucleophilic substitution and phosphoramidite chemistry, we synthesized a coumarin base-containing oligonucleotide. Upon exposure to long-wave ultraviolet light, the coumarin-modified oligonucleotide formed ICLs with complementary oligonucleotide containing dT and dC opposite the coumarin base, presumably through a [2 + 2] cycloaddition mechanism. Moderate yields with both bases were observed; though, dT has a higher reactivity than dC. Overall, this work provides new means for biochemical characterization of ICLs formed by coumarins.
Collapse
Affiliation(s)
- Aaron Leland Rozelle
- a Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy, The University of Texas at Austin , Austin , Texas , 78712 , USA
| | - Rayala Naveen Kumar
- a Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy, The University of Texas at Austin , Austin , Texas , 78712 , USA
| | - Seongmin Lee
- a Division of Chemical Biology and Medicinal Chemistry , College of Pharmacy, The University of Texas at Austin , Austin , Texas , 78712 , USA
| |
Collapse
|
7
|
De Laet N, Llamas EM, Madder A. Templated DNA Cross-Linking: Towards a Non-Invasive Singlet-Oxygen-Based Triggering Method. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201700175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathalie De Laet
- Organic and Biomimetic Chemistry Research Group Krijgslaan 281, S4; B-9000 Ghent Belgium
| | - Eva M. Llamas
- Organic and Biomimetic Chemistry Research Group Krijgslaan 281, S4; B-9000 Ghent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group Krijgslaan 281, S4; B-9000 Ghent Belgium
| |
Collapse
|
8
|
Yang Z, Price NE, Johnson KM, Wang Y, Gates KS. Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA. Nucleic Acids Res 2017; 45:6275-6283. [PMID: 28531327 PMCID: PMC5499897 DOI: 10.1093/nar/gkx394] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/02/2017] [Indexed: 01/04/2023] Open
Abstract
Interstrand cross-links are exceptionally bioactive DNA lesions. Endogenous generation of interstrand cross-links in genomic DNA may contribute to aging, neurodegeneration, and cancer. Abasic (Ap) sites are common lesions in genomic DNA that readily undergo spontaneous and amine-catalyzed strand cleavage reactions that generate a 2,3-didehydro-2,3-dideoxyribose sugar remnant (3’ddR5p) at the 3’-terminus of the strand break. Interestingly, this strand scission process leaves an electrophilic α,β-unsaturated aldehyde residue embedded within the resulting nicked duplex. Here we present evidence that 3’ddR5p derivatives generated by spermine-catalyzed strand cleavage at Ap sites in duplex DNA can react with adenine residues on the opposing strand to generate a complex lesion consisting of an interstrand cross-link adjacent to a strand break. The cross-link blocks DNA replication by ϕ29 DNA polymerase, a highly processive polymerase enzyme that couples synthesis with strand displacement. This suggests that 3’ddR5p-derived cross-links have the potential to block critical cellular DNA transactions that require strand separation. LC-MS/MS methods developed herein provide powerful tools for studying the occurrence and properties of these cross-links in biochemical and biological systems.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Nathan E Price
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kevin M Johnson
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Kent S Gates
- Department of Chemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA.,Department of Biochemistry, University of Missouri, 125 Chemistry Building, Columbia, MO 65211, USA
| |
Collapse
|
9
|
Llamas EM, Tome JPC, Rodrigues JMM, Torres T, Madder A. Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01269a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Porphyrin-based photosensitisers and their DNA conjugates have been evaluated for interstrand crosslink generation using furan containing oligonucleotides and red light.
Collapse
Affiliation(s)
- Eva M. Llamas
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
- Departamento de Química Orgánica
| | - João P. C. Tome
- Centro de Química Estrutural
- Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - João M. M. Rodrigues
- Centro de Química Estrutural
- Departamento de Engenharia Química
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
| | - Tomás Torres
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
- Imdea-Nanoscience
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Ghent
- Belgium
| |
Collapse
|
10
|
Kim KI, Lee S, Jin X, Kim SJ, Jo K, Lee JH. DNA Binding Peptide Directed Synthesis of Continuous DNA Nanowires for Analysis of Large DNA Molecules by Scanning Electron Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601926. [PMID: 27813273 DOI: 10.1002/smll.201601926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Synthesis of smooth and continuous DNA nanowires, preserving the original structure of native DNA, and allowing its analysis by scanning electron microscope (SEM), is demonstrated. Gold nanoparticles densely assembled on the DNA backbone via thiol-tagged DNA binding peptides work as seeds for metallization of DNA. This method allows whole analysis of DNA molecules with entangled 3D features.
Collapse
Affiliation(s)
- Kyung-Il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Xuelin Jin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Su Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
11
|
Guo C, Asamitsu S, Kashiwazaki G, Sato S, Bando T, Sugiyama H. DNA Interstrand Crosslinks by H-pin Polyamide (S
)-seco
-CBI Conjugates. Chembiochem 2016; 18:166-170. [DOI: 10.1002/cbic.201600425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Chuanxin Guo
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Sefan Asamitsu
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Gengo Kashiwazaki
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Shinsuke Sato
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo-ku Kyoto Japan
| | - Toshikazu Bando
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
| | - Hiroshi Sugiyama
- Department of Chemistry; Graduate School of Science; Kyoto University; Kitashirakawa-Oiwakecho Sakyo-ku Kyoto Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS); Kyoto University; Yoshida-Ushinomiyacho Sakyo-ku Kyoto Japan
| |
Collapse
|
12
|
Nagatsugi F. Development of the Strategy for Chemical Modifications to Nucleic Acids. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|