1
|
Wang Q, Zhong L, Wang Y, Zheng S, Bian Y, Du J, Yang R, Liu W, Qin L. Tyrosine Hydroxylase and DOPA Decarboxylase Are Associated With Pupal Melanization During Larval–Pupal Transformation in Antheraea pernyi. Front Physiol 2022; 13:832730. [PMID: 35464097 PMCID: PMC9022030 DOI: 10.3389/fphys.2022.832730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
In insects, melanism plays important roles in defense, immunoreactions, and body color. The underlying molecular mechanisms of melanism in different insects are diverse and remain elusive. In contrast to another silkworm, Bombyx mori, the Chinese oak silkworm, Antheraea pernyi, produces melanic pupae under natural environmental conditions. DOPA and dopamine synthesis are crucial for melanin formation. Disruption of these processes reportedly influences body colors in many insects. Most research focuses on newly emerged pupae, and the larval process preceding pupation remains unknown. Due to the large size and long pupation period in A. pernyi, the entire process was studied at least every 12 h. The expression patterns of tyrosine hydroxylase (TH) and DOPA decarboxylase (DDC), which are involved in DOPA and dopamine synthesis in the epidermis, were evaluated during larval–pupal metamorphosis. We also performed RNA interference (RNAi) and used enzyme inhibitors to examine morphological changes. The amino acid sequences of TH and DDC share 90.91% and 86.64% identity with those of B. mori. TH and DDC expression was upregulated during the 48–72 h period prior to pupal emergence, especially at 60 h. RNAi of TH and DDC induced partial melanism in some pupae. The inhibitors 3-iodo-tyrosine (3-IT) and L-α-methyl-DOPA (L-DOPA) influenced pupal melanization. Different concentrations of inhibitors led to pupal deformity and even mortality. Four different monoamines, only DOPA and Dopamine synthezed from Tyrosine will be influenced by TH and DDC inhibitor. These results indicate that TH and DDC are key genes associated with pupal melanization during larval–pupal transformation in A. pernyi. Overall, our results suggest that TH and DDC expression alterations in a particular stage can affect body color, setting the molecular basis for artificial control of pupal melanization.
Collapse
Affiliation(s)
- Qi Wang
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Liang Zhong
- Sericultural Research Institute of Liaoning Province, Fengcheng, China
| | - Yong Wang
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yong Wang,
| | - Shengwei Zheng
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Yumeng Bian
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Junhao Du
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Ruisheng Yang
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Wei Liu
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Li Qin
- College of Bioscience and Biotechnology, Insect Resource Research Center for Engineering and Technology of Liaoning Province, Shenyang Agricultural University, Shenyang, China
- Li Qin,
| |
Collapse
|
2
|
Scriber JM. Assessing ecological and physiological costs of melanism in North American Papilio glaucus females: two decades of dark morph frequency declines. INSECT SCIENCE 2020; 27:583-612. [PMID: 30456932 PMCID: PMC7277061 DOI: 10.1111/1744-7917.12653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
Polymorphisms for melanic form of insects may provide various selective advantages. However, melanic alleles may have significant/subtle pleiotrophic "costs." Several potential pleiotrophic effects of the W (=Y)-linked melanism gene in Papilio glaucus L. (Lepidoptera) showed no costs for melanic versus yellow in adult size, oviposition preferences, fecundity, egg viability, larval survival/growth rates, cold stress tolerance, or postdiapause emergence times. Sexual selection (males choosing yellow rather than mimetic dark females) had been suggested to provide a balanced polymorphism in P. glaucus, but spermatophore counts in wild females and direct field tethering studies of size-matched pairs of virgin females (dark and yellow), show that male preferences are random or frequency-dependent from Florida to Michigan, providing no yellow counter-advantages. Recent frequency declines of dark (melanic/mimetic) females in P. glaucus populations are shown in several major populations from Florida (27.3°N latitude) to Ohio (38.5° N). Summer temperatures have increased significantly at all these locations during this time (1999-2018), but whether dark morphs may be more vulnerable (in any stage) to such climate warming remains to be determined. Additional potential reasons for the frequency declines in mimetic females are discussed: (i) genetic introgression of Z-linked melanism suppressor genes from P. canadensis (R & J) and the hybrid species, P. appalachiensis (Pavulaan & Wright), (ii) differential developmental incompatibilities, or Haldane effects, known to occur in hybrids, (iii) selection against intermediately melanic ("dusty") females (with the W-linked melanic gene, b+) which higher temperatures can cause.
