1
|
Shimoyama Y, Sasaki D, Ohara-Nemoto Y, Nemoto TK, Nakasato M, Sasaki M, Ishikawa T. Immunoelectron Microscopic Analysis of Dipeptidyl-Peptidases and Dipeptide Transporter Involved in Nutrient Acquisition in Porphyromonas gingivalis. Curr Microbiol 2023; 80:106. [PMID: 36797528 DOI: 10.1007/s00284-023-03212-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Porphyromonas gingivalis is an asaccharolytic, Gram-negative, anaerobic bacterium representing a keystone pathogen in chronic periodontitis. The bacterium's energy production depends on the metabolism of amino acids, which are predominantly incorporated as dipeptides via the proton-dependent oligopeptide transporter (Pot). In this study, the localization of dipeptidyl-peptidases (DPPs) and Pot was investigated for the first time in P. gingivalis using immunoelectron microscopy with specific antibodies for the bacterial molecules and gold-conjugated secondary antibodies on ultrathin sections. High-temperature protein G and hemin-binding protein 35 were used as controls, and the cytoplasmic localization of the former and outer membrane localization of the latter were confirmed. P. gingivalis DPP4, DPP5, DPP7, and DPP11, which are considered sufficient for complete dipeptide production, were detected in the periplasmic space. In contrast, DPP3 was localized in the cytoplasmic space in accord with the absence of a signal sequence. The inner membrane localization of Pot was confirmed. Thus, spatial integration of the nutrient acquisition system exists in P. gingivalis, in which where dipeptides are produced in the periplasmic space by DPPs and readily transported across the inner membrane via Pot.
Collapse
Affiliation(s)
- Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Daisuke Sasaki
- Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, 1-3-27 Chuo-Dori, Morioka, Iwate, 020-8505, Japan.
| | - Yuko Ohara-Nemoto
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Takayuki K Nemoto
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-7-1, Nagasaki, 852-8588, Japan
| | - Manami Nakasato
- Division of Periodontology, Department of Conservative Dentistry, Iwate Medical University School of Dentistry, 1-3-27 Chuo-Dori, Morioka, Iwate, 020-8505, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, 1-1-1 Idai-Dori, Yahaba-Cho, Shiwa-Gun, Iwate, 028-3694, Japan
| |
Collapse
|
2
|
Nakamura A, Honma N, Tanaka Y, Suzuki Y, Shida Y, Tsuda Y, Hidaka K, Ogasawara W. 7-Aminocoumarin-4-acetic Acid as a Fluorescent Probe for Detecting Bacterial Dipeptidyl Peptidase Activities in Water-in-Oil Droplets and in Bulk. Anal Chem 2021; 94:2416-2424. [PMID: 34963280 PMCID: PMC8886566 DOI: 10.1021/acs.analchem.1c04108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Droplet-based
microfluidic systems are a powerful tool for biological
assays with high throughput. Water-in-oil droplets (WODLs) are typically
used in droplet-based microfluidic systems to culture microorganisms
and perform enzyme assays. However, because of the oil surrounding
the nanoliter and picoliter volumes of WODLs, availability of suitable
substrates is limited. For instance, although 7-amino-4-methylcoumarin
(AMC) is commonly used as a fluorescent probe of the substrate to
detect peptidase activity, AMC leaks from WODLs to the oil phase due
to its high hydrophobicity. Thus, AMC substrates cannot be used in
droplet-based microfluidic systems with WODLs. In this study, we developed
a peptidase substrate consisting of a dipeptide and 7-aminocoumarin-4-acetic
acid (ACA), an AMC-derived fluorogenic compound. ACA was retained
in the WODL for more than 7 days, and the dipeptidyl ACA substrate
detected dipeptidyl peptidase (DPP) activity in the WODL. Compared
to AMC substrates, the substrate specificity constants of DPPs for
ACA substrates increased up to 4.7-fold. Fluorescence-activated droplet
sorting made high-throughput screening of microorganisms based on
DPP activity using the dipeptidyl ACA substrate possible. Since ACA
could be applied to various substrates as a fluorescent probe, detectable
microbial enzyme activities for droplet-based microfluidic systems
can be largely expanded.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Nobuyuki Honma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuma Tanaka
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yoshiyuki Suzuki
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuko Tsuda
- Faculty of Pharmaceutical Sciences, Cooperative Research Center of Life Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, Hyogo 650-8586, Japan
| | - Koushi Hidaka
- Graduate School of Health Sciences, Kobe University, 7-10-2 Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan
| | - Wataru Ogasawara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.,Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
3
|
Structural basis for an exceptionally strong preference for asparagine residue at the S2 subsite of Stenotrophomonas maltophilia dipeptidyl peptidase 7. Sci Rep 2021; 11:7929. [PMID: 33846449 PMCID: PMC8041751 DOI: 10.1038/s41598-021-86965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant bacteria has become a major problem worldwide. Bacterial dipeptidyl peptidases 7 and 11 (DPP7s and DPP11s), belonging to the family-S46 peptidases, are important enzymes for bacterial growth and are not present in mammals. Therefore, specific inhibitors for these peptidases are promising as potential antibiotics. While the molecular mechanisms underlining strict specificity at the S1 subsite of S46 peptidases have been well studied, those of relatively broad preference at the S2 subsite of these peptidases are unknown. In this study, we performed structural and biochemical analyses on DPP7 from Stenotrophomonas maltophilia (SmDPP7). SmDPP7 showed preference for the accommodation of hydrophobic amino acids at the S2 subsite in general, but as an exception, also for asparagine, a hydrophilic amino acid. Structural analyses of SmDPP7 revealed that this exceptional preference to asparagine is caused by a hydrogen bonding network at the bottom of the S2 subsite. The residues in the S2 subsite are well conserved among S46 peptidases as compared with those in the S1 subsite. We expect that our findings will contribute toward the development of a universal inhibitor of S46 peptidases.
