1
|
Galtier E, Lee HJ, Khaghani D, Boiadjieva N, McGehee P, Arnott A, Arnold B, Berboucha M, Cunningham E, Czapla N, Dyer G, Ettelbrick R, Hart P, Heimann P, Welch M, Makita M, Gleason AE, Pandolfi S, Sakdinawat A, Liu Y, Wojcik MJ, Hodge D, Sandberg R, Valdivia MP, Bouffetier V, Pérez-Callejo G, Seiboth F, Nagler B. X-ray microscopy and talbot imaging with the matter in extreme conditions X-ray imager at LCLS. Sci Rep 2025; 15:7588. [PMID: 40038475 DOI: 10.1038/s41598-025-91989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/24/2025] [Indexed: 03/06/2025] Open
Abstract
The last decade has shown the great potential that X-ray Free Electron Lasers (FEL) have to study High Energy Density (HED) physics. Experiments at FELs have made significant breakthroughs in Shock Physics and Dynamic Diffraction, Dense Plasma Physics and Warm Dense Matter Science, using techniques such as isochoric heating, inelastic scattering, small angle scattering and X-ray diffraction. In addition, and complementary to these techniques, the coherent properties of the FEL beam can be used to image HED samples with high fidelity. We present new imaging diagnostics and techniques developed at the Matter in Extreme Conditions (MEC) instrument at Linac Coherent Light Source (LCLS) over the last few years. We show results in Phase Contrast Imaging geometry, where the X-ray beam propagates from the target to a camera revealing its phase, as well as in Direct Imaging geometry, where a real image of the sample plane is produced in the camera with a spatial resolution down to 200 nm. Last, we show an implementation of the Talbot Imaging method allowing both X-ray phase and intensity measurements change introduced by a target with sub-micron resolution.
Collapse
Grants
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02-76SF00515 U.S. Department of Energy Office of Science, Basic Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-AC02- 76SF00515 U.S. Department of Energy Office of Science, Fusion Energy Science
- DE-NA0004028 National Nuclear Security Administration
- PID2022-137632OB-I00 Ministerio de Ciencia e Innovación
Collapse
Affiliation(s)
- Eric Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Dimitri Khaghani
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Nina Boiadjieva
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Peregrine McGehee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Ariel Arnott
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Brice Arnold
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Meriame Berboucha
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
- Plasma Physics, Imperial College London, London, SW7 2AZ, UK
| | - Eric Cunningham
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Nick Czapla
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Gilliss Dyer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Robert Ettelbrick
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Philip Hart
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Philip Heimann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Marc Welch
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Mikako Makita
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Arianna E Gleason
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Silvia Pandolfi
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
- Sorbonne University, Paris, France
| | - Anne Sakdinawat
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Yanwei Liu
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - Michael J Wojcik
- Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439, USA
| | - Daniel Hodge
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA
| | - Richard Sandberg
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, 84602, USA
| | - Maria Pia Valdivia
- Center for Energy Research, University of California San Diego, San Diego, CA, USA
| | - Victorien Bouffetier
- ALBA-CELLS Synchrotron Radiation Facility, 08290, Cerdanyola del Vallès, Barcelona, Spain
| | - Gabriel Pérez-Callejo
- Departamento de Física Teórica Atómica y Óptica, Universidad de Valladolid, 47011, Valladolid, Spain
| | - Frank Seiboth
- Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| |
Collapse
|
2
|
Antonelli L, Theobald W, Barbato F, Atzeni S, Batani D, Betti R, Bouffetier V, Casner A, Ceurvorst L, Cao D, Ruby JJ, Glize K, Goudal T, Kar A, Khan M, Dearling A, Koenig M, Nilson PM, Scott RHH, Turianska O, Wei M, Woolsey NC. X-ray phase-contrast imaging of strong shocks on OMEGA EP. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:113504. [PMID: 39526998 DOI: 10.1063/5.0168059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
The ongoing improvement in laser technology and target fabrication is opening new possibilities for diagnostic development. An example is x-ray phase-contrast imaging (XPCI), which serves as an advanced x-ray imaging diagnostic in laser-driven experiments. In this work, we present the results of the XPCI platform that was developed at the OMEGA EP Laser-Facility to study multi-Mbar single and double shocks produced using a kilojoule laser driver. Two-dimensional radiation-hydrodynamic simulations agree well with the shock progression and the spherical curvature of the shock fronts. It is demonstrated that XPCI is an excellent method to determine with high accuracy the front position of a trailing shock wave propagating through an expanding CH plasma that was heated by a precursor Mbar shock wave. The interaction between the rarefaction wave and the shock wave results in a clear signature in the radiograph that is well reproduced by radiation-hydrodynamic simulations.
Collapse
Affiliation(s)
- L Antonelli
- York Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - W Theobald
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - F Barbato
- Università di Roma "La Sapienza," 00161 Rome, Italy
| | - S Atzeni
- Università di Roma "La Sapienza," 00161 Rome, Italy
| | - D Batani
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - R Betti
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - V Bouffetier
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
- ALBA-CELLS Synchrotron Radiation Facility, 08290 Cerdanyola del Vallès (Barcelona), Spain
| | - A Casner
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - L Ceurvorst
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - D Cao
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - J J Ruby
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - K Glize
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell, Oxford, Didcot OX11 0QX, United Kingdom
| | - T Goudal
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - A Kar
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - M Khan
- York Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - A Dearling
- York Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| | - M Koenig
- LULI-CNRS, École Polytechnique, CEA, Université Paris-Saclay, UPMC Univ Paris 06: Sorbonne Universités, F-91128 Palaiseau Cedex, France
| | - P M Nilson
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - R H H Scott
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell, Oxford, Didcot OX11 0QX, United Kingdom
| | - O Turianska
- Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
| | - M Wei
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - N C Woolsey
- York Plasma Institute, School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
3
|
Lukić B, Rack A, Helfen L, Foster DJ, Ershov A, Welss R, François S, Rochet X. Indirect detector for ultra-high-speed X-ray micro-imaging with increased sensitivity to near-ultraviolet scintillator emission. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1224-1233. [PMID: 39196771 PMCID: PMC11371045 DOI: 10.1107/s1600577524007306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
Ultra-high-speed synchrotron-based hard X-ray (i.e. above 10 keV) imaging is gaining a growing interest in a number of scientific domains for tracking non-repeatable dynamic phenomena at spatio-temporal microscales. This work describes an optimized indirect X-ray imaging microscope designed to achieve high performance at micrometre pixel size and megahertz acquisition speed. The entire detector optical arrangement has an improved sensitivity within the near-ultraviolet (NUV) part of the emitted spectrum (i.e. 310-430 nm wavelength). When combined with a single-crystal fast-decay scintillator, such as LYSO:Ce (Lu2-xYxSiO5:Ce), it exploits the potential of the NUV light-emitting scintillators. The indirect arrangement of the detector makes it suitable for high-dose applications that require high-energy illumination. This allows for synchrotron single-bunch hard X-ray imaging to be performed with improved true spatial resolution, as herein exemplified through pulsed wire explosion and superheated near-nozzle gasoline injection experiments at a pixel size of 3.2 µm, acquisition rates up to 1.4 MHz and effective exposure time down to 60 ps.
Collapse
Affiliation(s)
- Bratislav Lukić
- ESRF – The European Synchrotron, 38043Grenoble Cedex 9, France
- Henry Royce Institute, Department of MaterialsThe University of ManchesterManchesterUnited Kingdom
| | - Alexander Rack
- ESRF – The European Synchrotron, 38043Grenoble Cedex 9, France
| | - Lukas Helfen
- Karlsruhe Institut of Technology76034Eggenstein-LeopoldshafenGermany
- Institut Laue-Langevin38042Grenoble Cedex 9France
| | | | - Alexey Ershov
- Karlsruhe Institut of Technology76034Eggenstein-LeopoldshafenGermany
| | - Richard Welss
- Professorship for Fluid Systems TechnologyFriedrich-Alexander-Universität Erlangen-Nürnberg91058ErlangenGermany
| | | | | |
Collapse
|
4
|
Choi S, Park S, Kim J, Kim H, Cho S, Kim S, Park J, Kim C. X-ray free-electron laser induced acoustic microscopy (XFELAM). PHOTOACOUSTICS 2024; 35:100587. [PMID: 38312809 PMCID: PMC10835452 DOI: 10.1016/j.pacs.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/06/2024]
Abstract
The X-ray free-electron laser (XFEL) has remarkably advanced X-ray imaging technology and enabled important scientific achievements. The XFEL's extremely high power, short pulse width, low emittance, and high coherence make possible such diverse imaging techniques as absorption/emission spectroscopy, diffraction imaging, and scattering imaging. Here, we demonstrate a novel XFEL-based imaging modality that uses the X-ray induced acoustic (XA) effect, which we call X-ray free-electron laser induced acoustic microscopy (XFELAM). Initially, we verified the XA effect by detecting XA signals from various materials, then we validated the experimental results with simulation outcomes. Next, in resolution experiments, we successfully imaged a patterned tungsten target with drilled various-sized circles at a spatial resolution of 7.8 ± 5.1 µm, which is the first micron-scale resolution achieved by XA imaging. Our results suggest that the novel XFELAM can expand the usability of XFEL in various areas of fundamental scientific research.