Collapse
Affiliation(s)
- J. Mark Scriber
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- McGuire Center for Lepidoptera and BiodiversityFlorida Museum of Natural HistoryUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
3
|
Role transformation of fecundity and viability: The leading cause of fitness costs associated with beta-cypermethrin resistance in Musca domestica. PLoS One 2020; 15:e0228268. [PMID: 31999782 PMCID: PMC6992221 DOI: 10.1371/journal.pone.0228268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/12/2020] [Indexed: 02/03/2023] Open
Abstract
Fitness is closely associated with the development of pesticide resistance in insects, which determines the control strategies employed to target species and the risks of toxicity faced by non-target species. After years of selections with beta-cypermethrin in laboratory, a strain of housefly was developed that was 684,521.62-fold resistant (CRR) compared with the susceptible strain (CSS). By constructing ≤ 21 d and ≤ 30 d life tables, the differences in life history parameters between CSS and CRR were analyzed. The total production numbers of all the detected development stages in CRR were lower than in CSS. Except for the lower mortality of larvae, all the other detected mortalities in CRR were higher than in CSS. ♀:♂ and normal females of CRR were also lower than those of CSS. For CRR, the relative fitness was 0.25 in the ≤ 21 d life table and 0.24 in the ≤ 30 d life table, and a lower intrinsic rate of increase (rm) and net reproductive rate (Ro) were detected. Based on phenotype correlation and structural equation model (SEM) analyses, fecundity and viability were the only directly positive fitness components affecting fitness in CRR and CSS, and the other components played indirect roles in fitness. The variations of the relationships among fitness, fecundity and viability seemed to be the core issue resulting in fitness differences between CRR and CSS. The interactions among all the detected fitness components and the mating frequency-time curves appeared to be distinctly different between CRR and CSS. In summary, fecundity and its related factors separately played direct and indirect roles in the fitness costs of a highly beta-cypermethrin-resistant housefly strain.
Collapse
|
4
|
Sun Y, Hao Y, Yan Y, Zhang Y, Feng Y, Liu T. Morphological and biological characterization of a light-colored mutant in the multicolored Asian lady beetle, Harmonia axyridis. Ecol Evol 2018; 8:9975-9985. [PMID: 30397440 PMCID: PMC6206217 DOI: 10.1002/ece3.4379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 06/04/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022] Open
Abstract
Insect cuticle color formed with melanin pigments has numerous types of mutants which usually cause pleiotropic effects. Melanism has been widely studied, but mutants with light-colored phenotype as well as the consequent fitness changes have rarely been reported.Here, in the laboratory strain of Harmonia axyridis, we found a novel mutant gr and confirmed that the mutation was inherited in a simple Mendelian autosomal recessive manner. This mutant (HAM) continuously displayed a light-colored pigmentation versus dark blackish in the wild phenotype (HAW). L-DOPA and dopamine are melanin precursors, and less L-DOPA was present in the cuticle of larval and adult HAM mutants compared to HAW wild type, but more dopamine was detected in the larval cuticle of HAM (p ≤ 0.0235). For the orange background of elytra, the composition as well as total concentration of carotenoids was different between HAM and HAW, which resulted in significantly lower saturation value but significantly higher hue value in HAM than in HAW (p < 0.0001).Extensive fitness changes were detected in HAM. (a) HAM larvae had similar predation capacity and preimaginal development time as HAW, but the newly emerged adults were much smaller (p < 0.0001). (b) Both fecundity and egg hatch rate in cross ♀(HAM) × ♂(HAM) were significantly lower than those in ♀(HAW) × ♂(HAW) (p ≤ 0.0087), but were not different with those in ♀(HAW) × ♂(HAM).
Collapse
Affiliation(s)
- Yuan‐Xing Sun
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess PlateauMinistry of AgricultureState Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceCollege of Plant ProtectionGansu Agricultural UniversityLanzhouChina
| | - Ya‐Nan Hao
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu ProvinceCollege of Plant ProtectionGansu Agricultural UniversityLanzhouChina
| | - Yu Yan
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess PlateauMinistry of AgricultureState Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Yi Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess PlateauMinistry of AgricultureState Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Yi Feng
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess PlateauMinistry of AgricultureState Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Tong‐Xian Liu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess PlateauMinistry of AgricultureState Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| |
Collapse
|
5
|
Tan S, Wang Y, Liu P, Ge Y, Li A, Xing Y, Hunter DM, Shi W. Increase of Albinistic Hosts Caused by Gut Parasites Promotes Self-Transmission. Front Microbiol 2018; 9:1525. [PMID: 30042753 PMCID: PMC6048391 DOI: 10.3389/fmicb.2018.01525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/19/2018] [Indexed: 11/24/2022] Open
Abstract