Collapse
|
4
|
Snell EH, Helliwell JR. Microgravity as an environment for macromolecular crystallization – an outlook in the era of space stations and commercial space flight. CRYSTALLOGR REV 2021. [DOI: 10.1080/0889311x.2021.1900833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- E. H. Snell
- Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
- Materials Design and Innovation Department, SUNY Buffalo, Buffalo, NY, USA
| | - J. R. Helliwell
- Chemistry Department, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Seers CA, Mahmud ASM, Huq NL, Cross KJ, Reynolds EC. Porphyromonas gingivalis laboratory strains and clinical isolates exhibit different distribution of cell surface and secreted gingipains. J Oral Microbiol 2020; 13:1858001. [PMID: 33391630 PMCID: PMC7733959 DOI: 10.1080/20002297.2020.1858001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The cell-surface cysteine proteinases RgpA, RgpB (Arg-gingipain), and Kgp (Lys-gingipain) are major virulence factors of P. gingivalis, a keystone pathogen in the development of destructive periodontal disease. The gingipains function as proteinases and transpeptidases utilising small peptides such as glycylglycine as acceptor molecules. However, the characteristics of the gingipains from most P. gingivalis strains have not been determined. Methods: We determined the phenotypes of a panel of P. gingivalis laboratory strains and global clinical isolates with respect to growth on blood agar plus whole-cell and vesicle-free culture supernatant (VFSN) Arg- and Lys-specific proteinase activities. Results: The P. gingivalis isolates exhibited different growth characteristics and hydrolysis of haemoglobin in solid media. Whole-cell Arg-gingipain Vmax varied 5.8-fold and the whole cell Lys-gingipain Vmax varied 2.1-fold across the strains. Furthermore, the P. gingivalis strains showed more than 107-fold variance in soluble Arg-gingipain activity in VFSN and more than 371-fold variance in soluble Lys-gingipain activity in VFSN. Glycylglycine and cysteine stimulated Arg- and Lys-specific cleavage activities of all strains. The stimulation by cysteine was in addition to its redox effect consistent with both glycylglycine and cysteine promoting transpeptidation.
Conclusion: The global P. gingivalis clinical isolates exhibit different Arg- and Lys‑gingipain activities with substantial variability in the level of soluble proteinases released into the environment.
Collapse
Affiliation(s)
- Christine A Seers
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - A Sayeed M Mahmud
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - N Laila Huq
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Nemoto TK, Ohara Nemoto Y. Dipeptidyl-peptidases: Key enzymes producing entry forms of extracellular proteins in asaccharolytic periodontopathic bacterium Porphyromonas gingivalis. Mol Oral Microbiol 2020; 36:145-156. [PMID: 33006264 PMCID: PMC8048996 DOI: 10.1111/omi.12317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Porphyromonas gingivalis, a pathogen of chronic periodontitis, is an asaccharolytic microorganism that solely utilizes nutritional amino acids as its energy source and cellular constituents. The bacterium is considered to incorporate proteinaceous nutrients mainly as dipeptides, thus exopeptidases that produce dipeptides from polypeptides are critical for survival and proliferation. We present here an overview of dipeptide production by P. gingivalis mediated by dipeptidyl-peptidases (DPPs), e.g., DPP4, DPP5, DPP7, and DPP11, serine exopeptidases localized in periplasm, which release dipeptides from the N-terminus of polypeptides. Additionally, two other exopeptidases, acylpeptidyl-oligopeptidase (AOP) and prolyl tripeptidyl-peptidase A (PTP-A), which liberate N-terminal acylated di-/tri-peptides and tripeptides with Pro at the third position, respectively, provide polypeptides in an acceptable form for DPPs. Hence, a large fraction of dipeptides is produced from nutritional polypeptides by DPPs with differential specificities in combination with AOP and PTP-A. The resultant dipeptides are then incorporated across the inner membrane mainly via a proton-dependent oligopeptide transporter (POT), a member of the major facilitator superfamily. Recent studies also indicate that DPP4 and DPP7 directly link between periodontal and systemic diseases, such as type 2 diabetes mellitus and coagulation abnormality, respectively. Therefore, these dipeptide-producing and incorporation molecules are considered to be potent targets for prevention and treatment of periodontal and related systemic diseases.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuko Ohara Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Fragment-based discovery of the first nonpeptidyl inhibitor of an S46 family peptidase. Sci Rep 2019; 9:13587. [PMID: 31537874 PMCID: PMC6753110 DOI: 10.1038/s41598-019-49984-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance is a global public threat and raises the need for development of new antibiotics with a novel mode of action. The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to a new class of serine peptidases, family S46. Because S46 peptidases are not found in mammals, these enzymes are attractive targets for novel antibiotics. However, potent and selective inhibitors of these peptidases have not been developed to date. In this study, a high-resolution crystal structure analysis of PgDPP11 using a space-grown crystal enabled us to identify the binding of citrate ion, which could be regarded as a lead fragment mimicking the binding of a substrate peptide with acidic amino acids, in the S1 subsite. The citrate-based pharmacophore was utilized for in silico inhibitor screening. The screening resulted in an active compound SH-5, the first nonpeptidyl inhibitor of S46 peptidases. SH-5 and a lipophilic analog of SH-5 showed a dose-dependent inhibitory effect against the growth of P. gingivalis. The binding mode of SH-5 was confirmed by crystal structure analysis. Thus, these compounds could be lead structures for the development of selective inhibitors of PgDPP11.