Collapse
Affiliation(s)
- Seongwook Choi
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Sinyoung Park
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Jiwoong Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Hyunhee Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Seonghee Cho
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| | - Chulhong Kim
- Pohang University of Science and Technology (POSTECH), Medical Device Innovation Center, Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, Medical Science and Engineering, 77 Cheongam-ro, Pohang 37673, Republic of Korea
| |
Collapse
|
5
|
Katagiri K, Pikuz T, Fang L, Albertazzi B, Egashira S, Inubushi Y, Kamimura G, Kodama R, Koenig M, Kozioziemski B, Masaoka G, Miyanishi K, Nakamura H, Ota M, Rigon G, Sakawa Y, Sano T, Schoofs F, Smith ZJ, Sueda K, Togashi T, Vinci T, Wang Y, Yabashi M, Yabuuchi T, Dresselhaus-Marais LE, Ozaki N. Transonic dislocation propagation in diamond. Science 2023; 382:69-72. [PMID: 37796999 DOI: 10.1126/science.adh5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.
Collapse
Affiliation(s)
- Kento Katagiri
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Tatiana Pikuz
- Institute for Open and Transdisciplinary Research in Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Lichao Fang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Bruno Albertazzi
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | - Shunsuke Egashira
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Genki Kamimura
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ryosuke Kodama
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
- Institute for Open and Transdisciplinary Research in Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Michel Koenig
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | | | - Gooru Masaoka
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | | | - Hirotaka Nakamura
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Masato Ota
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Gabriel Rigon
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Youichi Sakawa
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takayoshi Sano
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Frank Schoofs
- United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Zoe J Smith
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Tommaso Vinci
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | - Yifan Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Toshinori Yabuuchi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Leora E Dresselhaus-Marais
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
6
|
Montgomery DS. Invited article: X-ray phase contrast imaging in inertial confinement fusion and high energy density research. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:021103. [PMID: 36859012 DOI: 10.1063/5.0127497] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
X-ray phase contrast imaging (XPCI) provides enhanced image contrast beyond absorption-based x-ray imaging alone due to refraction and diffraction from gradients in the object material density. It is sensitive to small variations in density, such as internal voids, cracks, grains, defects, and material flow, as well as to stronger density variations such as from a shock wave. Beyond its initial use in biology and materials science, XPCI is now routinely used in inertial confinement fusion (ICF) and high energy density (HED) research, first to characterize ICF capsules and targets, and later applied in dynamic experiments, where coherent x-ray sources, ultrafast x-ray pulses, and high temporal and spatial resolution are required. In this Review article, XPCI image formation theory is presented, its diverse use in ICF and HED research is discussed, the unique requirements for ultrafast XPCI imaging are given, as well as current challenges and issues in its use.
Collapse
Affiliation(s)
- David S Montgomery
- Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
7
|
Makarov S, Makita M, Nakatsutsumi M, Pikuz T, Ozaki N, Preston TR, Appel K, Konopkova Z, Cerantola V, Brambrink E, Schwinkendorf JP, Mohacsi I, Burian T, Chalupsky J, Hajkova V, Juha L, Vozda V, Nagler B, Zastrau U, Pikuz S. Direct LiF imaging diagnostics on refractive X-ray focusing at the EuXFEL High Energy Density instrument. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:208-216. [PMID: 36601939 PMCID: PMC9814068 DOI: 10.1107/s1600577522006245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 06/17/2023]
Abstract
The application of fluorescent crystal media in wide-range X-ray detectors provides an opportunity to directly image the spatial distribution of ultra-intense X-ray beams including investigation of the focal spot of free-electron lasers. Here the capabilities of the micro- and nano-focusing X-ray refractive optics available at the High Energy Density instrument of the European XFEL are reported, as measured in situ by means of a LiF fluorescent detector placed into and around the beam caustic. The intensity distribution of the beam focused down to several hundred nanometers was imaged at 9 keV photon energy. A deviation from the parabolic surface in a stack of nanofocusing Be compound refractive lenses (CRLs) was found to affect the resulting intensity distribution within the beam. Comparison of experimental patterns in the far field with patterns calculated for different CRL lens imperfections allowed the overall inhomogeneity in the CRL stack to be estimated. The precise determination of the focal spot size and shape on a sub-micrometer level is essential for a number of high energy density studies requiring either a pin-size backlighting spot or extreme intensities for X-ray heating.
Collapse
Affiliation(s)
- Sergey Makarov
- Joint Institute for High Temperatures Russian Academy of Sciences, Izhorskaya St 13, Bd 2, Moscow 125412, Russian Federation
| | | | | | - Tatiana Pikuz
- Joint Institute for High Temperatures Russian Academy of Sciences, Izhorskaya St 13, Bd 2, Moscow 125412, Russian Federation
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-6 Yamadaoka, Osaka 565-0871, Japan
| | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Photon Pioneers Center, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Hamburg, Germany
| | | | - Valerio Cerantola
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
| | | | | | | | - Tomas Burian
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
- Plasma Physics Department, Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 3, 182 00 Prague 8, Czech Republic
| | - Jaromir Chalupsky
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Vera Hajkova
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Libor Juha
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Vojtech Vozda
- Department of Radiation and Chemical Physics, Institute of Physics, Czech Academy of Sciences, Na Slovance 2, 182 21 Prague 8, Czech Republic
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Hamburg, Germany
| | - Sergey Pikuz
- Joint Institute for High Temperatures Russian Academy of Sciences, Izhorskaya St 13, Bd 2, Moscow 125412, Russian Federation
| |
Collapse
|
8
|
Hodge DS, Leong AFT, Pandolfi S, Kurzer-Ogul K, Montgomery DS, Aluie H, Bolme C, Carver T, Cunningham E, Curry CB, Dayton M, Decker FJ, Galtier E, Hart P, Khaghani D, Ja Lee H, Li K, Liu Y, Ramos K, Shang J, Vetter S, Nagler B, Sandberg RL, Gleason AE. Multi-frame, ultrafast, x-ray microscope for imaging shockwave dynamics. OPTICS EXPRESS 2022; 30:38405-38422. [PMID: 36258406 DOI: 10.1364/oe.472275] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Inertial confinement fusion (ICF) holds increasing promise as a potential source of abundant, clean energy, but has been impeded by defects such as micro-voids in the ablator layer of the fuel capsules. It is critical to understand how these micro-voids interact with the laser-driven shock waves that compress the fuel pellet. At the Matter in Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS), we utilized an x-ray pulse train with ns separation, an x-ray microscope, and an ultrafast x-ray imaging (UXI) detector to image shock wave interactions with micro-voids. To minimize the high- and low-frequency variations of the captured images, we incorporated principal component analysis (PCA) and image alignment for flat-field correction. After applying these techniques we generated phase and attenuation maps from a 2D hydrodynamic radiation code (xRAGE), which were used to simulate XPCI images that we qualitatively compare with experimental images, providing a one-to-one comparison for benchmarking material performance. Moreover, we implement a transport-of-intensity (TIE) based method to obtain the average projected mass density (areal density) of our experimental images, yielding insight into how defect-bearing ablator materials alter microstructural feature evolution, material compression, and shock wave propagation on ICF-relevant time scales.