Paranosema locustae is a gut parasite that has been applied widely in the control of grasshoppers in many parts of the world. Usually, P. locustae is transmitted horizontally via passive modes under natural conditions but in the current study, a positive transmission strategy of P. locustae was demonstrated. First, infection by P. locustae resulted in the cuticula of infected Locusta migratoria nymphs to become lighter in color: normally only a small proportion of locusts are pale with most either being partly or mostly black; but locusts infected with P. locustae became pale. And it was found that the change to pale occurred even among uninfected black and partly black nymphs reared with infected locusts. The eumelanin of the thorax and abdomen of infected individuals decreased significantly, as did the level of dopamine. In addition, there was a decrease in phenol oxidase activity and the expression of henna and pale, which are involved in the synthesis of cuticle melanin, decreased. What is the ecological significance of this increase in light-colored hosts caused by P. locustae? We discovered that light-colored locusts were more susceptible to the microsporidian pathogen than dark-colored individuals were, because of their weaker melanization. Phenol oxidase activity in pale locusts was lower than that of black locusts, but the serpin expression level of pale locusts was higher than that of black individuals. When examined for infection, it was found that initially uninfected nymphs had picked up P. locustae infections indicating that infections are readily passed from one pale locust to another. The infection rate of healthy locusts reared with light-colored locusts infected with P. locustae was 100% which was more than with black-colored ones. The increase in albinistic locusts clearly promoted the prevalence of P. locustae in the total population. In conclusion, these results elucidated a new strategy of positive self-transmission in P. locustae. Importance: Mother Nature always grants wisdom to her creatures and feeds them carefully. This wisdom is particularly apparent in the relationships between two interacting species. In this study, our team focused on the interaction between L. migratoria and P. locustae. In a previous study, it was found that L. migratoria isolate infected individuals, reducing avoiding the spread of P. locustae, in a previous study. The solitary, pale individuals infected by P. locustae were left behind as locust groups marched ahead, leading to a kind of behavioral immunity in the insects. Here, we reported that P. locustae promotes pigmentation loss in L. migratoria, causing a larger proportion of light-colored individuals, and these lighter individuals which possessed weaker immunity against pathogens. This strategy is advantageous to P. locustae, as it promotes its propagation and spread. These extraordinary abilities of L. migratoria and P. locustae have accumulated over millennia of years of interaction.
Collapse
Affiliation(s)
- Shuqian Tan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pingping Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yang Ge
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Aomei Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongjie Xing
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Wangpeng Shi
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Microscopic cuticle structure comparison of pupal melanic and wild strain of Spodoptera exigua and their gene expression profiles in three time points. Microb Pathog 2017; 114:483-493. [PMID: 29196168 DOI: 10.1016/j.micpath.2017.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
The beet armyworm, Spodoptera exigua (Hubner), is one of the major crop pests and is a target for current pest control approaches using insecticides. S. exigua melanic mutants (SEM) spontaneously occurred in the S. exigua wild type (SEW) strain and have been maintained under laboratory conditions on an artificial diet. Scanning electron microscopy showed that the inner cuticle of the SEM had a denser and less orderly structure. We investigated the cuticle protein genes using RNA-seq at three different developmental stages of both SEM and SEW. Comparison of cDNA libraries showed that 7257 CPs were significantly up-regulated and 664 genes were significantly downregulated in SEM at the developmental stage of 46-h in the fifth instar. In addition, 460 genes were significantly up-regulated and 439 genes were significantly down-regulated in the SEM at the development stage of 4-h before pupation. Moreover, 162 genes were significantly up-regulated and 293 genes were significantly downregulated in the SEM, just after pupation. Two genes CPR63 and CPR97 were identified from RNA sequences to verify the differentially expressed gene (DEG) results through quantitative real-time PCR (qRT-PCR). The results show that expression of both CPR63 and CPR97 structural cuticular proteins were significantly different between SEM and SEW. This functional analysis may help in understanding the role that these genes play in the cuticle pattern of the SEM.
Collapse
|
7
|
Jan S, Liu S, Hafeez M, Zhang X, Dawar FU, Guo J, Gao C, Wang M. Isolation and functional identification of three cuticle protein genes during metamorphosis of the beet armyworm, Spodoptera exigua. Sci Rep 2017; 7:16061. [PMID: 29167522 PMCID: PMC5700046 DOI: 10.1038/s41598-017-16435-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 11/13/2017] [Indexed: 11/29/2022] Open
Abstract
The beet armyworm, Spodoptera exigua (Hubner), is one of the major crop pests and is a target for current pest control approaches using insecticides. In this study three cuticular protein genes CPG316, CPG860 and CPG4855 have been cloned from 0 h pupal integument of S. exigua through race PCR Strategy. The deduced amino acid sequences were found to contain the RR-2 consensus region of other insect cuticular proteins and construct phylogenetic trees for each protein. Using quantitative RT-PCR, the developmental expression of the three genes through several larval and the early pupal stages was studied. All three genes contribute to the endocuticle although CPG316 may have a different role from the other two genes. All three newly isolated genes were analyzed and their functions were determined by using direct injection of the dsRNA into early 5th instar larvae. All genes are expressed in the larvae and early pupae but in different patterns. Furthermore, phenotypic results show that these genes have differing effects on the development of cuticle, its flexibility and a big role in metamorphosis in both larval and pupal stages.
Collapse
Affiliation(s)
- Saad Jan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Sisi Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| | - Muhammad Hafeez
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Xiangmei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Farman Ullah Dawar
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Jiyun Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Chao Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China
| | - Mo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.
| |
Collapse
|