Collapse
|
8
|
Yadav P, Goyal VD, Gaur NK, Kumar A, Gokhale SM, Makde RD. Structure of Asp‐bound peptidase E from
Salmonella enterica
: Active site at dimer interface illuminates Asp recognition. FEBS Lett 2018; 592:3346-3354. [DOI: 10.1002/1873-3468.13247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Pooja Yadav
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
- School of Biochemistry Devi Ahilya University Indore India
| | - Venuka Durani Goyal
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Neeraj K. Gaur
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Ashwani Kumar
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| | | | - Ravindra D. Makde
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| |
Collapse
|
9
|
Nemoto TK, Bezerra GA, Ono T, Nishimata H, Fujiwara T, Ohara-Nemoto Y. Identification of a new subtype of dipeptidyl peptidase 11 and a third group of the S46-family members specifically present in the genus Bacteroides. Biochimie 2018; 147:25-35. [PMID: 29080830 DOI: 10.1016/j.biochi.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
Peptidase family S46 consists of two types of dipeptidyl-peptidases (DPPs), DPP7 and DPP11, which liberate dipeptides from the N-termini of polypeptides along with the penultimate hydrophobic and acidic residues, respectively. Their specificities are primarily defined by a single amino acid residue, Gly673 in DPP7 and Arg673 in DPP11 (numbering for Porphyromonas gingivalis DPP11). Bacterial species in the phyla Proteobacteria and Bacteroidetes generally possess one gene for each, while Bacteroides species exceptionally possess three genes, one gene as DPP7 and two genes as DPP11, annotated based on the full-length similarities. In the present study, we aimed to characterize the above-mentioned Bacteroides S46 DPPs. A recombinant protein of the putative DPP11 gene BF9343_2924 from Bacteroides fragilis harboring Gly673 exhibited DPP7 activity by hydrolyzing Leu-Leu-4-methylcoumaryl-7-amide (MCA). Another gene, BF9343_2925, as well as the Bacteroides vulgatus gene (BVU_2252) with Arg673 was confirmed to encode DPP11. These results demonstrated that classification of S46 peptidase is enforceable by the S1 essential residues. Bacteroides DPP11 showed a decreased level of activity towards the substrates, especially with P1-position Glu. Findings of 3D structural modeling indicated three potential amino acid substitutions responsible for the reduction, one of which, Asn650Thr substitution, actually recovered the hydrolyzing activity of Leu-Glu-MCA. On the other hand, the gene currently annotated as DPP7 carrying Gly673 from B. fragilis (BF9343_0130) and Bacteroides ovatus (Bovatus_03382) did not hydrolyze any of the examined substrates. The existence of a phylogenic branch of these putative Bacteroides DPP7 genes classified by the C-terminal conserved region (Ser571-Leu700) strongly suggests that Bacteroides species expresses a DPP with an unknown property. In conclusion, the genus Bacteroides exceptionally expresses three S46-family members; authentic DPP7, a new subtype of DPP11 with substantially reduced specificity for Glu, and a third group of S46 family members.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Gustavo Arruda Bezerra
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna Biocenter Campus 5, 1030 Vienna, Austria.
| | - Toshio Ono
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Haruka Nishimata
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Taku Fujiwara
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|
10
|
Bacterial protease uses distinct thermodynamic signatures for substrate recognition. Sci Rep 2017; 7:2848. [PMID: 28588213 PMCID: PMC5460201 DOI: 10.1038/s41598-017-03220-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme (“entropy reservoirs”). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.
Collapse
|