Collapse
|
9
|
Pandolfi S, Carver T, Hodge D, Leong AFT, Kurzer-Ogul K, Hart P, Galtier E, Khaghani D, Cunningham E, Nagler B, Lee HJ, Bolme C, Ramos K, Li K, Liu Y, Sakdinawat A, Marchesini S, Kozlowski PM, Curry CB, Decker FJ, Vetter S, Shang J, Aluie H, Dayton M, Montgomery DS, Sandberg RL, Gleason AE. Novel fabrication tools for dynamic compression targets with engineered voids using photolithography methods. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:103502. [PMID: 36319339 DOI: 10.1063/5.0107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Mesoscale imperfections, such as pores and voids, can strongly modify the properties and the mechanical response of materials under extreme conditions. Tracking the material response and microstructure evolution during void collapse is crucial for understanding its performance. In particular, imperfections in the ablator materials, such as voids, can limit the efficiency of the fusion reaction and ultimately hinder ignition. To characterize how voids influence the response of materials during dynamic loading and seed hydrodynamic instabilities, we have developed a tailored fabrication procedure for designer targets with voids at specific locations. Our procedure uses SU-8 as a proxy for the ablator materials and hollow silica microspheres as a proxy for voids and pores. By using photolithography to design the targets' geometry, we demonstrate precise and highly reproducible placement of a single void within the sample, which is key for a detailed understanding of its behavior under shock compression. This fabrication technique will benefit high-repetition rate experiments at x-ray and laser facilities. Insight from shock compression experiments will provide benchmarks for the next generation of microphysics modeling.
Collapse
Affiliation(s)
- Silvia Pandolfi
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Thomas Carver
- Stanford Nano Shared Facilities, Stanford University, Palo Alto, California 94305, USA
| | - Daniel Hodge
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Andrew F T Leong
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Kelin Kurzer-Ogul
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623, USA
| | - Philip Hart
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Dimitri Khaghani
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Eric Cunningham
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Cindy Bolme
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Kyle Ramos
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Kenan Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Yanwei Liu
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Anne Sakdinawat
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Stefano Marchesini
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | | | - Chandra B Curry
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Franz-Joseph Decker
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Sharon Vetter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| | - Jessica Shang
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623, USA
| | - Hussein Aluie
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623, USA
| | - Matthew Dayton
- Advanced hCMOS Systems, 6300 Riverside Plaza Ln. Suite 100, Albuquerque, New Mexico 87107, USA
| | | | - Richard L Sandberg
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - Arianna E Gleason
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, California 94025, USA
| |
Collapse
|
10
|
Koliyadu JCP, Letrun R, Kirkwood HJ, Liu J, Jiang M, Emons M, Bean R, Bellucci V, Bielecki J, Birnsteinova S, de Wijn R, Dietze T, E J, Grünert J, Kane D, Kim C, Kim Y, Lederer M, Manning B, Mills G, Morillo LL, Reimers N, Rompotis D, Round A, Sikorski M, Takem CMS, Vagovič P, Venkatesan S, Wang J, Wegner U, Mancuso AP, Sato T. Pump-probe capabilities at the SPB/SFX instrument of the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1273-1283. [PMID: 36073887 PMCID: PMC9455201 DOI: 10.1107/s1600577522006701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pump-probe experiments at X-ray free-electron laser (XFEL) facilities are a powerful tool for studying dynamics at ultrafast and longer timescales. Observing the dynamics in diverse scientific cases requires optical laser systems with a wide range of wavelength, flexible pulse sequences and different pulse durations, especially in the pump source. Here, the pump-probe instrumentation available for measurements at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL is reported. The temporal and spatial stability of this instrumentation is also presented.
Collapse
Affiliation(s)
| | - Romain Letrun
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Jia Liu
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Man Jiang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Moritz Emons
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Richard Bean
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | | | | | | | - Thomas Dietze
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Juncheng E
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jan Grünert
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Daniel Kane
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Chan Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yoonhee Kim
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Max Lederer
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Grant Mills
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Nadja Reimers
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Adam Round
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- School of Chemical and Physical Sciences, Keele University, Staffordshire ST5 5AZ, United Kingdom
| | | | | | - Patrik Vagovič
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Center for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg, Germany
| | | | - Jinxiong Wang
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ulrike Wegner
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Adrian P. Mancuso
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
11
|
Oliver M, Allen CH, Divol L, Karmiol Z, Landen OL, Ping Y, Wallace R, Schölmerich M, Theobald W, Döppner T, White TG. Diffraction enhanced imaging utilizing a laser produced x-ray source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093502. [PMID: 36182497 DOI: 10.1063/5.0091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Image formation by Fresnel diffraction utilizes both absorption and phase-contrast to measure electron density profiles. The low spatial and spectral coherence requirements allow the technique to be performed with a laser-produced x-ray source coupled with a narrow slit. This makes it an excellent candidate for probing interfaces between materials at extreme conditions, which can only be generated at large-scale laser or pulsed power facilities. Here, we present the results from a proof-of-principle experiment demonstrating an effective ∼2 μm laser-generated source at the OMEGA Laser Facility. This was achieved using slits of 1 × 30 μm2 and 2 × 40 μm2 geometry, which were milled into 30 μm thick Ta plates. Combining these slits with a vanadium He-like 5.2 keV source created a 1D imaging system capable of micrometer-scale resolution. The principal obstacles to achieving an effective 1 μm source are the slit tilt and taper-where the use of a tapered slit is necessary to increase the alignment tolerance. We demonstrate an effective source size by imaging a 2 ± 0.2 μm radius tungsten wire.
Collapse
Affiliation(s)
- M Oliver
- Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, OX11 0QX, UK
| | - C H Allen
- University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, USA
| | - L Divol
- Lawrence Livermore National Laboratory, L-493, 70000 East Avenue, Livermore, California 94550, USA
| | - Z Karmiol
- University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, USA
| | - O L Landen
- Lawrence Livermore National Laboratory, L-493, 70000 East Avenue, Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, L-493, 70000 East Avenue, Livermore, California 94550, USA
| | - R Wallace
- Lawrence Livermore National Laboratory, L-493, 70000 East Avenue, Livermore, California 94550, USA
| | - M Schölmerich
- Lawrence Livermore National Laboratory, L-493, 70000 East Avenue, Livermore, California 94550, USA
| | - W Theobald
- Laboratory for Laser Energetics, 250 E River Rd, Rochester, New York 14623, USA
| | - T Döppner
- Lawrence Livermore National Laboratory, L-493, 70000 East Avenue, Livermore, California 94550, USA
| | - T G White
- University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, USA
| |
Collapse
|
12
|
Wolf A, Akstaller B, Cipiccia S, Flenner S, Hagemann J, Ludwig V, Meyer P, Schropp A, Schuster M, Seifert M, Weule M, Michel T, Anton G, Funk S. Single-exposure X-ray phase imaging microscopy with a grating interferometer. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:794-806. [PMID: 35511012 PMCID: PMC9070728 DOI: 10.1107/s160057752200193x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The advent of hard X-ray free-electron lasers enables nanoscopic X-ray imaging with sub-picosecond temporal resolution. X-ray grating interferometry offers a phase-sensitive full-field imaging technique where the phase retrieval can be carried out from a single exposure alone. Thus, the method is attractive for imaging applications at X-ray free-electron lasers where intrinsic pulse-to-pulse fluctuations pose a major challenge. In this work, the single-exposure phase imaging capabilities of grating interferometry are characterized by an implementation at the I13-1 beamline of Diamond Light Source (Oxfordshire, UK). For comparison purposes, propagation-based phase contrast imaging was also performed at the same instrument. The characterization is carried out in terms of the quantitativeness and the contrast-to-noise ratio of the phase reconstructions as well as via the achievable spatial resolution. By using a statistical image reconstruction scheme, previous limitations of grating interferometry regarding the spatial resolution can be mitigated as well as the experimental applicability of the technique.
Collapse
Affiliation(s)
- Andreas Wolf
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Bernhard Akstaller
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Silvia Cipiccia
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 ODE, United Kingdom
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Silja Flenner
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, D-21502 Geesthacht, Germany
| | - Johannes Hagemann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Veronika Ludwig
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Pascal Meyer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Andreas Schropp
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Max Schuster
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Maria Seifert
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Mareike Weule
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Thilo Michel
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Gisela Anton
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| | - Stefan Funk
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Strasse 1, D-91058 Erlangen, Germany
| |
Collapse
|
13
|
Tunable x-ray free electron laser multi-pulses with nanosecond separation. Sci Rep 2022; 12:3253. [PMID: 35228548 PMCID: PMC8885633 DOI: 10.1038/s41598-022-06754-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
X-ray Free Electron Lasers provide femtosecond x-ray pulses with narrow bandwidth and unprecedented peak brightness. Special modes of operation have been developed to deliver double pulses for x-ray pump, x-ray probe experiments. However, the longest delay between the two pulses achieved with existing single bucket methods is less than 1 picosecond, thus preventing the exploration of longer time-scale dynamics. We present a novel two-bucket scheme covering delays from 350 picoseconds to hundreds of nanoseconds in discrete steps of 350 picoseconds. Performance for each pulse can be similar to the one in a single pulse operation. The method has been experimentally tested with the Linac Coherent Light Source (LCLS-I) and the copper linac with LCLS-II hard x-ray undulators.
Collapse
|
14
|
Barbato F, Atzeni S, Batani D, Antonelli L. PhaseX: an X-ray phase-contrast imaging simulation code for matter under extreme conditions. OPTICS EXPRESS 2022; 30:3388-3403. [PMID: 35209598 DOI: 10.1364/oe.448479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We present PhaseX, a simulation code for X-ray phase-contrast imaging (XPCI), specially dedicated to the study of matter under extreme conditions (of pressure and density). Indeed, XPCI can greatly benefit the diagnosis of such states of matter. This is due to the noticeable contrast enhancement obtained thanks to the exploitation of both attenuation and phase-shift of the electromagnetic waves crossing the sample to be diagnosed. PhaseX generates synthetic images with and without phase contrast. Thanks to its modular design PhaseX can adapt to any imaging set-up and accept as inputs objects generated by hydrodynamic or particle-in-cell codes. We illustrate Phase-X capabilities by showing a few examples concerning laser-driven implosions and laser-driven shock waves.
Collapse
|
15
|
Schreiner S, Akstaller B, Dietrich L, Meyer P, Neumayer P, Schuster M, Wolf A, Zielbauer B, Ludwig V, Michel T, Anton G, Funk S. Noise Reduction for Single-Shot Grating-Based Phase-Contrast Imaging at an X-ray Backlighter. J Imaging 2021; 7:178. [PMID: 34564104 PMCID: PMC8468938 DOI: 10.3390/jimaging7090178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
X-ray backlighters allow the capture of sharp images of fast dynamic processes due to extremely short exposure times. Moiré imaging enables simultaneously measuring the absorption and differential phase-contrast (DPC) of these processes. Acquiring images with one single shot limits the X-ray photon flux, which can result in noisy images. Increasing the photon statistics by repeating the experiment to gain the same image is not possible if the investigated processes are dynamic and chaotic. Furthermore, to reconstruct the DPC and transmission image, an additional measurement captured in absence of the object is required. For these reference measurements, shot-to-shot fluctuations in X-ray spectra and a source position complicate the averaging of several reference images for noise reduction. Here, two approaches of processing multiple reference images in combination with one single object image are evaluated regarding the image quality. We found that with only five reference images, the contrast-to-noise ratio can be improved by approximately 13% in the DPC image. This promises improvements for short-exposure single-shot acquisitions of rapid processes, such as laser-produced plasma shock-waves in high-energy density experiments at backlighter X-ray sources such as the PHELIX high-power laser facility.
Collapse
Affiliation(s)
- Stephan Schreiner
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Bernhard Akstaller
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Lisa Dietrich
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Pascal Meyer
- Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Paul Neumayer
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany; (P.N.); (B.Z.)
| | - Max Schuster
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Andreas Wolf
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Bernhard Zielbauer
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany; (P.N.); (B.Z.)
| | - Veronika Ludwig
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Thilo Michel
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Gisela Anton
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| | - Stefan Funk
- Erlangen Centre for Astroparticle Physics (ECAP), Friedrich-Alexander Universität Erlangen-Nürnberg, Erwin-Rommel-Straße 1, 91058 Erlangen, Germany; (B.A.); (L.D.); (M.S.); (A.W.); (V.L.); (T.M.); (G.A.); (S.F.)
| |
Collapse
|
16
|
Zastrau U, Appel K, Baehtz C, Baehr O, Batchelor L, Berghäuser A, Banjafar M, Brambrink E, Cerantola V, Cowan TE, Damker H, Dietrich S, Di Dio Cafiso S, Dreyer J, Engel HO, Feldmann T, Findeisen S, Foese M, Fulla-Marsa D, Göde S, Hassan M, Hauser J, Herrmannsdörfer T, Höppner H, Kaa J, Kaever P, Knöfel K, Konôpková Z, Laso García A, Liermann HP, Mainberger J, Makita M, Martens EC, McBride EE, Möller D, Nakatsutsumi M, Pelka A, Plueckthun C, Prescher C, Preston TR, Röper M, Schmidt A, Seidel W, Schwinkendorf JP, Schoelmerich MO, Schramm U, Schropp A, Strohm C, Sukharnikov K, Talkovski P, Thorpe I, Toncian M, Toncian T, Wollenweber L, Yamamoto S, Tschentscher T. The High Energy Density Scientific Instrument at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1393-1416. [PMID: 34475288 PMCID: PMC8415338 DOI: 10.1107/s1600577521007335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The European XFEL delivers up to 27000 intense (>1012 photons) pulses per second, of ultrashort (≤50 fs) and transversely coherent X-ray radiation, at a maximum repetition rate of 4.5 MHz. Its unique X-ray beam parameters enable groundbreaking experiments in matter at extreme conditions at the High Energy Density (HED) scientific instrument. The performance of the HED instrument during its first two years of operation, its scientific remit, as well as ongoing installations towards full operation are presented. Scientific goals of HED include the investigation of extreme states of matter created by intense laser pulses, diamond anvil cells, or pulsed magnets, and ultrafast X-ray methods that allow their diagnosis using self-amplified spontaneous emission between 5 and 25 keV, coupled with X-ray monochromators and optional seeded beam operation. The HED instrument provides two target chambers, X-ray spectrometers for emission and scattering, X-ray detectors, and a timing tool to correct for residual timing jitter between laser and X-ray pulses.
Collapse
Affiliation(s)
- Ulf Zastrau
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Karen Appel
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Oliver Baehr
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Mohammadreza Banjafar
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Thomas E. Cowan
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Horst Damker
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Jörn Dreyer
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Hans-Olaf Engel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Manon Foese
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Mohammed Hassan
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Jens Hauser
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Hauke Höppner
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Johannes Kaa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Peter Kaever
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Klaus Knöfel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | | | - Jona Mainberger
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Mikako Makita
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Emma E. McBride
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Dominik Möller
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | | | - Michael Röper
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Wolfgang Seidel
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | | | - Peter Talkovski
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Ian Thorpe
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Monika Toncian
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | - Toma Toncian
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | | - Shingo Yamamoto
- Helmholtz-Zentrum Dresden-Rossendorf eV, 01328 Dresden, Germany
| | | |
Collapse
|
17
|
Vassholz M, Hoeppe HP, Hagemann J, Rosselló JM, Osterhoff M, Mettin R, Kurz T, Schropp A, Seiboth F, Schroer CG, Scholz M, Möller J, Hallmann J, Boesenberg U, Kim C, Zozulya A, Lu W, Shayduk R, Schaffer R, Madsen A, Salditt T. Pump-probe X-ray holographic imaging of laser-induced cavitation bubbles with femtosecond FEL pulses. Nat Commun 2021; 12:3468. [PMID: 34103498 PMCID: PMC8187368 DOI: 10.1038/s41467-021-23664-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Cavitation bubbles can be seeded from a plasma following optical breakdown, by focusing an intense laser in water. The fast dynamics are associated with extreme states of gas and liquid, especially in the nascent state. This offers a unique setting to probe water and water vapor far-from equilibrium. However, current optical techniques cannot quantify these early states due to contrast and resolution limitations. X-ray holography with single X-ray free-electron laser pulses has now enabled a quasi-instantaneous high resolution structural probe with contrast proportional to the electron density of the object. In this work, we demonstrate cone-beam holographic flash imaging of laser-induced cavitation bubbles in water with nanofocused X-ray free-electron laser pulses. We quantify the spatial and temporal pressure distribution of the shockwave surrounding the expanding cavitation bubble at time delays shortly after seeding and compare the results to numerical simulations.
Collapse
Affiliation(s)
- M Vassholz
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - H P Hoeppe
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - J Hagemann
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J M Rosselló
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - R Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - T Kurz
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - A Schropp
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - F Seiboth
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - C G Schroer
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department Physik, Universität Hamburg, Hamburg, Germany
| | - M Scholz
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - J Möller
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - J Hallmann
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - U Boesenberg
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - C Kim
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - A Zozulya
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - W Lu
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - R Shayduk
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - R Schaffer
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - A Madsen
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - T Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
18
|
Cerantola V, Rosa AD, Konôpková Z, Torchio R, Brambrink E, Rack A, Zastrau U, Pascarelli S. New frontiers in extreme conditions science at synchrotrons and free electron lasers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:274003. [PMID: 33930892 DOI: 10.1088/1361-648x/abfd50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Synchrotrons and free electron lasers are unique facilities to probe the atomic structure and electronic properties of matter at extreme thermodynamical conditions. In this context, 'matter at extreme pressures and temperatures' was one of the science drivers for the construction of low emittance 4th generation synchrotron sources such as the Extremely Brilliant Source of the European Synchrotron Radiation Facility and hard x-ray free electron lasers, such as the European x-ray free electron laser. These new user facilities combine static high pressure and dynamic shock compression experiments to outstanding high brilliance and submicron beams. This combination not only increases the data-quality but also enlarges tremendously the accessible pressure, temperature and density space. At the same time, the large spectrum of available complementary x-ray diagnostics for static and shock compression studies opens unprecedented insights into the state of matter at extremes. The article aims at highlighting a new horizon of scientific opportunities based on the synergy between extremely brilliant synchrotrons and hard x-ray free electron lasers.
Collapse
Affiliation(s)
- Valerio Cerantola
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Zuzana Konôpková
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Raffaella Torchio
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Erik Brambrink
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexander Rack
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Ulf Zastrau
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sakura Pascarelli
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
19
|
Hagemann J, Vassholz M, Hoeppe H, Osterhoff M, Rosselló JM, Mettin R, Seiboth F, Schropp A, Möller J, Hallmann J, Kim C, Scholz M, Boesenberg U, Schaffer R, Zozulya A, Lu W, Shayduk R, Madsen A, Schroer CG, Salditt T. Single-pulse phase-contrast imaging at free-electron lasers in the hard X-ray regime. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:52-63. [PMID: 33399552 PMCID: PMC7842230 DOI: 10.1107/s160057752001557x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/24/2020] [Indexed: 05/31/2023]
Abstract
X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump-probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet.
Collapse
Affiliation(s)
- Johannes Hagemann
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Malte Vassholz
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Hannes Hoeppe
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Juan M. Rosselló
- Third Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Robert Mettin
- Third Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Frank Seiboth
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Andreas Schropp
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Johannes Möller
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jörg Hallmann
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Chan Kim
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Markus Scholz
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ulrike Boesenberg
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Robert Schaffer
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexey Zozulya
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Wei Lu
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Roman Shayduk
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Anders Madsen
- European X-ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Christian G. Schroer
- Deutsches Elektronen Synchrotron – DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Tim Salditt
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
20
|
Nagler B, Galtier EC, Brown SB, Heimann P, Dyer G, Lee HJ. Ronchi shearing interferometry for wavefronts with circular symmetry. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1461-1469. [PMID: 33147170 DOI: 10.1107/s1600577520010735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Ronchi testing of a focused electromagnetic wave has in the last few years been used extensively at X-ray free-electron laser (FEL) facilities to qualitatively evaluate the wavefront of the beam. It is a quick and straightforward test, is easy to interpret on the fly, and can be used to align phase plates that correct the focus of aberrated beams. In general, a single Ronchigram is not sufficient to gain complete quantitative knowledge of the wavefront. However the compound refractive lenses that are commonly used at X-ray FELs exhibit a strong circular symmetry in their aberration, and this can be exploited. Here, a simple algorithm that uses a single recorded Ronchigram to recover the full wavefront of a nano-focused beam, assuming circular symmetry, is presented, and applied to experimental measurements at the Matter in Extreme Conditions instrument at the Linac Coherent Light Source.
Collapse
Affiliation(s)
- Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Eric C Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Shaughnessy B Brown
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip Heimann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gilliss Dyer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
21
|
Seifert M, Weule M, Cipiccia S, Flenner S, Hagemann J, Ludwig V, Michel T, Neumayer P, Schuster M, Wolf A, Anton G, Funk S, Akstaller B. Evaluation of the Weighted Mean X-ray Energy for an Imaging System Via Propagation-Based Phase-Contrast Imaging. J Imaging 2020; 6:63. [PMID: 34460656 PMCID: PMC8321046 DOI: 10.3390/jimaging6070063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/13/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
For imaging events of extremely short duration, like shock waves or explosions, it is necessary to be able to image the object with a single-shot exposure. A suitable setup is given by a laser-induced X-ray source such as the one that can be found at GSI (Helmholtzzentrum für Schwerionenforschung GmbH) in Darmstadt (Society for Heavy Ion Research), Germany. There, it is possible to direct a pulse from the high-energy laser Petawatt High Energy Laser for Heavy Ion eXperiments (PHELIX) on a tungsten wire to generate a picosecond polychromatic X-ray pulse, called backlighter. For grating-based single-shot phase-contrast imaging of shock waves or exploding wires, it is important to know the weighted mean energy of the X-ray spectrum for choosing a suitable setup. In propagation-based phase-contrast imaging the knowledge of the weighted mean energy is necessary to be able to reconstruct quantitative phase images of unknown objects. Hence, we developed a method to evaluate the weighted mean energy of the X-ray backlighter spectrum using propagation-based phase-contrast images. In a first step wave-field simulations are performed to verify the results. Furthermore, our evaluation is cross-checked with monochromatic synchrotron measurements with known energy at Diamond Light Source (DLS, Didcot, UK) for proof of concepts.
Collapse
Affiliation(s)
- Maria Seifert
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Mareike Weule
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Silvia Cipiccia
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK;
| | - Silja Flenner
- Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany;
| | | | - Veronika Ludwig
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Thilo Michel
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Paul Neumayer
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt, Germany;
| | - Max Schuster
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Andreas Wolf
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Gisela Anton
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Stefan Funk
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| | - Bernhard Akstaller
- ECAP, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str. 1, 91058 Erlangen, Germany; (M.S.); (M.W.); (V.L.); (T.M.); (M.S.); (A.W.); (G.A.); (S.F.)
| |
Collapse
|
22
|
Mukharamova N, Lazarev S, Meijer JM, Gorobtsov OY, Singer A, Chollet M, Bussmann M, Dzhigaev D, Feng Y, Garten M, Huebl A, Kluge T, Kurta RP, Lipp V, Santra R, Sikorski M, Song S, Williams G, Zhu D, Ziaja-Motyka B, Cowan TE, Petukhov AV, Vartanyants IA. Femtosecond laser produced periodic plasma in a colloidal crystal probed by XFEL radiation. Sci Rep 2020; 10:10780. [PMID: 32612095 PMCID: PMC7329833 DOI: 10.1038/s41598-020-67214-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/01/2020] [Indexed: 11/29/2022] Open
Abstract
With the rapid development of short-pulse intense laser sources, studies of matter under extreme irradiation conditions enter further unexplored regimes. In addition, an application of X-ray Free-Electron Lasers (XFELs) delivering intense femtosecond X-ray pulses, allows to investigate sample evolution in IR pump - X-ray probe experiments with an unprecedented time resolution. Here we present a detailed study of the periodic plasma created from the colloidal crystal. Both experimental data and theory modeling show that the periodicity in the sample survives to a large extent the extreme excitation and shock wave propagation inside the colloidal crystal. This feature enables probing the excited crystal, using the powerful Bragg peak analysis, in contrast to the conventional studies of dense plasma created from bulk samples for which probing with Bragg diffraction technique is not possible. X-ray diffraction measurements of excited colloidal crystals may then lead towards a better understanding of matter phase transitions under extreme irradiation conditions.
Collapse
Affiliation(s)
- Nastasia Mukharamova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - Sergey Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Tomsk Polytechnic University (TPU), pr. Lenina 30, 634050, Tomsk, Russia
| | - Janne-Mieke Meijer
- Debye Institute for Nanomaterials Science, University of Utrecht, Padualaan 8, 3508 TB, Utrecht, The Netherlands
- Universiteit van Amsterdam, Science Park 904, 1090 GL, Amsterdam, The Netherlands
| | - Oleg Yu Gorobtsov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- Cornell University, Ithaca, NY, 14850, USA
| | - Andrej Singer
- University of California, 9500 Gilman Dr., La Jolla, San Diego, CA, 92093, USA
- Cornell University, Ithaca, NY, 14850, USA
| | - Matthieu Chollet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
| | - Michael Bussmann
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| | - Dmitry Dzhigaev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, S-22100, Lund, Sweden
| | - Yiping Feng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
| | - Marco Garten
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Axel Huebl
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Thomas Kluge
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
| | - Ruslan P Kurta
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- European XFEL, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - Vladimir Lipp
- Center for Free-Electron Laser Science, DESY, D-22607, Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY, D-22607, Hamburg, Germany
- Department of Physics, Universität Hamburg, 20355, Hamburg, Germany
| | - Marcin Sikorski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
- European XFEL, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - Sanghoon Song
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
| | - Garth Williams
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
- NSLS-II, Brookhaven National Laboratory, Upton, NY, 11973-5000, USA
| | - Diling Zhu
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
| | - Beata Ziaja-Motyka
- Center for Free-Electron Laser Science, DESY, D-22607, Hamburg, Germany
- Institute of Nuclear Physics, PAS, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Thomas E Cowan
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany
- Technische Universität Dresden, 01069, Dresden, Germany
| | - Andrei V Petukhov
- Debye Institute for Nanomaterials Science, University of Utrecht, Padualaan 8, 3508 TB, Utrecht, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513, 5600 MB, Eindhoven, Netherlands
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany.
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia.
| |
Collapse
|
23
|
Wolf A, Schuster M, Ludwig V, Anton G, Funk S. Maximum likelihood reconstruction for grating-based X-ray microscopy. OPTICS EXPRESS 2020; 28:13553-13568. [PMID: 32403827 DOI: 10.1364/oe.380940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
The combination of grating-based phase-contrast imaging with X-ray microscopy can result in a complicated image formation. Generally, transverse shifts of the interference fringes are nonlinearly dependent on phase differences of the measured wave front. We present an iterative reconstruction scheme based on a regularized maximum likelihood cost function that fully takes this dependency into account. The scheme is validated by numerical simulations. It is particularly advantageous at low photon numbers and when the premises for deconvolution-based reconstructions are not met. Our reconstruction scheme hence enables a broader applicability of X-ray grating interferometry in imaging and wave front sensing.
Collapse
|
24
|
Barbato F, Atzeni S, Batani D, Bleiner D, Boutoux G, Brabetz C, Bradford P, Mancelli D, Neumayer P, Schiavi A, Trela J, Volpe L, Zeraouli G, Woolsey N, Antonelli L. Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source. Sci Rep 2019; 9:18805. [PMID: 31827132 PMCID: PMC6906500 DOI: 10.1038/s41598-019-55074-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/06/2019] [Indexed: 12/02/2022] Open
Abstract
X-ray phase contrast imaging (XPCI) is more sensitive to density variations than X-ray absorption radiography, which is a crucial advantage when imaging weakly-absorbing, low-Z materials, or steep density gradients in matter under extreme conditions. Here, we describe the application of a polychromatic X-ray laser-plasma source (duration ~0.5 ps, photon energy >1 keV) to the study of a laser-driven shock travelling in plastic material. The XPCI technique allows for a clear identification of the shock front as well as of small-scale features present during the interaction. Quantitative analysis of the compressed object is achieved using a density map reconstructed from the experimental data.
Collapse
Affiliation(s)
- F Barbato
- Empa, Materials Science and Technology, 8600, Dübendorf, Switzerland. .,Universitè de Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405, Talence, France.
| | - S Atzeni
- Dipartimento SBAI, Università di Roma "La Sapienza", 00161, Rome, Italy
| | - D Batani
- Universitè de Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405, Talence, France.,National Research Nuclear University MEPhI, Department of Plasma Physics, 115409, Moscow, Russia
| | - D Bleiner
- Empa, Materials Science and Technology, 8600, Dübendorf, Switzerland
| | - G Boutoux
- Universitè de Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405, Talence, France
| | - C Brabetz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
| | - P Bradford
- Department of Physics, York Plasma Institute, University of York, York, YO10 5DD, United Kingdom
| | - D Mancelli
- Universitè de Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405, Talence, France.,Donostia International Physics Center (DIPC), 20018, Donostia, Spain
| | - P Neumayer
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
| | - A Schiavi
- Dipartimento SBAI, Università di Roma "La Sapienza", 00161, Rome, Italy
| | - J Trela
- Universitè de Bordeaux, CNRS, CEA, CELIA, UMR 5107, F-33405, Talence, France
| | - L Volpe
- CLPU, Centro de Laseres Pulsados, Building M5, 37185, Villamayor, Salamanca, Spain
| | - G Zeraouli
- CLPU, Centro de Laseres Pulsados, Building M5, 37185, Villamayor, Salamanca, Spain.,Universidad de Salamanca, Patio de Escuelas 1, 37008, Salamanca, Spain
| | - N Woolsey
- Department of Physics, York Plasma Institute, University of York, York, YO10 5DD, United Kingdom
| | - L Antonelli
- Dipartimento SBAI, Università di Roma "La Sapienza", 00161, Rome, Italy.,Department of Physics, York Plasma Institute, University of York, York, YO10 5DD, United Kingdom
| |
Collapse
|
25
|
Dresselhaus-Cooper L, Gorfain JE, Key CT, Ofori-Okai BK, Ali SJ, Martynowych DJ, Gleason A, Kooi S, Nelson KA. Single-Shot Multi-Frame Imaging of Cylindrical Shock Waves in a Multi-Layered Assembly. Sci Rep 2019; 9:3689. [PMID: 30842469 PMCID: PMC6403302 DOI: 10.1038/s41598-019-40037-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/04/2019] [Indexed: 12/01/2022] Open
Abstract
We demonstrate single-shot multi-frame imaging of quasi-2D cylindrically converging shock waves as they propagate through a multi-layer target sample assembly. We visualize the shock with sequences of up to 16 images, using a Fabry-Perot cavity to generate a pulse train that can be used in various imaging configurations. We employ multi-frame shadowgraph and dark-field imaging to measure the amplitude and phase of the light transmitted through the shocked target. Single-shot multi-frame imaging tracks geometric distortion and additional features in our images that were not previously resolvable in this experimental geometry. Analysis of our images, in combination with simulations, shows that the additional image features are formed by a coupled wave structure resulting from interface effects in our targets. This technique presents a new capability for tabletop imaging of shock waves that can be extended to experiments at large-scale facilities.
Collapse
Affiliation(s)
- Leora Dresselhaus-Cooper
- Lawrence Livermore National Laboratory, 7000 East Ave, L-487, Livermore, CA, 94550, USA.
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, Cambridge, MA, 02139, USA.
| | - Joshua E Gorfain
- Applied Physical Sciences, 4301 North Fairfax Dr., Suite 640, Arlington, VA, 22203, USA
| | - Chris T Key
- Applied Physical Sciences, 4301 North Fairfax Dr., Suite 640, Arlington, VA, 22203, USA
| | - Benjamin K Ofori-Okai
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- SLAC National Accelerator, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
| | - Suzanne J Ali
- Lawrence Livermore National Laboratory, 7000 East Ave, L-487, Livermore, CA, 94550, USA
| | - Dmitro J Martynowych
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, Cambridge, MA, 02139, USA
| | - Arianna Gleason
- SLAC National Accelerator, 2575 Sand Hill Rd, Menlo Park, CA, 94025, USA
| | - Steven Kooi
- Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, Cambridge, MA, 02139, USA
| | - Keith A Nelson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnology, Massachusetts Institute of Technology, 500 Technology Square, NE47-598, Cambridge, MA, 02139, USA
| |
Collapse
|
26
|
Brown SB, Gleason AE, Galtier E, Higginbotham A, Arnold B, Fry A, Granados E, Hashim A, Schroer CG, Schropp A, Seiboth F, Tavella F, Xing Z, Mao W, Lee HJ, Nagler B. Direct imaging of ultrafast lattice dynamics. SCIENCE ADVANCES 2019; 5:eaau8044. [PMID: 30873430 PMCID: PMC6408150 DOI: 10.1126/sciadv.aau8044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Under rapid high-temperature, high-pressure loading, lattices exhibit complex elastic-inelastic responses. The dynamics of these responses are challenging to measure experimentally because of high sample density and extremely small relevant spatial and temporal scales. Here, we use an x-ray free-electron laser providing simultaneous in situ direct imaging and x-ray diffraction to spatially resolve lattice dynamics of silicon under high-strain rate conditions. We present the first imaging of a new intermediate elastic feature modulating compression along the axis of applied stress, and we identify the structure, compression, and density behind each observed wave. The ultrafast probe x-rays enabled time-resolved characterization of the intermediate elastic feature, which is leveraged to constrain kinetic inhibition of the phase transformation between 2 and 4 ns. These results not only address long-standing questions about the response of silicon under extreme environments but also demonstrate the potential for ultrafast direct measurements to illuminate new lattice dynamics.
Collapse
Affiliation(s)
- S. Brennan Brown
- Department of Mechanical Engineering, Stanford University, Building 530, 440 Escondido Mall, Stanford, CA 94305, USA
| | - A. E. Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - E. Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Higginbotham
- York Plasma Institute, Department of Physics, University of York, Heslington, YO10 5DD, UK
| | - B. Arnold
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Fry
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - E. Granados
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - A. Hashim
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - C. G. Schroer
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A. Schropp
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - F. Seiboth
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Photon Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - F. Tavella
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Z. Xing
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - W. Mao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Geological Sciences, Stanford University, 367 Panama St., Stanford, CA 94305-2220, USA
| | - H. J. Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - B. Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| |
Collapse
|
27
|
Advanced high resolution x-ray diagnostic for HEDP experiments. Sci Rep 2018; 8:16407. [PMID: 30401885 PMCID: PMC6219551 DOI: 10.1038/s41598-018-34717-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
High resolution X-ray imaging is crucial for many high energy density physics (HEDP) experiments. Recently developed techniques to improve resolution have, however, come at the cost of a decreased field of view. In this paper, an innovative experimental detector for X-ray imaging in the context of HEDP experiments with high spatial resolution, as well as a large field of view, is presented. The platform is based on coupling an X-ray backligther source with a Lithium Fluoride detector, characterized by its large dynamic range. A spatial resolution of 2 µm over a field of view greater than 2 mm2 is reported. The platform was benchmarked with both an X-ray free electron laser (XFEL) and an X-ray source produced by a short pulse laser. First, using a non-coherent short pulse laser-produced backlighter, reduced penumbra blurring, as a result of the large size of the X-ray source, is shown. Secondly, we demonstrate phase contrast imaging with a fully coherent monochromatic XFEL beam. Modeling of the absorption and phase contrast transmission of X-ray radiation passing through various targets is presented.
Collapse
|
28
|
Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator. Sci Rep 2018; 8:11010. [PMID: 30030516 PMCID: PMC6054639 DOI: 10.1038/s41598-018-29347-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/09/2018] [Indexed: 11/08/2022] Open
Abstract
Betatron radiation from laser wakefield accelerators is an ultrashort pulsed source of hard, synchrotron-like x-ray radiation. It emanates from a centimetre scale plasma accelerator producing GeV level electron beams. In recent years betatron radiation has been developed as a unique source capable of producing high resolution x-ray images in compact geometries. However, until now, the short pulse nature of this radiation has not been exploited. This report details the first experiment to utilize betatron radiation to image a rapidly evolving phenomenon by using it to radiograph a laser driven shock wave in a silicon target. The spatial resolution of the image is comparable to what has been achieved in similar experiments at conventional synchrotron light sources. The intrinsic temporal resolution of betatron radiation is below 100 fs, indicating that significantly faster processes could be probed in future without compromising spatial resolution. Quantitative measurements of the shock velocity and material density were made from the radiographs recorded during shock compression and were consistent with the established shock response of silicon, as determined with traditional velocimetry approaches. This suggests that future compact betatron imaging beamlines could be useful in the imaging and diagnosis of high-energy-density physics experiments.
Collapse
|
29
|
Escauriza EM, Olbinado MP, Rutherford ME, Chapman DJ, Jonsson JCZ, Rack A, Eakins DE. Ultra-high-speed indirect x-ray imaging system with versatile spatiotemporal sampling capabilities. APPLIED OPTICS 2018; 57:5004-5010. [PMID: 30117959 DOI: 10.1364/ao.57.005004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
A new generation of cameras has made ultra-high-speed x-ray imaging at synchrotron light sources a reality, revealing never-before-seen details of sub-surface transient phenomena. We introduce a versatile indirect imaging system capable of capturing-for the first time-hundreds of sequential x-ray pulses in 16-bunch mode at the European Synchrotron Radiation Facility, recording at 5.68 Mfps over dozens of microseconds, with an effective exposure of 100 ps. The versatile multiplex camera construction of the system allows for various arrangements, including different scintillator configurations, and simultaneous imaging with different resolutions and regions of interest. Image results from a gas gun impact experiment, in which an additive manufactured aluminum lattice was dynamically compressed, is presented as a demonstration of the system's capabilities.
Collapse
|
30
|
Gorobtsov OY, Mukharamova N, Lazarev S, Chollet M, Zhu D, Feng Y, Kurta RP, Meijer JM, Williams G, Sikorski M, Song S, Dzhigaev D, Serkez S, Singer A, Petukhov AV, Vartanyants IA. Diffraction based Hanbury Brown and Twiss interferometry at a hard x-ray free-electron laser. Sci Rep 2018; 8:2219. [PMID: 29396400 PMCID: PMC5797123 DOI: 10.1038/s41598-018-19793-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/05/2018] [Indexed: 11/30/2022] Open
Abstract
X-ray free-electron lasers (XFELs) provide extremely bright and highly spatially coherent x-ray radiation with femtosecond pulse duration. Currently, they are widely used in biology and material science. Knowledge of the XFEL statistical properties during an experiment may be vitally important for the accurate interpretation of the results. Here, for the first time, we demonstrate Hanbury Brown and Twiss (HBT) interferometry performed in diffraction mode at an XFEL source. It allowed us to determine the XFEL statistical properties directly from the Bragg peaks originating from colloidal crystals. This approach is different from the traditional one when HBT interferometry is performed in the direct beam without a sample. Our analysis has demonstrated nearly full (80%) global spatial coherence of the XFEL pulses and an average pulse duration on the order of ten femtoseconds for the monochromatized beam, which is significantly shorter than expected from the electron bunch measurements.
Collapse
Affiliation(s)
- O Yu Gorobtsov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - N Mukharamova
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - S Lazarev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- National Research Tomsk Polytechnic University (TPU), Lenin Avenue 30, 634050, Tomsk, Russia
| | - M Chollet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, 94025, CA, USA
| | - D Zhu
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, 94025, CA, USA
| | - Y Feng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, 94025, CA, USA
| | - R P Kurta
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
- European XFEL GmbH, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - J-M Meijer
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterial Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
- Department of Physics, University of Konstanz, D-78457, Konstanz, Germany
| | - G Williams
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, 94025, CA, USA
- NSLS-II, Brookhaven National Laboratory, 53 Bell Avenue, Upton, NY, 11973-5000, USA
| | - M Sikorski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, 94025, CA, USA
- European XFEL GmbH, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - S Song
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, 94025, CA, USA
| | - D Dzhigaev
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany
| | - S Serkez
- European XFEL GmbH, Holzkoppel 4, D-22869, Schenefeld, Germany
| | - A Singer
- University of California San Diego, 9500 Gilman Dr., La Jolla, California, 92093, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - A V Petukhov
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterial Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, Netherlands
| | - I A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607, Hamburg, Germany.
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409, Moscow, Russia.
| |
Collapse
|
31
|
Seiboth F, Wittwer F, Scholz M, Kahnt M, Seyrich M, Schropp A, Wagner U, Rau C, Garrevoet J, Falkenberg G, Schroer CG. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:108-115. [PMID: 29271759 PMCID: PMC5741126 DOI: 10.1107/s1600577517015272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/20/2017] [Indexed: 05/12/2023]
Abstract
Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with \bar{\sigma} = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without prior lens characterization but simply based on the derived lens deformation. The performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.
Collapse
Affiliation(s)
- Frank Seiboth
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Correspondence e-mail:
| | - Felix Wittwer
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Maria Scholz
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Maik Kahnt
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Martin Seyrich
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ulrich Wagner
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Christoph Rau
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian G. Schroer
- Deutsches Elektronen-Synchrotron – DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
32
|
Bajt S, Prasciolu M, Fleckenstein H, Domaracký M, Chapman HN, Morgan AJ, Yefanov O, Messerschmidt M, Du Y, Murray KT, Mariani V, Kuhn M, Aplin S, Pande K, Villanueva-Perez P, Stachnik K, Chen JPJ, Andrejczuk A, Meents A, Burkhardt A, Pennicard D, Huang X, Yan H, Nazaretski E, Chu YS, Hamm CE. X-ray focusing with efficient high-NA multilayer Laue lenses. LIGHT, SCIENCE & APPLICATIONS 2018; 7:17162. [PMID: 30839543 PMCID: PMC6060042 DOI: 10.1038/lsa.2017.162] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 05/22/2023]
Abstract
Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary with layer thickness. We introduced a new pair of materials-tungsten carbide and silicon carbide-to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. An error analysis indicates the possibility of achieving 1 nm focusing.
Collapse
Affiliation(s)
- Saša Bajt
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Mauro Prasciolu
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Holger Fleckenstein
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Martin Domaracký
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, Hamburg 22607, Germany
- Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22607, Germany
| | - Andrew J Morgan
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Marc Messerschmidt
- National Science Foundation BioXFEL Science and Technology Center, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Yang Du
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Kevin T Murray
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Valerio Mariani
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Manuela Kuhn
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Steven Aplin
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Kanupriya Pande
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | | | | | - Joe PJ Chen
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Andrzej Andrejczuk
- Faculty of Physics, University of Bialystok, Ciolkowskiego 1L Str., Bialystok 15-245, Poland
| | - Alke Meents
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Anja Burkhardt
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - David Pennicard
- Photon Science, DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Xiaojing Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Evgeny Nazaretski
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yong S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Christian E Hamm
- Alfred-Wegener Institute, Helmholtz Center for Polar and Marine Research, Bussestr. 27, Bremerhaven 27570, Germany
| |
Collapse
|
33
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Brown SB, Hashim A, Gleason A, Galtier E, Nam I, Xing Z, Fry A, MacKinnon A, Nagler B, Granados E, Lee HJ. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:105113. [PMID: 29092479 DOI: 10.1063/1.4997756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slope pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. Finally, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.
Collapse
Affiliation(s)
| | - Akel Hashim
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Arianna Gleason
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Inhyuk Nam
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Zhou Xing
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan Fry
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Andy MacKinnon
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| |
Collapse
|
35
|
Hagemann J, Salditt T. Divide and update: towards single-shot object and probe retrieval for near-field holography. OPTICS EXPRESS 2017; 25:20953-20968. [PMID: 29041506 DOI: 10.1364/oe.25.020953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
We present a phase reconstruction scheme for X-ray near-field holographic imaging based on a separability constraint for probe and object. In order to achieve this, we have devised an algorithm which requires only two measurements - with and without an object in the beam. This scheme is advantageous if the standard flat-field correction fails and a full ptychographic dataset can not be acquired, since either object or probe are dynamic. The scheme is validated by numerical simulations and by a proof-of-concept experiment using highly focused undulator radiation of the beamline ID16a of the European Synchrotron Radiation Facility (ESRF).
Collapse
|
36
|
Olbinado MP, Just X, Gelet JL, Lhuissier P, Scheel M, Vagovic P, Sato T, Graceffa R, Schulz J, Mancuso A, Morse J, Rack A. MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation. OPTICS EXPRESS 2017; 25:13857-13871. [PMID: 28788829 DOI: 10.1364/oe.25.013857] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Third generation synchrotron light sources offer high photon flux, partial spatial coherence, and ~10-10 s pulse widths. These enable hard X-ray phase-contrast imaging (XPCI) with single-bunch temporal resolutions. In this work, we exploited the MHz repetition rates of synchrotron X-ray pulses combined with indirect X-ray detection to demonstrate the potential of XPCI with millions of frames per second multiple-frame recording. This allows for the visualization of aperiodic or stochastic transient processes which are impossible to be realized using single-shot or stroboscopic XPCI. We present observations of various phenomena, such as crack tip propagation in glass, shock wave propagation in water and explosion during electric arc ignition, which evolve in the order of km/s (µm/ns).
Collapse
|
37
|
Rutherford ME, Chapman DJ, Derrick JG, Patten JRW, Bland PA, Rack A, Collins GS, Eakins DE. Probing the early stages of shock-induced chondritic meteorite formation at the mesoscale. Sci Rep 2017; 7:45206. [PMID: 28555619 PMCID: PMC5448141 DOI: 10.1038/srep45206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/20/2017] [Indexed: 11/09/2022] Open
Abstract
Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure of the sample. This Article provides the first detailed experimental insight into the distribution of extreme states within a shocked powder mixture, and represents the first mesoscopic validation of leading theories concerning the variation in extreme pressure-temperature states during the formation of primordial planetary bodies.
Collapse
Affiliation(s)
- Michael E Rutherford
- Institute of Shock Physics, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
| | - David J Chapman
- Institute of Shock Physics, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
| | - James G Derrick
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
| | - Jack R W Patten
- Institute of Shock Physics, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
| | - Philip A Bland
- Department of Applied Geology, Curtin University of Technology, Perth, WA 6845, Australia
| | - Alexander Rack
- European Synchrotron Radiation Facility, Structure of Materials, Grenoble, France
| | - Gareth S Collins
- Department of Earth Science and Engineering, Imperial College London, London SW7 2BP, UK
| | - Daniel E Eakins
- Institute of Shock Physics, Blackett Laboratory, Imperial College London, London SW7 2BW, UK
| |
Collapse
|
38
|
Beckwith MA, Jiang S, Schropp A, Fernandez-Pañella A, Rinderknecht HG, Wilks SC, Fournier KB, Galtier EC, Xing Z, Granados E, Gamboa E, Glenzer SH, Heimann P, Zastrau U, Cho BI, Eggert JH, Collins GW, Ping Y. Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:053501. [PMID: 28571471 DOI: 10.1063/1.4982166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe2O3 and SiO2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating with simultaneous fluorescence spectra for temperature determination. The results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.
Collapse
Affiliation(s)
- M A Beckwith
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S Jiang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A Schropp
- Deutsches Elektronen-Synchrotron DESY, Hamburg D-22607, Germany
| | | | - H G Rinderknecht
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - S C Wilks
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K B Fournier
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - E C Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Z Xing
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Granados
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - E Gamboa
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - S H Glenzer
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - P Heimann
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - U Zastrau
- European XFEL, Schenefeld D-22869, Germany
| | - B I Cho
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - J H Eggert
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - G W Collins
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Y Ping
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
39
|
Seiboth F, Schropp A, Scholz M, Wittwer F, Rödel C, Wünsche M, Ullsperger T, Nolte S, Rahomäki J, Parfeniukas K, Giakoumidis S, Vogt U, Wagner U, Rau C, Boesenberg U, Garrevoet J, Falkenberg G, Galtier EC, Ja Lee H, Nagler B, Schroer CG. Perfect X-ray focusing via fitting corrective glasses to aberrated optics. Nat Commun 2017; 8:14623. [PMID: 28248317 PMCID: PMC5337966 DOI: 10.1038/ncomms14623] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.
Collapse
Affiliation(s)
- Frank Seiboth
- Institute of Structural Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Maria Scholz
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Felix Wittwer
- Institute of Structural Physics, Technische Universität Dresden, 01062 Dresden, Germany.,Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Rödel
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany.,Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Martin Wünsche
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Tobias Ullsperger
- Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany
| | - Stefan Nolte
- Institute of Applied Physics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany
| | - Jussi Rahomäki
- KTH Royal Institute of Technology, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Karolis Parfeniukas
- KTH Royal Institute of Technology, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Stylianos Giakoumidis
- KTH Royal Institute of Technology, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Ulrich Vogt
- KTH Royal Institute of Technology, Biomedical and X-ray Physics, Albanova University Center, 106 91 Stockholm, Sweden
| | - Ulrich Wagner
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Christoph Rau
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK
| | - Ulrike Boesenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Garrevoet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Eric C Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Hae Ja Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Bob Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany.,Department Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
40
|
Nagler B, Schropp A, Galtier EC, Arnold B, Brown SB, Fry A, Gleason A, Granados E, Hashim A, Hastings JB, Samberg D, Seiboth F, Tavella F, Xing Z, Lee HJ, Schroer CG. The phase-contrast imaging instrument at the matter in extreme conditions endstation at LCLS. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:103701. [PMID: 27802688 DOI: 10.1063/1.4963906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
We describe the phase-contrast imaging instrument at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source. The instrument can image phenomena with a spatial resolution of a few hundreds of nanometers and at the same time reveal the atomic structure through X-ray diffraction, with a temporal resolution better than 100 fs. It was specifically designed for studies relevant to high-energy-density science and can monitor, e.g., shock fronts, phase transitions, or void collapses. This versatile instrument was commissioned last year and is now available to the MEC user community.
Collapse
Affiliation(s)
- Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Andreas Schropp
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Eric C Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Brice Arnold
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Shaughnessy B Brown
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan Fry
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Arianna Gleason
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Akel Hashim
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jerome B Hastings
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Dirk Samberg
- Institute of Structural Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Frank Seiboth
- Institute of Structural Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Franz Tavella
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Zhou Xing
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| |
Collapse
|
41
|
Hirose M, Shimomura K, Suzuki A, Burdet N, Takahashi Y. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers. OPTICS EXPRESS 2016; 24:11917-11925. [PMID: 27410114 DOI: 10.1364/oe.24.011917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.
Collapse
|
42
|
Structural Dynamics of Materials under Shock Compression Investigated with Synchrotron Radiation. METALS 2016. [DOI: 10.3390/met6010017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|